organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-(6-nitro-1H-indazol-1-yl)acetate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mmohamedabdelahi@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 February 2017; accepted 18 March 2017; online 24 March 2017)

The asymmetric unit of the title compound, C11H11N3O4, comprises two independent mol­ecules, both of which display positional disorder of their ethyl chains in 0.868 (4):0.132 (4) and 0.839 (4):0.161 (4) ratios. The packing is directed by a combination of C—H⋯O hydrogen bonds and N—O⋯π inter­actions between nitro groups and the aromatic rings.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a continuation of our studies of N-substituted indazole derivatives and their potential pharmacological activities (Boulhaoua et al., 2016[Boulhaoua, M., Abdelahi, M. M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160485.]; Mohamed Abdelahi et al., 2017[Mohamed Abdelahi, M. M., Boulhaoua, M., Essaghouani, A., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170146.]), we now describe the synthesis and structure of the title compound.

The asymmetric unit comprises two independent mol­ecules differing primarily in the orientations of the ester groups (Fig. 1[link]). The dihedral angle between the five- and six-membered rings making up the imidazole rings are 1.12 (3)° in the mol­ecule containing N1 and N2 and 1.28 (3)° in the other. In both mol­ecules, the ethyl groups are approximately 15% disordered.

[Figure 1]
Figure 1
The asymmetric unit with labeling scheme and 50% probability ellipsoids. The inter­molecular C—H⋯O hydrogen bond and the N—O⋯π inter­action are shown, respectively, as black and orange dotted lines.

The packing is directed by a combination of C—H⋯O hydrogen bonds (Table 1[link]) and N—O⋯π contacts between nitro groups and the six-membered rings of the indazole moieties. Fig. 1[link] shows the C8—H8A⋯O5 hydrogen bond occurring within the asymmetric unit as well as the N3—O3⋯π(C12–C17 ring) inter­action [O⋯π = 3.131 (1) Å, N—O⋯π = 102.81 (9)°] The second N—O⋯π inter­action occurs between N6—O7 and the centroid of the C1–C6 ring at x, y, z + 1 [O⋯π = 3.14 (1) Å, N—O⋯π = 109.16 (9)°]. The combination of hydrogen bonds and N—O⋯π inter­actions leads to a layer structure parallel to (100) (Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O4i 0.93 (2) 2.50 (2) 3.1923 (18) 131.3 (16)
C7—H7⋯O3ii 0.934 (19) 2.579 (18) 3.1973 (17) 124.0 (14)
C8—H8A⋯O5 0.978 (19) 2.276 (19) 3.1960 (17) 156.4 (15)
C15—H15⋯O8i 0.94 (2) 2.55 (2) 3.2616 (18) 132.0 (16)
C18—H18⋯O7ii 0.975 (19) 2.461 (18) 3.1606 (18) 128.5 (14)
C19—H19B⋯O1iii 0.95 (2) 2.30 (2) 3.1923 (17) 155.2 (16)
C21—H21B⋯O3iv 0.99 2.62 3.423 (3) 138
C22—H22A⋯O4iv 0.98 2.54 3.367 (3) 142
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z-1; (iii) x, y, z+1; (iv) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
A portion of the packing viewed along the c-axis direction giving an elevation view of the layer structure. The key to the inter­molecular inter­actions is given in Fig. 1[link]
[Figure 3]
Figure 3
A portion of the packing viewed along the a-axis direction giving a plan view of the layer structure. The key to the inter­molecular inter­actions is given in Fig. 1[link]

Synthesis and crystallization

To a solution of 6-nitro-1H-indazole (1 g, 5 mmol) in THF (30 ml) was added ethyl bromo­acetate (0.8 g, 5 mmol), potassium carbonate (1.24 g, 9 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium iodide. The mixture was stirred at room temperature for 48 h. The solution was filtered and the solvent removed under reduced pressure. The residue was recrystallized from ethanol solution to afford the title compound as yellow crystals (yield: 66%).

