organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

A pyridyl-substituted cyclo­disilazane [(Apy)2(μ-SiMe)2] (ApyH2 = 2-amino­pyridine)

CROSSMARK_Color_square_no_text.svg

aThe School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China, and bScientific Instrument Center, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: duanxe@sxu.edu.cn

Edited by J. Simpson, University of Otago, New Zealand (Received 10 March 2017; accepted 13 March 2017; online 17 March 2017)

The title compound, C14H20N4Si2 or [(Apy)2(μ-SiMe)2], systematic name 2-[2,2,4,4-tetra­methyl-3-(pyridin-2-yl)-1,3,2,4-di­aza­disiletidin-1-yl]pyridine, was obtained as a side product from the reaction of 2-amino-pyridine with LiBun followed by the addition of Me2NMe2SiCl in hexane. The compound was characterized by single-crystal X-ray diffraction analysis and NMR spectroscopy. The title compound lies about an inversion center at the centroid of the cyclo­disilazane ring. The four-membered Si2N2 core is strictly planar with the two pyridyl rings placed centrosymmetrically on either side of the Si2N2 plane and are almost coplanar with the central four-membered ring.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Small inorganic rings represent a well studied structural class due to the novel bonding modes and reactivity these units possess and the ubiquitous role of cyclic inter­mediates in a wide variety of chemical transformations (He et al., 2014[He, G., Shynkaruk, O., Lui, M. W. & Rivard, E. (2014). Chem. Rev. 114, 7815-7880.]). Structural features of N-aromatic cyclo­disilaza­nes have also attracted considerable inter­est (Schneider et al., 2001[Schneider, J., Popowski, E., Junge, K. & Reinke, H. (2001). Z. Anorg. Allg. Chem. 627, 2680-2692.]).

The title compound, [(Apy)2(μ-SiMe)2], lies on an inversion center situated at the centroid of the N2/Si1/N2A/Si1A ring (Fig. 1[link]), where the four-membered Si2N2 core is strictly planar. The Si—N—Si and N—Si—N bond angles are 95.92 (5) and 84.08 (5)°, respectively. The two pyridyl rings, which are close to planar [r.m.s. deviations = 0.0066 Å] are located centrosymmetrically on either side of the Si2N2 plane. They are also close to coplanar with the Si2N2 ring, with inter­planar angles of 6.97 (9)°. This coplanarity of the main backbone is also observed in the previously reported aryl substituted cyclo­disilaza­nes with only H or halogen atoms in the ortho positions of the aromatic ring (Szöllösy et al., 1983[Szöllösy, A., Párkányi, L., Bihátsi, L. & Hencsei, P. (1983). J. Organomet. Chem. 251, 159-166.]). In these structures, the corresponding dihedral angles between the planar Si2N2 core and the aromatic rings lie in in the range 3 to 8°. However, when the ortho substituents are methyl or isopropyl groups, these angles increase to almost 90° due to steric inter­actions between the ring systems (Schneider et al., 2001[Schneider, J., Popowski, E., Junge, K. & Reinke, H. (2001). Z. Anorg. Allg. Chem. 627, 2680-2692.]; Shah et al., 1996[Shah, S. A. A., Roesky, H. W., Lubini, P. & Schmidt, H.-G. (1996). Acta Cryst. C52, 2810-2811.]). The Si—C6—C7 or SiA—C6A—C7A planes in the mol­ecule are almost perpendicular to the central Si2N2 core with dihedral angles of 89.73 (6)°. The Si—N bond distances, 1.7489 (10) and 1.7524 (11) Å, are similar to those observed in the related 6-Me-pyridyl-substituted cyclo­disilazane [(6-Me-Apy)2(μ-SiMe)2] (Junk & Leary, 2004[Junk, P. C. & Leary, S. G. (2004). Inorg. Chim. Acta, 357, 2195-2198.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Atoms labelled with the suffix A character are related by the symmetry operation −x + 1, −y, −z + 2.

Synthesis and crystallization

The title compound was prepared from 2-amino-pyridine with LiBun followed by Me2NMe2SiCl in hexane as follows. To a stirred solution of 2-amino-pyridine (0.207 g, 2.20 mmol) in hexane (25 ml) at 0°C, LiBun (1.00 ml, 2.2 M, 2.20 mmol) was added dropwise to form a yellow suspension. The mixture was slowly warmed to room temperature and kept stirring for 12 h. Me2NSiMe2Cl (0.30 ml, 2.20 mmol) was added to this solution at 0°C and stirred for 12 h at room temperature, and then filtered to remove LiCl. The filtrate was concentrated in vacuo to ca 5–10 ml. There was a small amount of white solid precipitated at this point. This material was filtered off and the solution was concentrated to obtain the main product ApyHSiMe2NMe2 as yellow oil (Duan et al., 2012[Duan, X. E., Yuan, S. F., Tong, H. B., Bai, S. D., Wei, X. H. & Liu, D. S. (2012). Dalton Trans. 41, 9460-9467.]). The additional white residue was recrystallized from hexane to give colorless block-like crystals of the title compound (< 0.066 g, < 10% yield). The formation of the reported cyclo­disilazane is presumed to occur via the elimination of Me2NCl.

1H NMR (600 MHz, CDCl3): δ 0.64–0.66 (m, 12H, Si—CH3), 6.37–6.40 (m, 2H, pyrid­yl), 6.64–6.67 (m, 2H, pyrid­yl), 7.41–7.44 (m, 2H, pyrid­yl), 8,12–8.13 (m, 2H, pyrid­yl); 13C NMR (150 MHz, CDCl3): δ 0.81 (SiCH3), 158.73 (C1), 110.80 (C2), 137.42 (C3), 113.68 (C4), 148.88 (C5).

Refinement

Crystal data, data collection and refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C14H20N4Si2
Mr 300.52
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 9.8504 (4), 8.5234 (4), 10.3120 (4)
β (°) 109.673 (1)
V3) 815.25 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.30 × 0.30 × 0.20
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.939, 0.959
No. of measured, independent and observed [I > 2σ(I)] reflections 7684, 1999, 1850
Rint 0.021
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 0.99
No. of reflections 1999
No. of parameters 93
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-[2,2,4,4-Tetramethyl-3-(pyridin-2-yl)-1,3,2,4-diazadisiletidin-1-yl]pyridine top
Crystal data top
C14H20N4Si2F(000) = 320
Mr = 300.52Dx = 1.224 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.8504 (4) ÅCell parameters from 5990 reflections
b = 8.5234 (4) Åθ = 3.3–28.3°
c = 10.3120 (4) ŵ = 0.21 mm1
β = 109.673 (1)°T = 200 K
V = 815.25 (6) Å3Block, colorless
Z = 20.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
1850 reflections with I > 2σ(I)
φ and ω scansRint = 0.021
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 28.3°, θmin = 4.3°
Tmin = 0.939, Tmax = 0.959h = 1213
7684 measured reflectionsk = 1111
1999 independent reflectionsl = 1310
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.3604P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
1999 reflectionsΔρmax = 0.29 e Å3
93 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.39680 (3)0.09851 (4)0.94129 (3)0.02539 (12)
N20.58067 (11)0.07682 (12)0.96573 (11)0.0282 (2)
N10.81985 (12)0.11173 (13)0.99110 (12)0.0325 (2)
C10.68425 (12)0.16506 (13)0.93708 (12)0.0252 (2)
C70.27830 (17)0.08941 (19)0.75936 (15)0.0439 (3)
H7A0.30530.00090.71450.066*
H7B0.28890.18600.71210.066*
H7C0.17790.07830.75500.066*
C20.65038 (15)0.30168 (16)0.85671 (14)0.0340 (3)
H20.55320.33550.81740.041*
C50.92480 (15)0.19644 (18)0.96812 (16)0.0409 (3)
H51.02110.15941.00600.049*
C60.35809 (16)0.27296 (16)1.02919 (15)0.0372 (3)
H6A0.25570.27391.01980.056*
H6B0.38120.36810.98740.056*
H6C0.41680.26951.12700.056*
C40.90132 (17)0.33314 (19)0.89331 (17)0.0445 (4)
H40.97930.38990.88130.053*
C30.76063 (19)0.38586 (17)0.83580 (16)0.0420 (3)
H30.74040.47930.78240.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.02209 (18)0.02372 (18)0.02890 (19)0.00267 (10)0.00666 (13)0.00351 (11)
N20.0237 (5)0.0254 (5)0.0358 (5)0.0021 (4)0.0106 (4)0.0066 (4)
N10.0263 (5)0.0327 (6)0.0386 (6)0.0010 (4)0.0112 (4)0.0003 (4)
C10.0273 (5)0.0237 (5)0.0263 (5)0.0015 (4)0.0113 (4)0.0034 (4)
C70.0416 (8)0.0473 (8)0.0334 (7)0.0013 (6)0.0003 (6)0.0029 (6)
C20.0381 (7)0.0313 (6)0.0351 (6)0.0031 (5)0.0156 (5)0.0053 (5)
C50.0283 (6)0.0480 (8)0.0482 (8)0.0069 (6)0.0153 (6)0.0048 (6)
C60.0387 (7)0.0305 (6)0.0438 (7)0.0063 (5)0.0158 (6)0.0005 (5)
C40.0455 (8)0.0458 (8)0.0508 (8)0.0175 (6)0.0277 (7)0.0073 (7)
C30.0586 (9)0.0325 (7)0.0425 (7)0.0049 (6)0.0270 (7)0.0046 (6)
Geometric parameters (Å, º) top
Si1—N2i1.7489 (10)C7—H7C0.9800
Si1—N21.7524 (11)C2—C31.378 (2)
Si1—C61.8468 (14)C2—H20.9500
Si1—C71.8476 (14)C5—C41.373 (2)
Si1—Si1i2.6004 (6)C5—H50.9500
N2—C11.3773 (15)C6—H6A0.9800
N2—Si1i1.7489 (10)C6—H6B0.9800
N1—C11.3416 (15)C6—H6C0.9800
N1—C51.3458 (17)C4—C31.386 (2)
C1—C21.4028 (17)C4—H40.9500
C7—H7A0.9800C3—H30.9500
C7—H7B0.9800
N2i—Si1—N284.08 (5)H7A—C7—H7C109.5
N2i—Si1—C6115.34 (6)H7B—C7—H7C109.5
N2—Si1—C6112.86 (6)C3—C2—C1118.78 (13)
N2i—Si1—C7116.17 (6)C3—C2—H2120.6
N2—Si1—C7114.25 (7)C1—C2—H2120.6
C6—Si1—C7111.59 (7)N1—C5—C4124.06 (14)
N2i—Si1—Si1i42.09 (3)N1—C5—H5118.0
N2—Si1—Si1i41.99 (3)C4—C5—H5118.0
C6—Si1—Si1i123.34 (5)Si1—C6—H6A109.5
C7—Si1—Si1i124.99 (6)Si1—C6—H6B109.5
C1—N2—Si1i128.16 (8)H6A—C6—H6B109.5
C1—N2—Si1135.72 (8)Si1—C6—H6C109.5
Si1i—N2—Si195.92 (5)H6A—C6—H6C109.5
C1—N1—C5117.48 (12)H6B—C6—H6C109.5
N1—C1—N2115.58 (11)C5—C4—C3118.06 (13)
N1—C1—C2122.15 (11)C5—C4—H4121.0
N2—C1—C2122.27 (11)C3—C4—H4121.0
Si1—C7—H7A109.5C2—C3—C4119.44 (13)
Si1—C7—H7B109.5C2—C3—H3120.3
H7A—C7—H7B109.5C4—C3—H3120.3
Si1—C7—H7C109.5
N2i—Si1—N2—C1174.97 (16)Si1—N2—C1—N1171.41 (10)
C6—Si1—N2—C159.93 (14)Si1i—N2—C1—C2177.76 (9)
C7—Si1—N2—C168.96 (14)Si1—N2—C1—C28.61 (19)
Si1i—Si1—N2—C1174.97 (16)N1—C1—C2—C31.76 (19)
N2i—Si1—N2—Si1i0.000 (1)N2—C1—C2—C3178.25 (12)
C6—Si1—N2—Si1i115.03 (6)C1—N1—C5—C40.0 (2)
C7—Si1—N2—Si1i116.07 (7)N1—C5—C4—C31.2 (2)
C5—N1—C1—N2178.56 (11)C1—C2—C3—C40.6 (2)
C5—N1—C1—C21.45 (18)C5—C4—C3—C20.8 (2)
Si1i—N2—C1—N12.22 (16)
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

The authors would like to thank the Scientific Instrument Center of Shanxi University for its support of the characterization of the reported compound.

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award No. 21272142); Natural Science Foundation of Shanxi Province (award No. 2015011015).

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuan, X. E., Yuan, S. F., Tong, H. B., Bai, S. D., Wei, X. H. & Liu, D. S. (2012). Dalton Trans. 41, 9460–9467.  CSD CrossRef CAS PubMed Google Scholar
First citationHe, G., Shynkaruk, O., Lui, M. W. & Rivard, E. (2014). Chem. Rev. 114, 7815–7880.  CrossRef CAS PubMed Google Scholar
First citationJunk, P. C. & Leary, S. G. (2004). Inorg. Chim. Acta, 357, 2195–2198.  CSD CrossRef CAS Google Scholar
First citationSchneider, J., Popowski, E., Junge, K. & Reinke, H. (2001). Z. Anorg. Allg. Chem. 627, 2680–2692.  CrossRef CAS Google Scholar
First citationShah, S. A. A., Roesky, H. W., Lubini, P. & Schmidt, H.-G. (1996). Acta Cryst. C52, 2810–2811.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSzöllösy, A., Párkányi, L., Bihátsi, L. & Hencsei, P. (1983). J. Organomet. Chem. 251, 159–166.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds