

IUCrData

ISSN 2414-3146

Received 20 March 2017 Accepted 23 March 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; pyridine; pyridinium; thiadiazole; hydrogen bonding; offset $\pi-\pi$ interactions.

CCDC reference: 1539885

Structural data: full structural data are available from iucrdata.iucr.org

2-[5-(Pyridin-2-yl)-1,3,4-thiadiazol-2-yl]pyridin-1ium perchlorate

Abdelhakim Laachir,^a Fouad Bentiss,^b Salaheddine Guesmi,^a* Mohamed Saadi^c and Lahcen El Ammari^c

^aLaboratoire de Chimie de Coordination et d'Analytique (LCCA), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, ^bLaboratoire de Catalyse et de Corrosion de Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, and ^cLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco. *Correspondence e-mail: salaheddine_guesmi@yahoo.fr

The cation of the title molecular salt, $C_{12}H_9N_4S^+$ ·ClO₄⁻, is approximately planar, with the pyridine and pyridinium rings being inclined to the central thiadiazole ring by 6.51 (9) and 9.13 (9)°, respectively. The dihedral angle between the pyridine and pyridinium rings is 12.91 (10)°. In the crystal, the cations are linked by N-H···O and C-H···O hydrogen bonds, involving the perchlorate anion, forming chains propagating along the [100] direction. The chains are linked by weak offset π - π interactions [inter-centroid distance = 3.586 (1) Å], forming layers parallel to the *ab* plane.

Structure description

Transition metal complexes with the ligand 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole (**L**) have attracted considerable attention owing to their magnetic properties (Klingele *et al.*, 2010) and biological activity (Zine *et al.*, 2016). Indeed, the ligand (**L**) can coordinate to different metal ions in many modes (Bentiss *et al.*, 2002, 2011; Ahmed *et al.*, 2015; Laachir *et al.*, 2013, 2015*a,b*). However, we observed the formation of the title compound with the same ligand after the addition of perchloric acid, as a result of the proton donor-acceptor reaction between perchloric acid and 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole (**L**). In this case, no metallic salt was used.

The structure of the title molecular salt is shown in Fig. 1. The cation is almost planar with the pyridine (N1/C1–C5) and pyridinium (N4/C8–C12) rings being inclined to the central thiadiazole (S1/N2/N3/C6/C7) ring by 6.51 (9) and 9.13 (9)°, respectively. The dihedral angle between the pyridine and pyridinium rings is 12.91 (10)°.

The molecular structure of the title molecular salt, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, the cations are linked by N-H···O and C-H···O hydrogen bonds, involving the perchlorate anion, forming chains propagating along the [100] direction; Table 1 and Fig. 2. The chains are linked by weak offset π - π interactions [Cg2···Cg1ⁱ = 3.586 (1) Å; Cg2 and Cg1 are the centroids of the N1/C1-C5 and S1/N2/N3/C6/C7 rings, respectively; interplanar distance 3.4952 (8) Å; slippage 0.734 Å; $\alpha = 6.51$ (9)°; symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{1}{2},$ -z + 1], forming layers parallel to the *ab* plane (Fig. 2).

Synthesis and crystallization

The 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole ligand (**L**) was synthesized as described previously (Lebrini *et al.*, 2005). To a solution of **L** (24 mg, 0.1 mmol) in EtOH (10 ml) was added dropwise HClO₄ (1 ml, 1 mol/l) with stirring at 318 K. The resulting solution was filtered after 2 h and allowed to stand in air for the solvent to evaporate slowly. After one month, colourless block-like crystals of the title compound were isolated and dried under vacuum (yield 40%, m.p. > 543 K). Elemental Analysis for C₁₂H₉N₄SClO₄. Calculated: C 42.30; H 2.66; N 16.44; S 9.41%, found: C 42.86; H 2.70; N 16.54; S 9.87%.

Figure 2

A view along the b axis of the crystal packing of the title molecular salt. The hydrogen bonds shown as dashed lines (see Table 1).

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N4-H4A\cdotsO1$	0.86	2.01	2.820 (2)	157
$C11 - H11 \cdots O2^i$	0.93	2.49	3.228 (3)	136
$C12{-}H12{\cdots}O3^i$	0.93	2.58	3.268 (3)	131

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2

Experimental details.

Crystal data	
Chemical formula	$C_{12}H_9N_4S^+ \cdot ClO_4^-$
Mr	340.74
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	296
a, b, c (Å)	33.5367 (15), 5.5506 (2), 14.7248 (7)
β (°)	96.873 (2)
$V(Å^3)$	2721.3 (2)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.46
Crystal size (mm)	$0.31 \times 0.26 \times 0.24$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et
	al., 2015)
T_{\min}, T_{\max}	0.672, 0.747
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	50011, 3824, 2916
R _{int}	0.052
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.694
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.111, 1.03
No. of reflections	3824
No. of parameters	200
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.64, -0.36

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXT2014 (Sheldrick, 2015a), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Funding information

Funding for this research was provided by: Chouaib Doukkali University, El Jadida, Morocco (award No. CUR CA2D– UCD).

References

Ahmed, Y. B., Merzouk, H., Harek, Y., Medjdoub, A., Cherrak, S., Larabi, L. & Narce, M. (2015). *Med. Chem. Res.* 24, 764–772.

- Bentiss, F., Lagrenée, M., Wignacourt, J. P. & Holt, E. M. (2002). *Polyhedron*, **21**, 403–408.
- Bentiss, F., Mernari, B., Traisnel, M., Vezin, H. & Lagrenée, M. (2011). Corros. Sci. 53, 487–495.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Klingele, J., Kaase, D., Klingele, M. H., Lach, J. & Demeshko, S. (2010). *Dalton Trans.* **39**, 1689–1691.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351-m352.
- Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015a). Acta Cryst. E71, m24-m25.

- Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, 452–454.
- Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zine, H., Rifai, L. A., Faize, M., Bentiss, F., Guesmi, S., Laachir, A., Smaili, A., Makroum, K., Sahibed-Dine, A. & Koussa, T. (2016). J. Agric. Food Chem. 64, 2661–2667.

full crystallographic data

IUCrData (2017). 2, x170465 [https://doi.org/10.1107/S2414314617004655]

2-[5-(Pyridin-2-yl)-1,3,4-thiadiazol-2-yl]pyridin-1-ium perchlorate

Abdelhakim Laachir, Fouad Bentiss, Salaheddine Guesmi, Mohamed Saadi and Lahcen El Ammari

2-[5-(Pyridin-2-yl)-1,3,4-thiadiazol-2-yl]pyridin-1-ium perchlorate

Crystal data

 $C_{12}H_{9}N_{4}S^{+} \cdot ClO_{4}^{-}$ $M_{r} = 340.74$ Monoclinic, C2/c a = 33.5367 (15) Å b = 5.5506 (2) Å c = 14.7248 (7) Å $\beta = 96.873 (2)^{\circ}$ $V = 2721.3 (2) \text{ Å}^{3}$ Z = 8

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.672, T_{\max} = 0.747$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.111$ S = 1.033824 reflections 200 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 1392 $D_x = 1.663 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3824 reflections $\theta = 2.5-29.6^{\circ}$ $\mu = 0.46 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.31 \times 0.26 \times 0.24 \text{ mm}$

50011 measured reflections 3824 independent reflections 2916 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 29.6^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -46 \rightarrow 46$ $k = -7 \rightarrow 7$ $l = -20 \rightarrow 20$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0492P)^2 + 3.1258P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.64$ e Å⁻³ $\Delta\rho_{min} = -0.36$ e Å⁻³ Extinction correction: (SHELXL2014; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00101 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.18047 (6)	0.1642 (4)	0.65832 (15)	0.0455 (5)
H1	0.1681	0.0341	0.6833	0.055*
C2	0.15657 (6)	0.3515 (4)	0.62216 (14)	0.0465 (5)
H2	0.1288	0.3458	0.6221	0.056*
C3	0.17455 (7)	0.5475 (4)	0.58611 (14)	0.0472 (5)
Н3	0.1592	0.6764	0.5615	0.057*
C4	0.21568 (7)	0.5486 (4)	0.58731 (14)	0.0439 (4)
H4	0.2287	0.6793	0.5646	0.053*
C5	0.23703 (6)	0.3505 (3)	0.62305 (12)	0.0360 (4)
C6	0.28059 (6)	0.3308 (3)	0.62037 (12)	0.0356 (4)
N2	0.30220 (5)	0.4922 (3)	0.58383 (13)	0.0462 (4)
C7	0.34788 (6)	0.2110 (3)	0.62361 (12)	0.0355 (4)
C8	0.38781 (6)	0.1017 (3)	0.62886 (12)	0.0352 (4)
С9	0.40005 (6)	-0.1039 (4)	0.67636 (13)	0.0404 (4)
Н9	0.3820	-0.1905	0.7069	0.048*
C10	0.43937 (6)	-0.1812 (4)	0.67844 (15)	0.0466 (5)
H10	0.4479	-0.3192	0.7110	0.056*
C11	0.46602 (6)	-0.0542 (4)	0.63233 (15)	0.0506 (5)
H11	0.4926	-0.1041	0.6340	0.061*
C12	0.45270 (6)	0.1464 (4)	0.58412 (15)	0.0490 (5)
H12	0.4701	0.2327	0.5518	0.059*
N1	0.22023 (5)	0.1595 (3)	0.65940 (12)	0.0407 (4)
N3	0.34134 (5)	0.4227 (3)	0.58616 (12)	0.0451 (4)
N4	0.41472 (5)	0.2185 (3)	0.58340 (11)	0.0409 (4)
H4A	0.4070	0.3452	0.5526	0.049*
01	0.41023 (6)	0.6149 (4)	0.46276 (12)	0.0709 (5)
O2	0.44211 (5)	0.9097 (3)	0.38647 (13)	0.0636 (5)
O3	0.46696 (6)	0.5156 (4)	0.39250 (18)	0.0877 (7)
O4	0.40605 (5)	0.6036 (3)	0.30479 (11)	0.0633 (5)
S 1	0.30657 (2)	0.07805 (9)	0.66034 (3)	0.03868 (13)
C11	0.43216 (2)	0.66014 (8)	0.38557 (3)	0.03972 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0471 (11)	0.0442 (11)	0.0460 (11)	-0.0084 (9)	0.0084 (9)	-0.0049 (9)
C2	0.0417 (10)	0.0575 (13)	0.0394 (10)	-0.0001 (9)	0.0012 (8)	-0.0126 (9)
C3	0.0527 (12)	0.0468 (12)	0.0404 (10)	0.0111 (10)	-0.0015 (9)	-0.0039 (9)
C4	0.0538 (12)	0.0384 (10)	0.0396 (10)	0.0011 (9)	0.0063 (9)	0.0025 (8)

C5	0.0436 (10)	0.0338 (9)	0.0304 (8)	-0.0010 (7)	0.0034 (7)	-0.0025 (7)
C6	0.0446 (10)	0.0312 (8)	0.0310 (8)	-0.0020 (7)	0.0044 (7)	0.0000 (7)
N2	0.0510 (10)	0.0359 (8)	0.0534 (10)	0.0008 (7)	0.0132 (8)	0.0067 (8)
C7	0.0413 (9)	0.0356 (9)	0.0300 (8)	-0.0057 (7)	0.0063 (7)	-0.0015 (7)
C8	0.0388 (9)	0.0390 (9)	0.0277 (8)	-0.0070 (8)	0.0041 (7)	-0.0033 (7)
C9	0.0453 (10)	0.0409 (10)	0.0363 (9)	-0.0046 (8)	0.0102 (8)	0.0025 (8)
C10	0.0467 (11)	0.0483 (11)	0.0443 (11)	0.0022 (9)	0.0034 (9)	0.0049 (9)
C11	0.0377 (10)	0.0630 (14)	0.0506 (12)	-0.0026 (10)	0.0036 (9)	-0.0001 (10)
C12	0.0400 (10)	0.0590 (13)	0.0487 (11)	-0.0120 (9)	0.0088 (9)	0.0047 (10)
N1	0.0440 (9)	0.0354 (8)	0.0432 (9)	-0.0012 (7)	0.0068 (7)	0.0003 (7)
N3	0.0494 (10)	0.0372 (8)	0.0504 (10)	-0.0038 (7)	0.0136 (8)	0.0049 (7)
N4	0.0420 (9)	0.0442 (9)	0.0368 (8)	-0.0073 (7)	0.0059 (7)	0.0052 (7)
01	0.0841 (13)	0.0781 (12)	0.0533 (10)	-0.0105 (10)	0.0194 (9)	0.0201 (9)
O2	0.0704 (11)	0.0440 (9)	0.0776 (12)	-0.0167 (8)	0.0134 (9)	0.0017 (8)
O3	0.0481 (10)	0.0771 (13)	0.135 (2)	0.0194 (10)	-0.0025 (11)	-0.0011 (13)
O4	0.0663 (11)	0.0715 (11)	0.0486 (9)	-0.0082 (9)	-0.0074 (8)	-0.0029 (8)
S1	0.0399 (3)	0.0360 (2)	0.0406 (3)	-0.00179 (19)	0.00645 (19)	0.00837 (19)
C11	0.0366 (2)	0.0386 (2)	0.0434 (3)	-0.00349 (18)	0.00246 (18)	0.00549 (18)

Geometric parameters (Å, °)

C1—N1	1.332 (3)	C7—S1	1.7135 (18)
C1—C2	1.380 (3)	C8—N4	1.352 (2)
C1—H1	0.9300	C8—C9	1.375 (3)
C2—C3	1.380 (3)	C9—C10	1.384 (3)
С2—Н2	0.9300	С9—Н9	0.9300
C3—C4	1.377 (3)	C10—C11	1.379 (3)
С3—Н3	0.9300	C10—H10	0.9300
C4—C5	1.382 (3)	C11—C12	1.366 (3)
C4—H4	0.9300	C11—H11	0.9300
C5—N1	1.341 (2)	C12—N4	1.334 (3)
C5—C6	1.470 (3)	C12—H12	0.9300
C6—N2	1.308 (2)	N4—H4A	0.8600
C6—S1	1.7178 (19)	O1—C11	1.4478 (17)
N2—N3	1.365 (2)	O2—Cl1	1.4244 (17)
C7—N3	1.306 (3)	O3—Cl1	1.4099 (19)
С7—С8	1.464 (3)	O4—Cl1	1.4250 (17)
N1-C1-C2	123.6 (2)	C8—C9—C10	119.62 (18)
N1—C1—H1	118.2	C8—C9—H9	120.2
C2—C1—H1	118.2	С10—С9—Н9	120.2
C1—C2—C3	118.8 (2)	C11—C10—C9	120.2 (2)
C1—C2—H2	120.6	C11—C10—H10	119.9
С3—С2—Н2	120.6	С9—С10—Н10	119.9
C4—C3—C2	118.8 (2)	C12—C11—C10	118.8 (2)
С4—С3—Н3	120.6	C12—C11—H11	120.6
С2—С3—Н3	120.6	C10—C11—H11	120.6
C3—C4—C5	118.3 (2)	N4—C12—C11	120.09 (19)
			· · · · · · · · · · · · · · · · · · ·

G2 G4 114	1000		1000
C3—C4—H4	120.9	N4—C12—H12	120.0
C5—C4—H4	120.9	C11—C12—H12	120.0
N1—C5—C4	123.89 (19)	C1—N1—C5	116.58 (18)
N1—C5—C6	114.72 (17)	C7—N3—N2	112.18 (16)
C4—C5—C6	121.35 (18)	C12—N4—C8	123.04 (18)
N2—C6—C5	124.15 (18)	C12—N4—H4A	118.5
N2C6S1	114.66 (15)	C8—N4—H4A	118.5
C5—C6—S1	121.08 (14)	C7—S1—C6	86.35 (9)
C6—N2—N3	112.00 (17)	O3—Cl1—O2	111.20 (13)
N3—C7—C8	120.12 (17)	O3—Cl1—O4	110.83 (13)
N3—C7—S1	114.81 (15)	O2—Cl1—O4	109.99 (11)
C8—C7—S1	125.04 (14)	O3—Cl1—O1	109.78 (14)
N4—C8—C9	118.27 (18)	O2-Cl1-O1	107.57 (12)
N4—C8—C7	115.83 (17)	O4—C11—O1	107.34 (11)
C9—C8—C7	125.90 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N4—H4 <i>A</i> …O1	0.86	2.01	2.820 (2)	157
C11—H11…O2 ⁱ	0.93	2.49	3.228 (3)	136
C12—H12…O3 ⁱ	0.93	2.58	3.268 (3)	131

Symmetry code: (i) -x+1, -y+1, -z+1.