Refinement

Crystal and refinement details appear in Table 2[link]. The ethyl groups (C10, C11 and C21 C22) are disordered over two sites in 0.868 (4):0.132 (4) and 0.839 (4):0.161 (4) ratios, respectively. The components of the disorder were refined subject to restraints that their geometries be comparable and with the attached H atoms included as riding contributions in idealized positions. The largest peak in the final difference map (0.73 e-Å−3) is 0.86 Å from O4 and suggests a slight (< 9%) disorder in this nitro group, which is also suggested by the elongation of the displacement ellipsoid towards the residual peak. However, the rest of this group does not show such indications so it was decided to not include disorder here in the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula C11H11N3O4
Mr 249.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.6867 (6), 21.7492 (10), 8.1393 (4)
β (°) 90.772 (1)
V3) 2245.64 (18)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.36 × 0.34 × 0.29
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.88, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 43057, 6063, 5118
Rint 0.029
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.142, 1.04
No. of reflections 6063
No. of parameters 387
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.73, −0.49
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ethyl 2-(6-nitro-1H-indazol-1-yl)acetate top
Crystal data top
C11H11N3O4F(000) = 1040
Mr = 249.23Dx = 1.474 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6867 (6) ÅCell parameters from 9337 reflections
b = 21.7492 (10) Åθ = 2.5–29.1°
c = 8.1393 (4) ŵ = 0.12 mm1
β = 90.772 (1)°T = 100 K
V = 2245.64 (18) Å3Block, colourless
Z = 80.36 × 0.34 × 0.29 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6063 independent reflections
Radiation source: fine-focus sealed tube5118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 1.6°
φ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2929
Tmin = 0.88, Tmax = 0.97l = 1111
43057 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: mixed
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0762P)2 + 1.075P]
where P = (Fo2 + 2Fc2)/3
6063 reflections(Δ/σ)max = 0.001
387 parametersΔρmax = 0.73 e Å3
4 restraintsΔρmin = 0.49 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The ethyl groups (C10, C11, C21 & C22) are disordered over two sites in 87:13 and 84:16 ratios, respectively. The components of the disorder were refined subject to restraints that their geometries be comparable and with the attached H-atoms included as riding contributions in idealized positions. The largest peak in the final difference map (0.73 e-Å-3) is 0.86 Å from O4 and suggests a slight (< 9%) disorder in this nitro group which is also suggested by the elongation of the displacement ellipsoid towards the residual peak. However, the rest of this group does not show such indications so it was decided to not include a disorder here in the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.81992 (8)0.42860 (5)0.12528 (12)0.0269 (2)
O20.77563 (9)0.35022 (5)0.04235 (14)0.0322 (3)
O30.64535 (9)0.62390 (5)0.38381 (12)0.0283 (2)
O40.65775 (14)0.71177 (5)0.26110 (16)0.0495 (4)
N10.60290 (10)0.47079 (6)0.27310 (14)0.0245 (3)
N20.61891 (9)0.47588 (5)0.10760 (13)0.0208 (2)
N30.64742 (10)0.65568 (6)0.25929 (15)0.0268 (3)
C10.62452 (10)0.53588 (6)0.05982 (15)0.0182 (2)
C20.63799 (10)0.56187 (6)0.09626 (15)0.0192 (2)
H20.6457 (15)0.5377 (8)0.190 (2)0.029 (4)*
C30.63737 (11)0.62513 (6)0.09891 (16)0.0208 (3)
C40.62617 (12)0.66290 (6)0.04148 (17)0.0241 (3)
H40.6349 (16)0.7053 (9)0.030 (2)0.037 (5)*
C50.61171 (11)0.63610 (6)0.19303 (16)0.0233 (3)
H50.6059 (16)0.6620 (9)0.289 (3)0.041 (5)*
C60.60950 (10)0.57158 (6)0.20334 (16)0.0206 (3)
C70.59634 (11)0.52741 (6)0.33084 (17)0.0236 (3)
H70.5823 (14)0.5319 (8)0.443 (2)0.027 (4)*
C80.64448 (11)0.42197 (6)0.01384 (16)0.0219 (3)
H8A0.6341 (15)0.4315 (8)0.102 (2)0.028 (5)*
H8B0.5976 (15)0.3883 (9)0.042 (2)0.031 (5)*
C90.75746 (11)0.40195 (6)0.04133 (16)0.0224 (3)
C100.88276 (14)0.32649 (10)0.0339 (3)0.0346 (6)0.868 (4)
H10A0.90310.30640.13870.041*0.868 (4)
H10B0.93300.36030.01260.041*0.868 (4)
C110.88417 (17)0.28034 (10)0.1055 (3)0.0441 (5)0.868 (4)
H11A0.95520.26320.11540.066*0.868 (4)
H11B0.83420.24710.08290.066*0.868 (4)
H11C0.86400.30080.20850.066*0.868 (4)
C10A0.8696 (10)0.3149 (8)0.0016 (18)0.0346 (6)0.132 (4)
H10C0.93070.34200.01890.041*0.132 (4)
H10D0.85720.28810.09500.041*0.132 (4)
C11A0.8842 (11)0.2779 (6)0.1580 (18)0.0441 (5)0.132 (4)
H11D0.94620.25130.14810.066*0.132 (4)
H11E0.89430.30590.25130.066*0.132 (4)
H11F0.82150.25250.17590.066*0.132 (4)
O50.67001 (8)0.42925 (5)0.37686 (12)0.0295 (2)
O60.71450 (8)0.35019 (5)0.54310 (14)0.0292 (2)
O70.86504 (9)0.62072 (5)0.88507 (12)0.0294 (2)
O80.88491 (12)0.70869 (5)0.76740 (15)0.0436 (3)
N40.88917 (10)0.46774 (6)0.22757 (14)0.0262 (3)
N50.87470 (10)0.47329 (5)0.39238 (13)0.0224 (2)
N60.87448 (10)0.65280 (6)0.76228 (15)0.0263 (3)
C120.87643 (10)0.53326 (6)0.44106 (15)0.0195 (2)
C130.86738 (10)0.55951 (6)0.59710 (16)0.0205 (3)
H130.8557 (15)0.5355 (9)0.695 (2)0.031 (5)*
C140.87669 (11)0.62260 (6)0.60066 (16)0.0217 (3)
C150.89048 (11)0.66004 (7)0.46108 (17)0.0246 (3)
H150.8910 (15)0.7031 (9)0.475 (2)0.034 (5)*
C160.89977 (11)0.63290 (7)0.30910 (17)0.0246 (3)
H160.9084 (15)0.6583 (9)0.213 (2)0.033 (5)*
C170.89463 (10)0.56863 (6)0.29821 (16)0.0218 (3)
C180.90165 (12)0.52423 (7)0.17054 (17)0.0254 (3)
H180.9121 (14)0.5306 (8)0.053 (2)0.028 (4)*
C190.84767 (11)0.41988 (6)0.48619 (17)0.0228 (3)
H19A0.8913 (15)0.3865 (8)0.454 (2)0.029 (5)*
H19B0.8583 (15)0.4300 (8)0.599 (2)0.031 (5)*
C200.73319 (11)0.40177 (6)0.45991 (16)0.0228 (3)
C210.60636 (16)0.3281 (2)0.5411 (7)0.0356 (9)0.839 (4)
H21A0.58590.31440.42920.043*0.839 (4)
H21B0.55780.36130.57470.043*0.839 (4)
C220.60087 (18)0.27658 (10)0.6565 (3)0.0471 (6)0.839 (4)
H22A0.52870.26050.65810.071*0.839 (4)
H22B0.64910.24400.62180.071*0.839 (4)
H22C0.62110.29070.76680.071*0.839 (4)
C21A0.6069 (5)0.3291 (13)0.515 (5)0.0356 (9)0.161 (4)
H21C0.56260.36350.47480.043*0.161 (4)
H21D0.57700.31400.61970.043*0.161 (4)
C22A0.6082 (10)0.2795 (5)0.3940 (17)0.0471 (6)0.161 (4)
H22D0.53620.26480.37410.071*0.161 (4)
H22E0.63750.29490.29110.071*0.161 (4)
H22F0.65190.24560.43560.071*0.161 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0284 (5)0.0334 (5)0.0190 (5)0.0052 (4)0.0020 (4)0.0006 (4)
O20.0282 (5)0.0275 (5)0.0409 (6)0.0012 (4)0.0003 (4)0.0103 (5)
O30.0321 (5)0.0345 (6)0.0182 (5)0.0012 (4)0.0016 (4)0.0021 (4)
O40.0907 (11)0.0236 (6)0.0339 (6)0.0080 (6)0.0098 (7)0.0083 (5)
N10.0312 (6)0.0272 (6)0.0149 (5)0.0031 (5)0.0008 (4)0.0021 (4)
N20.0284 (6)0.0195 (5)0.0144 (5)0.0010 (4)0.0000 (4)0.0002 (4)
N30.0322 (6)0.0256 (6)0.0224 (6)0.0041 (5)0.0016 (5)0.0048 (4)
C10.0180 (6)0.0199 (6)0.0168 (6)0.0002 (4)0.0009 (4)0.0002 (4)
C20.0192 (6)0.0222 (6)0.0162 (5)0.0015 (5)0.0006 (4)0.0001 (5)
C30.0226 (6)0.0225 (6)0.0174 (6)0.0021 (5)0.0002 (5)0.0025 (5)
C40.0284 (7)0.0191 (6)0.0247 (7)0.0030 (5)0.0001 (5)0.0015 (5)
C50.0269 (7)0.0229 (6)0.0201 (6)0.0032 (5)0.0010 (5)0.0047 (5)
C60.0213 (6)0.0234 (6)0.0170 (6)0.0010 (5)0.0007 (4)0.0014 (5)
C70.0271 (7)0.0270 (7)0.0166 (6)0.0014 (5)0.0017 (5)0.0004 (5)
C80.0280 (7)0.0190 (6)0.0188 (6)0.0020 (5)0.0022 (5)0.0019 (5)
C90.0270 (7)0.0216 (6)0.0185 (6)0.0030 (5)0.0020 (5)0.0010 (5)
C100.0264 (9)0.0316 (11)0.0456 (13)0.0033 (8)0.0056 (8)0.0035 (8)
C110.0350 (10)0.0347 (10)0.0628 (14)0.0049 (8)0.0066 (9)0.0013 (9)
C10A0.0264 (9)0.0316 (11)0.0456 (13)0.0033 (8)0.0056 (8)0.0035 (8)
C11A0.0350 (10)0.0347 (10)0.0628 (14)0.0049 (8)0.0066 (9)0.0013 (9)
O50.0282 (5)0.0416 (6)0.0187 (5)0.0091 (4)0.0018 (4)0.0010 (4)
O60.0242 (5)0.0247 (5)0.0387 (6)0.0009 (4)0.0010 (4)0.0017 (4)
O70.0349 (6)0.0348 (6)0.0186 (5)0.0003 (4)0.0004 (4)0.0011 (4)
O80.0711 (9)0.0262 (6)0.0336 (6)0.0073 (6)0.0047 (6)0.0067 (5)
N40.0318 (6)0.0309 (6)0.0158 (5)0.0047 (5)0.0009 (4)0.0017 (4)
N50.0287 (6)0.0236 (6)0.0150 (5)0.0018 (4)0.0004 (4)0.0003 (4)
N60.0286 (6)0.0279 (6)0.0224 (6)0.0026 (5)0.0002 (4)0.0031 (5)
C120.0181 (6)0.0236 (6)0.0167 (6)0.0010 (5)0.0008 (4)0.0010 (5)
C130.0194 (6)0.0256 (6)0.0165 (6)0.0007 (5)0.0001 (4)0.0013 (5)
C140.0212 (6)0.0257 (6)0.0183 (6)0.0007 (5)0.0001 (5)0.0007 (5)
C150.0260 (7)0.0237 (6)0.0239 (6)0.0037 (5)0.0016 (5)0.0029 (5)
C160.0252 (7)0.0288 (7)0.0198 (6)0.0032 (5)0.0001 (5)0.0059 (5)
C170.0203 (6)0.0281 (7)0.0170 (6)0.0001 (5)0.0002 (4)0.0022 (5)
C180.0279 (7)0.0318 (7)0.0167 (6)0.0022 (5)0.0019 (5)0.0005 (5)
C190.0260 (7)0.0220 (6)0.0205 (6)0.0018 (5)0.0025 (5)0.0016 (5)
C200.0258 (6)0.0247 (6)0.0178 (6)0.0041 (5)0.0008 (5)0.0047 (5)
C210.0257 (7)0.0354 (8)0.046 (3)0.0060 (6)0.0007 (7)0.0052 (12)
C220.0375 (11)0.0325 (10)0.0713 (16)0.0068 (8)0.0078 (10)0.0046 (10)
C21A0.0257 (7)0.0354 (8)0.046 (3)0.0060 (6)0.0007 (7)0.0052 (12)
C22A0.0375 (11)0.0325 (10)0.0713 (16)0.0068 (8)0.0078 (10)0.0046 (10)
Geometric parameters (Å, º) top
O1—C91.2023 (17)O5—C201.2007 (17)
O2—C91.3335 (17)O6—C201.3333 (18)
O2—C101.456 (2)O6—C211.454 (2)
O2—C10A1.460 (3)O6—C21A1.454 (3)
O3—N31.2274 (16)O7—N61.2261 (16)
O4—N31.2270 (17)O8—N61.2233 (17)
N1—C71.3204 (18)N4—C181.3235 (19)
N1—N21.3640 (15)N4—N51.3617 (15)
N2—C11.3632 (16)N5—C121.3631 (17)
N2—C81.4337 (17)N5—C191.4343 (17)
N3—C31.4687 (17)N6—C141.4710 (17)
C1—C21.3988 (17)C12—C131.3986 (18)
C1—C61.4135 (17)C12—C171.4158 (18)
C2—C31.3761 (18)C13—C141.3776 (19)
C2—H20.930 (19)C13—H130.97 (2)
C3—C41.4129 (18)C14—C151.4106 (19)
C4—C51.3744 (19)C15—C161.377 (2)
C4—H40.93 (2)C15—H150.94 (2)
C5—C61.4059 (18)C16—C171.402 (2)
C5—H50.96 (2)C16—H160.97 (2)
C6—C71.4223 (19)C17—C181.4223 (19)
C7—H70.934 (19)C18—H180.975 (19)
C8—C91.518 (2)C19—C201.517 (2)
C8—H8A0.978 (19)C19—H19A0.952 (19)
C8—H8B0.969 (19)C19—H19B0.95 (2)
C10—C111.515 (3)C21—C221.464 (7)
C10—H10A0.9900C21—H21A0.9900
C10—H10B0.9900C21—H21B0.9900
C11—H11A0.9800C22—H22A0.9800
C11—H11B0.9800C22—H22B0.9800
C11—H11C0.9800C22—H22C0.9800
C10A—C11A1.517 (4)C21A—C22A1.464 (8)
C10A—H10C0.9900C21A—H21C0.9900
C10A—H10D0.9900C21A—H21D0.9900
C11A—H11D0.9800C22A—H22D0.9800
C11A—H11E0.9800C22A—H22E0.9800
C11A—H11F0.9800C22A—H22F0.9800
C9—O2—C10115.45 (14)C20—O6—C21116.5 (3)
C9—O2—C10A117.6 (6)C20—O6—C21A111.1 (18)
C7—N1—N2106.48 (11)C18—N4—N5106.36 (11)
C1—N2—N1111.47 (11)N4—N5—C12111.67 (11)
C1—N2—C8128.34 (11)N4—N5—C19119.28 (11)
N1—N2—C8119.27 (11)C12—N5—C19128.55 (11)
O4—N3—O3123.60 (12)O8—N6—O7123.33 (13)
O4—N3—C3117.93 (12)O8—N6—C14118.08 (12)
O3—N3—C3118.47 (12)O7—N6—C14118.56 (12)
N2—C1—C2130.63 (12)N5—C12—C13130.79 (12)
N2—C1—C6106.51 (11)N5—C12—C17106.46 (11)
C2—C1—C6122.82 (12)C13—C12—C17122.70 (12)
C3—C2—C1114.69 (12)C14—C13—C12114.69 (12)
C3—C2—H2123.5 (11)C14—C13—H13122.3 (11)
C1—C2—H2121.8 (11)C12—C13—H13123.0 (11)
C2—C3—C4124.69 (12)C13—C14—C15124.72 (12)
C2—C3—N3117.76 (11)C13—C14—N6117.45 (12)
C4—C3—N3117.55 (12)C15—C14—N6117.81 (12)
C5—C4—C3119.35 (12)C16—C15—C14119.28 (13)
C5—C4—H4121.6 (13)C16—C15—H15122.0 (12)
C3—C4—H4118.8 (13)C14—C15—H15118.7 (12)
C4—C5—C6118.63 (12)C15—C16—C17118.66 (12)
C4—C5—H5119.1 (12)C15—C16—H16119.7 (11)
C6—C5—H5122.2 (12)C17—C16—H16121.6 (11)
C5—C6—C1119.77 (12)C16—C17—C12119.86 (12)
C5—C6—C7136.03 (12)C16—C17—C18136.04 (12)
C1—C6—C7104.19 (11)C12—C17—C18104.10 (12)
N1—C7—C6111.35 (12)N4—C18—C17111.41 (12)
N1—C7—H7117.2 (11)N4—C18—H18119.5 (10)
C6—C7—H7131.5 (11)C17—C18—H18129.1 (10)
N2—C8—C9111.32 (11)N5—C19—C20111.74 (11)
N2—C8—H8A108.0 (11)N5—C19—H19A109.1 (11)
C9—C8—H8A110.1 (11)C20—C19—H19A108.9 (11)
N2—C8—H8B111.0 (11)N5—C19—H19B107.1 (11)
C9—C8—H8B109.0 (11)C20—C19—H19B108.6 (12)
H8A—C8—H8B107.4 (15)H19A—C19—H19B111.4 (16)
O1—C9—O2125.89 (13)O5—C20—O6125.64 (14)
O1—C9—C8125.21 (13)O5—C20—C19125.50 (13)
O2—C9—C8108.90 (11)O6—C20—C19108.86 (11)
O2—C10—C11106.90 (16)O6—C21—C22107.4 (4)
O2—C10—H10A110.3O6—C21—H21A110.2
C11—C10—H10A110.3C22—C21—H21A110.2
O2—C10—H10B110.3O6—C21—H21B110.2
C11—C10—H10B110.3C22—C21—H21B110.2
H10A—C10—H10B108.6H21A—C21—H21B108.5
C10—C11—H11A109.5C21—C22—H22A109.5
C10—C11—H11B109.5C21—C22—H22B109.5
H11A—C11—H11B109.5H22A—C22—H22B109.5
C10—C11—H11C109.5C21—C22—H22C109.5
H11A—C11—H11C109.5H22A—C22—H22C109.5
H11B—C11—H11C109.5H22B—C22—H22C109.5
O2—C10A—C11A100.4 (8)O6—C21A—C22A108.5 (9)
O2—C10A—H10C111.7O6—C21A—H21C110.0
C11A—C10A—H10C111.7C22A—C21A—H21C110.0
O2—C10A—H10D111.7O6—C21A—H21D110.0
C11A—C10A—H10D111.7C22A—C21A—H21D110.0
H10C—C10A—H10D109.5H21C—C21A—H21D108.4
C10A—C11A—H11D109.5C21A—C22A—H22D109.5
C10A—C11A—H11E109.5C21A—C22A—H22E109.5
H11D—C11A—H11E109.5H22D—C22A—H22E109.5
C10A—C11A—H11F109.5C21A—C22A—H22F109.5
H11D—C11A—H11F109.5H22D—C22A—H22F109.5
H11E—C11A—H11F109.5H22E—C22A—H22F109.5
C7—N1—N2—C11.11 (16)C18—N4—N5—C120.83 (16)
C7—N1—N2—C8171.01 (12)C18—N4—N5—C19173.37 (12)
N1—N2—C1—C2178.65 (13)N4—N5—C12—C13178.31 (13)
C8—N2—C1—C212.6 (2)C19—N5—C12—C1310.0 (2)
N1—N2—C1—C60.96 (15)N4—N5—C12—C170.81 (15)
C8—N2—C1—C6169.71 (13)C19—N5—C12—C17172.49 (13)
N2—C1—C2—C3178.47 (13)N5—C12—C13—C14177.68 (13)
C6—C1—C2—C31.11 (19)C17—C12—C13—C140.53 (19)
C1—C2—C3—C41.1 (2)C12—C13—C14—C152.2 (2)
C1—C2—C3—N3177.93 (11)C12—C13—C14—N6176.32 (11)
O4—N3—C3—C2172.69 (14)O8—N6—C14—C13178.48 (14)
O3—N3—C3—C27.12 (19)O7—N6—C14—C130.33 (19)
O4—N3—C3—C48.2 (2)O8—N6—C14—C150.2 (2)
O3—N3—C3—C4171.97 (13)O7—N6—C14—C15178.31 (13)
C2—C3—C4—C52.0 (2)C13—C14—C15—C162.7 (2)
N3—C3—C4—C5177.05 (13)N6—C14—C15—C16175.82 (13)
C3—C4—C5—C60.6 (2)C14—C15—C16—C170.3 (2)
C4—C5—C6—C11.5 (2)C15—C16—C17—C122.2 (2)
C4—C5—C6—C7179.59 (15)C15—C16—C17—C18179.10 (15)
N2—C1—C6—C5179.67 (12)N5—C12—C17—C16179.50 (12)
C2—C1—C6—C52.4 (2)C13—C12—C17—C162.7 (2)
N2—C1—C6—C70.43 (14)N5—C12—C17—C180.46 (14)
C2—C1—C6—C7178.35 (12)C13—C12—C17—C18178.21 (12)
N2—N1—C7—C60.81 (16)N5—N4—C18—C170.51 (16)
C5—C6—C7—N1178.80 (15)C16—C17—C18—N4178.77 (16)
C1—C6—C7—N10.24 (16)C12—C17—C18—N40.04 (16)
C1—N2—C8—C993.57 (16)N4—N5—C19—C2075.60 (15)
N1—N2—C8—C974.42 (15)C12—N5—C19—C2095.53 (16)
C10—O2—C9—O12.6 (2)C21—O6—C20—O54.4 (2)
C10A—O2—C9—O114.8 (9)C21A—O6—C20—O52.4 (8)
C10—O2—C9—C8177.49 (14)C21—O6—C20—C19176.02 (17)
C10A—O2—C9—C8165.1 (9)C21A—O6—C20—C19177.2 (8)
N2—C8—C9—O12.76 (19)N5—C19—C20—O52.82 (19)
N2—C8—C9—O2177.16 (11)N5—C19—C20—O6176.73 (11)
C9—O2—C10—C1193.65 (18)C20—O6—C21—C22172.46 (17)
C9—O2—C10A—C11A158.7 (8)C20—O6—C21A—C22A100 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.93 (2)2.50 (2)3.1923 (18)131.3 (16)
C7—H7···O3ii0.934 (19)2.579 (18)3.1973 (17)124.0 (14)
C8—H8A···O50.978 (19)2.276 (19)3.1960 (17)156.4 (15)
C15—H15···O8i0.94 (2)2.55 (2)3.2616 (18)132.0 (16)
C18—H18···O7ii0.975 (19)2.461 (18)3.1606 (18)128.5 (14)
C19—H19B···O1iii0.95 (2)2.30 (2)3.1923 (17)155.2 (16)
C21—H21B···O3iv0.992.623.423 (3)138
C22—H22A···O4iv0.982.543.367 (3)142
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y, z1; (iii) x, y, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBoulhaoua, M., Abdelahi, M. M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160485.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMohamed Abdelahi, M. M., Boulhaoua, M., Essaghouani, A., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170146.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds