ISSN 2414-3146

Received 11 February 2017 Accepted 3 March 2017

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; cyano derivatives; weak C— $H \cdots N$ hydrogen bonds; short intramolecular contacts; twofold rotation symmetry.

CCDC reference: 1504588

Structural data: full structural data are available from iucrdata.iucr.org

Crystal structure of 3-[({[bis(2-cyanoethyl)carbamothioyl]disulfanyl}methanethioyl)(2-cyanoethyl) amino]propanenitrile

A. S. Sonia,^a R. Baskaran^a* and S. Selvanayagam^b

^aDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, and ^bPG & Research Department of Physics, Government Arts College, Melur 625 106, India. *Correspondence e-mail: rbaskaran54@gmail.com

In the title compound, $C_{14}H_{16}N_6S_4$, the molecule resides on a twofold rotation axis, which runs through the central S–S bond. In the crystal, molecules are linked *via* weak C–H···N hydrogen bonds, forming *C*(5) chains propagating in a helical arrangement along [010].

Structure description

In a continuation of the work in our laboratory on the crystal structure analysis of cyano derivatives, we have undertaken the single-crystal X-ray diffraction study of the title compound, and the results are presented herein.

The molecular structure of the title compound is illustrated in Fig. 1. The molecule resides on a crystallographic twofold rotation axis, which runs through the central S-S bond. The molecular structure maybe influenced by a series of very weak intramolecular $C-H \cdots S$ hydrogen bonds (Table 1).

In the crystal, weak C-H···N hydrogen bonds link the molecules, forming C(5) chains propagating in a helical arrangement along [010]; see Fig. 2. The structure also forms a cavity consisting of 24 atoms between two molecules in an $R_2^2(24)$ graph-set motif.

Synthesis and crystallization

All chemicals were commercially available and analytical grade materials were used directly without further purification. A stoichiometric amount (0.1732 g, 2 mmol) of carbon disulfide, CS_2 , was added dropwise to a methanol solution containing (0.2463 g, 2 mmol) 3,3'-azanediyldipropanenitrile and 0.24 g potassium hydroxide. The mixture was

Figure 1

The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing of the title compound. The weak C-H···N hydrogen bonds are shown as dashed lines (see Table 1). For clarity, H atoms not involved in these hydrogen bonds have been omitted.

stirred for about 25 minutes until a white precipitate appeared. The clear filtrate was then left at temperature of 278 K for crystallization. After few days, crystals suitable for X-ray analysis were collected (yield = 83%, m.p. 431 K). The presence of the C=N groups was confirmed by FT-IR analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2B\cdots$ S1	0.97	2.46	2.857 (2)	105
$C3-H3A\cdots S1$	0.97	2.84	3.332 (2)	112
$C5-H5B\cdots S2$	0.97	2.69	3.028 (2)	101
$C2-H2B\cdots N2^{i}$	0.97	2.55	3.202 (2)	125

Symmetry code: (i) x, y + 1, z.

Table	2		
Experi	mental	details.	

Crystal data Chemical formula C14H16N6S4 396.57 М. Crystal system, space group Monoclinic, C2/c Temperature (K) 293 a, b, c (Å) 15.4313 (7), 5.6117 (2), $\stackrel{\beta (^{\circ})}{V (\text{\AA}^3)}$ 108.713 (2) 1875.77 (15) Ζ 4 Radiation type Μο Κα $\mu \,({\rm mm}^{-1})$ 0.52 $0.30 \times 0.20 \times 0.20$ Crystal size (mm) Data collection Diffractom Absorption $T_{\rm min}, \, T_{\rm max}$ No. of mea observed $R_{\rm int}$

Data concention	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 1999)
T_{\min}, T_{\max}	0.81, 0.89
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	19984, 3347, 2569
R _{int}	0.024
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.766
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.109, 1.11
No. of reflections	3347
No. of parameters	109
H-atom treatment	H-atom parameters constrained

0.34, -0.27

22.8702 (12)

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

References

 $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$

- Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

full crystallographic data

IUCrData (2017). **2**, x170346 [https://doi.org/10.1107/S2414314617003467]

Crystal structure of 3-[({[bis(2-cyanoethyl)carbamothioyl]disulfanyl}methanethioyl)(2-cyanoethyl) amino]propanenitrile

F(000) = 824

 $\theta = 2.3 - 31.7^{\circ}$

 $\mu = 0.52 \text{ mm}^{-1}$ T = 293 K

Block, brown

 $0.30 \times 0.20 \times 0.20$ mm

 $D_{\rm x} = 1.404 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8307 reflections

A. S. Sonia, R. Baskaran and S. Selvanayagam

 $\label{eq:linear} 3-[(\{[bis(2-Cyanoethyl)carbamothioyl]disulfanyl\}methanethioyl)(2-cyanoethyl)amino]propanenitrile$

Crystal data

 $\begin{array}{l} C_{14}H_{16}N_6S_4\\ M_r = 396.57\\ \text{Monoclinic, } C2/c\\ a = 15.4313 \ (7) \text{ Å}\\ b = 5.6117 \ (2) \text{ Å}\\ c = 22.8702 \ (12) \text{ Å}\\ \beta = 108.713 \ (2)^\circ\\ V = 1875.77 \ (15) \text{ Å}^3\\ Z = 4 \end{array}$

Data collection

Bruker Kappa APEXII CCD	3347 independent reflections
diffractometer	2569 reflections with $I > 2\sigma(I)$
Radiation source: Sealed tube	$R_{\rm int} = 0.024$
ω and φ scan	$\theta_{\text{max}} = 33.0^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
Absorption correction: multi-scan	$h = -23 \rightarrow 19$
(SADABS; Bruker, 1999)	$k = -8 \longrightarrow 8$
$T_{\min} = 0.81, \ T_{\max} = 0.89$	$l = -34 \longrightarrow 34$
19984 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.109$	$w = 1/[\sigma^2(F_o^2) + (0.0427P)^2 + 1.4682P]$
<i>S</i> = 1.11	where $P = (F_o^2 + 2F_c^2)/3$
3347 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
109 parameters	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	-0.00264 (3)	0.57876 (7)	0.20581 (2)	0.03874 (11)
S2	0.13996 (3)	0.20336 (9)	0.26542 (2)	0.05086 (14)
N1	0.06850 (8)	0.2800 (2)	0.14508 (5)	0.0328 (2)
N2	-0.09703 (13)	-0.1278 (3)	0.02598 (9)	0.0644 (5)
N3	0.21226 (12)	0.6016 (3)	0.08156 (8)	0.0610 (4)
C1	0.07351 (10)	0.3344 (3)	0.20300 (6)	0.0325 (3)
C2	0.00524 (10)	0.3986 (3)	0.09077 (6)	0.0351 (3)
H2A	0.0289	0.3838	0.0565	0.042*
H2B	0.0027	0.5669	0.0997	0.042*
C3	-0.09148 (10)	0.2961 (3)	0.07169 (7)	0.0388 (3)
H3A	-0.1125	0.2922	0.1074	0.047*
H3B	-0.1322	0.3997	0.0411	0.047*
C4	-0.09592 (11)	0.0566 (3)	0.04630 (8)	0.0429 (3)
C5	0.12945 (11)	0.0991 (3)	0.13344 (8)	0.0389 (3)
H5A	0.1026	0.0367	0.0920	0.047*
H5B	0.1356	-0.0318	0.1622	0.047*
C6	0.22415 (11)	0.2006 (3)	0.14036 (9)	0.0487 (4)
H6A	0.2567	0.2279	0.1838	0.058*
H6B	0.2586	0.0851	0.1252	0.058*
C7	0.21877 (11)	0.4242 (4)	0.10651 (8)	0.0455 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0506 (2)	0.03350 (19)	0.03374 (19)	0.00673 (15)	0.01572 (16)	0.00523 (14)
S2	0.0572 (3)	0.0543 (3)	0.0332 (2)	0.0171 (2)	0.00349 (17)	0.00587 (17)
N1	0.0318 (5)	0.0356 (6)	0.0300 (5)	0.0003 (5)	0.0086 (4)	0.0007 (5)
N2	0.0730 (12)	0.0457 (9)	0.0650 (11)	-0.0021 (8)	0.0088 (9)	-0.0066 (8)
N3	0.0552 (9)	0.0645 (11)	0.0605 (10)	-0.0191 (8)	0.0146 (8)	0.0024 (9)
C1	0.0335 (6)	0.0312 (6)	0.0306 (6)	-0.0009(5)	0.0071 (5)	0.0013 (5)
C2	0.0367 (7)	0.0390 (7)	0.0283 (6)	-0.0023 (6)	0.0084 (5)	0.0035 (5)
C3	0.0332 (7)	0.0430 (8)	0.0360 (7)	-0.0003 (6)	0.0054 (5)	-0.0027 (6)
C4	0.0407 (8)	0.0437 (8)	0.0386 (8)	-0.0027 (7)	0.0047 (6)	0.0008 (7)
C5	0.0408 (7)	0.0349 (7)	0.0422 (8)	0.0006 (6)	0.0150 (6)	-0.0045 (6)
C6	0.0360 (7)	0.0490 (9)	0.0610 (11)	0.0050 (7)	0.0155 (7)	-0.0001 (8)
C7	0.0346 (7)	0.0570 (10)	0.0456 (9)	-0.0093 (7)	0.0140 (6)	-0.0090 (8)

Geometric parameters (Å, °)

S1—C1	1.8201 (15)	C2—H2B	0.9700
S1—S1 ⁱ	1.9968 (7)	C3—C4	1.457 (2)
S2—C1	1.6405 (14)	С3—НЗА	0.9700
N1-C1	1.3375 (18)	С3—Н3В	0.9700
N1—C5	1.4651 (19)	C5—C6	1.529 (2)
N1—C2	1.4699 (18)	С5—Н5А	0.9700

N2—C4	1.132 (2)	С5—Н5В	0.9700
N3—C7	1.136 (3)	C6—C7	1.462 (3)
C2—C3	1.527 (2)	С6—Н6А	0.9700
C2—H2A	0.9700	С6—Н6В	0.9700
C1-S1-S1 ⁱ	102.62 (5)	С2—С3—Н3В	109.2
C1—N1—C5	120.13 (12)	H3A—C3—H3B	107.9
C1—N1—C2	123.03 (12)	N2—C4—C3	177.8 (2)
C5—N1—C2	116.82 (12)	N1—C5—C6	111.78 (13)
N1—C1—S2	125.50 (11)	N1—C5—H5A	109.3
N1-C1-S1	111.98 (10)	С6—С5—Н5А	109.3
S2—C1—S1	122.52 (8)	N1—C5—H5B	109.3
N1—C2—C3	113.23 (12)	С6—С5—Н5В	109.3
N1—C2—H2A	108.9	H5A—C5—H5B	107.9
C3—C2—H2A	108.9	C7—C6—C5	112.02 (14)
N1—C2—H2B	108.9	С7—С6—Н6А	109.2
С3—С2—Н2В	108.9	С5—С6—Н6А	109.2
H2A—C2—H2B	107.7	С7—С6—Н6В	109.2
C4—C3—C2	112.20 (14)	С5—С6—Н6В	109.2
С4—С3—НЗА	109.2	H6A—C6—H6B	107.9
С2—С3—НЗА	109.2	N3—C7—C6	177.1 (2)
С4—С3—Н3В	109.2		
C5—N1—C1—S2	-3.8 (2)	C1—N1—C2—C3	-82.14 (17)
C2—N1—C1—S2	177.86 (11)	C5—N1—C2—C3	99.48 (15)
C5—N1—C1—S1	175.66 (10)	N1-C2-C3-C4	-69.60 (17)
C2—N1—C1—S1	-2.67 (17)	C1—N1—C5—C6	-81.15 (18)
S1 ⁱ —S1—C1—N1	170.16 (9)	C2—N1—C5—C6	97.28 (16)
$S1^{i}$ — $S1$ — $C1$ — $S2$	-10.36 (10)	N1—C5—C6—C7	-48.7 (2)

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C2—H2 <i>B</i> ···S1	0.97	2.46	2.857 (2)	105
C3—H3A…S1	0.97	2.84	3.332 (2)	112
C5—H5 <i>B</i> ···S2	0.97	2.69	3.028 (2)	101
C2—H2 B ···N2 ⁱⁱ	0.97	2.55	3.202 (2)	125

Symmetry code: (ii) x, y+1, z.