organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,6-Di­bromo-1H-indole-2,3-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 February 2017; accepted 4 March 2017; online 10 March 2017)

The title compound, C8H3Br2NO2, crystallizes with two near planar mol­ecules in the asymmetric unit, with non-H atoms possessing mean deviations from planarity of 0.012 and 0.014 Å. The two molecules are connected by an N—H⋯O and a C—H⋯O hydrogen bond. In the crystal, mol­ecules connect through a series of bifurcated N—(H,H)⋯O hydrogen bonds, forming chains propagating along the [1-1-1] direction. The mol­ecules are further linked through inter­molecular halogen inter­actions, including a Br⋯O close contact of 2.9409 (3) Å, and two C—H⋯Br inter­actions of 3.777 (3) and 3.845 (3) Å. These inter­actions link the chains into sheets lying parallel to the (1-23) plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In our continued efforts to study the inter­actions of halogenated isatins in the solid state, we report herein on the crystal structure of the title compound, 5,6-di­bromo­isatin (Fig. 1[link]). There are two mol­ecules in the asymmetric unit, both are nearly planar, with the non-hydrogen atoms possessing mean deviations from planarity of 0.012 and 0.014 Å. The two molecules are connected by an N—H⋯O and a C—H⋯O hydrogen bond (Table 1[link]). The geometrical parameters of the isatin mol­ecules are similar to those observed in the parent compound (Goldschmidt & Llewellyn, 1950[Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.]). Of note in the structure are Br2⋯O2 close contacts of 2.9409 (3) Å, with the bromine substituted at the 6 position of the isatin ring. In previous reports, 6-bromo­isatin (Turbitt et al., 2016[Turbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434.]) was found to have a similar inter­action, which was also observed in 4-bromo­isatin (Huang et al., 2016[Huang, H., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160007.]) and 7-bromo­isatin (Golen & Manke, 2016a[Golen, J. A. & Manke, D. R. (2016a). IUCrData, 1, x160268.]). Inter­estingly, Br1, which is at the 5-position of the isatin is not involved in a Br⋯O inter­action. This was also not present in the solid state structure of 5-bromo­isatin (Gurung et al., 2016[Gurung, S., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160177.]). For comparison, I⋯O close contacts were observed for both 5-iodo­isatin (Garden et al., 2006[Garden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321-o323.]) and 6-iodo­isatin (Golen & Manke, 2016b[Golen, J. A. & Manke, D. R. (2016b). IUCrData, 1, x160700.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1Ai 0.86 (2) 2.34 (3) 2.979 (3) 132 (3)
N1—H1⋯O2Ai 0.86 (2) 2.40 (2) 3.191 (3) 153 (3)
N1A—H1A⋯O1Ai 0.86 (2) 2.40 (2) 3.109 (3) 140 (3)
N1A—H1A⋯O1 0.86 (2) 2.13 (2) 2.835 (3) 140 (3)
C7A—H7A⋯O1 0.95 2.31 3.039 (3) 133
C4—H4⋯Br2Aii 0.95 3.03 3.845 (3) 145
C4A—H4A⋯Br1iii 0.95 2.94 3.777 (3) 147
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) x+1, y-1, z-1.
[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines (see Table 1[link]).

In the crystal, mol­ecules combine through bifurcated N—(H,H)⋯O hydrogen bonds (Table 1[link]), resulting in infinite chains along [1[\overline{1}][\overline{1}]]. The mol­ecules are further linked through a C—H⋯O hydrogen bond, two C—H⋯Br inter­actions and the aforementioned Br⋯O inter­action, to yield infinite sheets lying parallel to (1[\overline{2}]3); see Table 1[link] and Fig. 2[link].

[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis. The N—H⋯O and C—H⋯Br hydrogen bonds and O⋯Br inter­actions are shown as dashed lines (see Table 1[link]).

Synthesis and crystallization

A commercial sample (AK Scientific) of 5,6-di­bromo-1H-indole-2,3-dione was used for crystallization. Orange block-like crystals were grown by slow evaporation of a solution in tetra­hydro­furan.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H3Br2NO2
Mr 304.93
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 7.1044 (10), 10.5317 (15), 12.2598 (17)
α, β, γ (°) 108.078 (4), 93.481 (5), 101.484 (4)
V3) 847.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.53
Crystal size (mm) 0.18 × 0.07 × 0.05
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.147, 0.259
No. of measured, independent and observed [I > 2σ(I)] reflections 23591, 3116, 2728
Rint 0.037
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.047, 1.04
No. of reflections 3116
No. of parameters 241
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.59
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

5,6-Dibromo-1H-indole-2,3-dione top
Crystal data top
C8H3Br2NO2Z = 4
Mr = 304.93F(000) = 576
Triclinic, P1Dx = 2.391 Mg m3
a = 7.1044 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5317 (15) ÅCell parameters from 9890 reflections
c = 12.2598 (17) Åθ = 3.2–25.4°
α = 108.078 (4)°µ = 9.53 mm1
β = 93.481 (5)°T = 200 K
γ = 101.484 (4)°Block, orange
V = 847.1 (2) Å30.18 × 0.07 × 0.05 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2728 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.4°, θmin = 3.0°
Tmin = 0.147, Tmax = 0.259h = 88
23591 measured reflectionsk = 1212
3116 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: mixed
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.020P)2 + 0.9509P]
where P = (Fo2 + 2Fc2)/3
3116 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.38 e Å3
2 restraintsΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.47270 (4)0.30752 (3)0.14714 (2)0.02479 (8)
Br2A0.22006 (4)0.12973 (3)0.33501 (2)0.02340 (8)
O1A1.1378 (3)0.4127 (2)0.42202 (19)0.0299 (5)
O2A1.1634 (3)0.1601 (2)0.24850 (18)0.0280 (5)
N1A0.8347 (3)0.2843 (2)0.4282 (2)0.0203 (5)
H1A0.790 (4)0.344 (3)0.478 (2)0.024*
C1A1.0112 (4)0.3079 (3)0.3919 (2)0.0207 (6)
C2A1.0237 (4)0.1715 (3)0.2994 (2)0.0191 (6)
C3A0.8391 (4)0.0758 (3)0.2929 (2)0.0181 (6)
C4A0.7644 (4)0.0600 (3)0.2257 (2)0.0198 (6)
H4A0.83800.10920.17290.024*
C5A0.5791 (4)0.1220 (3)0.2376 (2)0.0201 (6)
C6A0.4717 (4)0.0480 (3)0.3155 (2)0.0187 (6)
C7A0.5464 (4)0.0886 (3)0.3829 (2)0.0196 (6)
H7A0.47280.13840.43540.023*
C8A0.7306 (4)0.1485 (3)0.3706 (2)0.0176 (6)
Br10.16323 (4)0.65214 (3)0.96887 (3)0.03334 (9)
Br20.21559 (4)0.91557 (3)1.01670 (3)0.02740 (8)
O10.5314 (3)0.3653 (2)0.55313 (19)0.0328 (5)
O20.1546 (3)0.2594 (2)0.61325 (18)0.0280 (5)
N10.5037 (3)0.5666 (2)0.6916 (2)0.0225 (5)
H10.609 (3)0.621 (3)0.690 (3)0.027*
C10.4470 (4)0.4324 (3)0.6242 (2)0.0219 (6)
C20.2460 (4)0.3766 (3)0.6564 (2)0.0205 (6)
C30.2055 (4)0.4942 (3)0.7454 (2)0.0197 (6)
C40.0484 (4)0.5079 (3)0.8054 (2)0.0218 (6)
H40.05930.43260.79170.026*
C50.0522 (4)0.6344 (3)0.8861 (2)0.0225 (6)
C60.2115 (4)0.7443 (3)0.9055 (2)0.0205 (6)
C70.3705 (4)0.7315 (3)0.8445 (2)0.0209 (6)
H70.47820.80660.85760.025*
C80.3639 (4)0.6048 (3)0.7644 (2)0.0184 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.02325 (15)0.01670 (14)0.02779 (16)0.00039 (11)0.00439 (11)0.00042 (12)
Br2A0.01509 (14)0.02296 (15)0.02782 (16)0.00174 (11)0.00595 (11)0.00550 (12)
O1A0.0210 (10)0.0198 (11)0.0399 (13)0.0048 (9)0.0090 (9)0.0023 (10)
O2A0.0210 (10)0.0254 (11)0.0353 (12)0.0038 (8)0.0126 (9)0.0060 (9)
N1A0.0179 (11)0.0143 (11)0.0233 (12)0.0014 (9)0.0079 (9)0.0007 (10)
C1A0.0167 (13)0.0196 (14)0.0247 (15)0.0027 (11)0.0032 (11)0.0065 (12)
C2A0.0164 (13)0.0180 (14)0.0235 (14)0.0041 (11)0.0050 (11)0.0074 (12)
C3A0.0158 (13)0.0171 (13)0.0215 (14)0.0040 (10)0.0048 (11)0.0060 (11)
C4A0.0186 (13)0.0195 (14)0.0203 (14)0.0049 (11)0.0063 (11)0.0041 (12)
C5A0.0214 (14)0.0161 (13)0.0203 (14)0.0021 (11)0.0017 (11)0.0040 (11)
C6A0.0129 (13)0.0216 (14)0.0209 (14)0.0010 (10)0.0027 (10)0.0080 (12)
C7A0.0176 (13)0.0201 (14)0.0199 (14)0.0048 (11)0.0057 (11)0.0042 (12)
C8A0.0165 (13)0.0161 (13)0.0178 (13)0.0010 (10)0.0010 (10)0.0043 (11)
Br10.02592 (16)0.02957 (17)0.03630 (18)0.00441 (12)0.01712 (13)0.00192 (14)
Br20.02990 (16)0.01911 (15)0.02697 (16)0.00648 (12)0.00552 (12)0.00201 (12)
O10.0263 (11)0.0239 (11)0.0409 (13)0.0033 (9)0.0188 (10)0.0007 (10)
O20.0247 (11)0.0195 (11)0.0319 (12)0.0005 (8)0.0086 (9)0.0001 (9)
N10.0173 (12)0.0180 (12)0.0272 (13)0.0000 (9)0.0101 (10)0.0015 (10)
C10.0186 (14)0.0200 (14)0.0249 (15)0.0029 (11)0.0081 (12)0.0042 (12)
C20.0177 (13)0.0213 (15)0.0212 (14)0.0032 (11)0.0044 (11)0.0055 (12)
C30.0195 (14)0.0169 (14)0.0210 (14)0.0031 (11)0.0049 (11)0.0041 (12)
C40.0182 (14)0.0212 (14)0.0235 (15)0.0009 (11)0.0044 (11)0.0059 (12)
C50.0182 (14)0.0260 (15)0.0226 (14)0.0078 (11)0.0072 (11)0.0046 (12)
C60.0243 (14)0.0181 (13)0.0173 (13)0.0070 (11)0.0009 (11)0.0024 (11)
C70.0198 (14)0.0176 (14)0.0233 (14)0.0009 (11)0.0026 (11)0.0061 (12)
C80.0160 (13)0.0204 (14)0.0185 (14)0.0034 (11)0.0046 (11)0.0061 (12)
Geometric parameters (Å, º) top
Br1A—C5A1.893 (3)Br1—C51.895 (3)
Br2A—C6A1.887 (3)Br2—C61.887 (3)
O1A—C1A1.214 (3)O1—C11.212 (3)
O2A—C2A1.210 (3)O2—C21.208 (3)
N1A—H1A0.855 (17)N1—H10.858 (18)
N1A—C1A1.358 (3)N1—C11.360 (4)
N1A—C8A1.407 (3)N1—C81.411 (3)
C1A—C2A1.553 (4)C1—C21.555 (4)
C2A—C3A1.467 (4)C2—C31.465 (4)
C3A—C4A1.385 (4)C3—C41.380 (4)
C3A—C8A1.400 (4)C3—C81.398 (4)
C4A—H4A0.9500C4—H40.9500
C4A—C5A1.386 (4)C4—C51.386 (4)
C5A—C6A1.402 (4)C5—C61.397 (4)
C6A—C7A1.392 (4)C6—C71.398 (4)
C7A—H7A0.9500C7—H70.9500
C7A—C8A1.374 (4)C7—C81.379 (4)
C1A—N1A—H1A125 (2)C1—N1—H1125 (2)
C1A—N1A—C8A111.0 (2)C1—N1—C8111.0 (2)
C8A—N1A—H1A124 (2)C8—N1—H1124 (2)
O1A—C1A—N1A129.0 (3)O1—C1—N1128.9 (3)
O1A—C1A—C2A124.7 (2)O1—C1—C2124.9 (2)
N1A—C1A—C2A106.3 (2)N1—C1—C2106.2 (2)
O2A—C2A—C1A122.3 (2)O2—C2—C1123.6 (2)
O2A—C2A—C3A132.8 (3)O2—C2—C3131.6 (3)
C3A—C2A—C1A104.9 (2)C3—C2—C1104.8 (2)
C4A—C3A—C2A132.1 (2)C4—C3—C2131.5 (3)
C4A—C3A—C8A121.0 (2)C4—C3—C8121.2 (2)
C8A—C3A—C2A106.9 (2)C8—C3—C2107.3 (2)
C3A—C4A—H4A120.9C3—C4—H4120.9
C3A—C4A—C5A118.1 (2)C3—C4—C5118.1 (3)
C5A—C4A—H4A120.9C5—C4—H4120.9
C4A—C5A—Br1A119.2 (2)C4—C5—Br1117.9 (2)
C4A—C5A—C6A120.3 (2)C4—C5—C6120.4 (3)
C6A—C5A—Br1A120.5 (2)C6—C5—Br1121.7 (2)
C5A—C6A—Br2A121.4 (2)C5—C6—Br2119.9 (2)
C7A—C6A—Br2A116.9 (2)C5—C6—C7121.8 (2)
C7A—C6A—C5A121.6 (2)C7—C6—Br2118.3 (2)
C6A—C7A—H7A121.3C6—C7—H7121.5
C8A—C7A—C6A117.4 (2)C8—C7—C6117.0 (2)
C8A—C7A—H7A121.3C8—C7—H7121.5
C3A—C8A—N1A110.9 (2)C3—C8—N1110.7 (2)
C7A—C8A—N1A127.6 (2)C7—C8—N1127.8 (2)
C7A—C8A—C3A121.5 (2)C7—C8—C3121.5 (2)
Br1A—C5A—C6A—Br2A0.9 (3)Br1—C5—C6—Br20.1 (4)
Br1A—C5A—C6A—C7A179.9 (2)Br1—C5—C6—C7180.0 (2)
Br2A—C6A—C7A—C8A179.1 (2)Br2—C6—C7—C8179.6 (2)
O1A—C1A—C2A—O2A0.8 (5)O1—C1—C2—O20.3 (5)
O1A—C1A—C2A—C3A179.9 (3)O1—C1—C2—C3179.8 (3)
O2A—C2A—C3A—C4A0.0 (6)O2—C2—C3—C41.7 (6)
O2A—C2A—C3A—C8A178.1 (3)O2—C2—C3—C8178.7 (3)
N1A—C1A—C2A—O2A178.5 (3)N1—C1—C2—O2179.1 (3)
N1A—C1A—C2A—C3A0.8 (3)N1—C1—C2—C30.3 (3)
C1A—N1A—C8A—C3A0.5 (3)C1—N1—C8—C30.7 (3)
C1A—N1A—C8A—C7A178.6 (3)C1—N1—C8—C7179.8 (3)
C1A—C2A—C3A—C4A179.2 (3)C1—C2—C3—C4179.0 (3)
C1A—C2A—C3A—C8A1.0 (3)C1—C2—C3—C80.7 (3)
C2A—C3A—C4A—C5A178.0 (3)C2—C3—C4—C5179.8 (3)
C2A—C3A—C8A—N1A1.0 (3)C2—C3—C8—N10.9 (3)
C2A—C3A—C8A—C7A178.1 (3)C2—C3—C8—C7179.6 (3)
C3A—C4A—C5A—Br1A180.0 (2)C3—C4—C5—Br1179.6 (2)
C3A—C4A—C5A—C6A0.3 (4)C3—C4—C5—C60.0 (4)
C4A—C3A—C8A—N1A179.4 (3)C4—C3—C8—N1178.8 (3)
C4A—C3A—C8A—C7A0.3 (4)C4—C3—C8—C70.7 (4)
C4A—C5A—C6A—Br2A179.4 (2)C4—C5—C6—Br2179.4 (2)
C4A—C5A—C6A—C7A0.2 (4)C4—C5—C6—C70.5 (5)
C5A—C6A—C7A—C8A0.2 (4)C5—C6—C7—C80.4 (4)
C6A—C7A—C8A—N1A179.3 (3)C6—C7—C8—N1179.2 (3)
C6A—C7A—C8A—C3A0.4 (4)C6—C7—C8—C30.2 (4)
C8A—N1A—C1A—O1A179.5 (3)C8—N1—C1—O1179.2 (3)
C8A—N1A—C1A—C2A0.2 (3)C8—N1—C1—C20.2 (3)
C8A—C3A—C4A—C5A0.1 (4)C8—C3—C4—C50.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Ai0.86 (2)2.34 (3)2.979 (3)132 (3)
N1—H1···O2Ai0.86 (2)2.40 (2)3.191 (3)153 (3)
N1A—H1A···O1Ai0.86 (2)2.40 (2)3.109 (3)140 (3)
N1A—H1A···O10.86 (2)2.13 (2)2.835 (3)140 (3)
C7A—H7A···O10.952.313.039 (3)133
C4—H4···Br2Aii0.953.033.845 (3)145
C4A—H4A···Br1iii0.952.943.777 (3)147
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y1, z1.
 

Funding information

Funding for this research was provided by: National Science Foundation (award No. CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321–o323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGolen, J. A. & Manke, D. R. (2016a). IUCrData, 1, x160268.  Google Scholar
First citationGolen, J. A. & Manke, D. R. (2016b). IUCrData, 1, x160700.  Google Scholar
First citationGurung, S., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160177.  Google Scholar
First citationHuang, H., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160007.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds