

ISSN 2414-3146

Received 8 March 2017 Accepted 16 March 2017

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; molecular salt; hydrogen bonding.

CCDC reference: 1538296

Structural data: full structural data are available from iucrdata.iucr.org

data reports

2-Amino-3-methylpyridinium hydrogen phthalate

P. Sivakumar,^{a,b} C. Anzline,^c S. Sudhahar,^d S. Israel^{e*} and G. Chakkaravarthi^{b*}

^aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, ^bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, ^cResearch Scholar in Physics, Mother Teresa University, Kodaikanal 624 102, India, ^dDepartment of Physics, Alagappa University, Karaikkudi 630 003, India, and ^ePost Graduate and Research Department of Physics, The American College, Madurai 625 002, India. *Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

In the title molecular salt, $C_6H_9N_2^+ \cdot C_8H_5O_4^-$, the cation is protonated at the pyridine N atom and the anion is deprotonated at the hydroxy O atom. The anion features an intramolecular $O-H \cdot \cdot \cdot O$ hydrogen bond with the H atom located almost in the middle of the two O atoms. The dihedral angle between the pyridine and benzene rings is 19.17 (12)°. The N-H···O hydrogen bonds generate $R_2^2(8)$ and $R_2^4(18)$ ring motifs. The crystal structure is stabilized by N-H···O hydrogen bonds. The structure is also influenced by weak $\pi - \pi$ [centroid-to-centroid distance = 3.7347 (14) Å] interaction between the anions.

Structure description

Pyridine derivatives exhibit antifungal, anticancer and anti-inflammatory activities (Liu & Hu, 2002; Spanka *et al.*, 2010). We report herein the synthesis and the crystal structure of the title molecular salt (Fig. 1). The bond lengths are comparable with those in related structures (Sivakumar, Devi *et al.*, 2016; Sivakumar, Sudhahar *et al.*, 2016). The title molecular salt (Fig. 1) comprises a 2-amino-3-methylpyridinium cation and a hydrogen phthalate anion. The cation is protonated at the pyridine N atom and the anion is deprotonated at one of the hydroxy O atoms. The anion features an intramolecular O–H-O hydrogen bond with the H atom located almost in the middle of the two O atoms. The dihedral angle between the pyridine and benzene rings is 19.17 (12)°.

In the asymmetric unit, the inter-ionic N1-H1···O4 and N2-H2A···O3 hydrogen bonds (Table 1) link the cation and anion, generating an $R_2^2(8)$ ring motif (Fig. 2). In the crystal, the N2-H2A···O3 and N2-H2B···O1ⁱ (Table 1) hydrogen bonds generate an $R_2^4(18)$ ring motif (Fig. 3). The structure is also influenced by a weak offset π - π [Cg1...Cg1(1-x, 2-y, 2-z) = 3.7347 (14) Å; Cg1 is the centroid of the (C7-C12) ring] interaction between the anions.

Table 1Hydrogen-bond g	geometry (Å,	°).		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	

$O3-H2\cdots O2$	1.18 (3)	1.25 (3)	2.417 (2)
$N1-H1\cdots O4$	0.99 (3)	1.70(3)	2.685 (3)
$N2-H2A\cdots O3$	0.91 (3)	2.01 (3)	2.916 (3)
$N2-H2B\cdotsO1^{i}$	0.93 (4)	1.99 (4)	2.885 (3)

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Synthesis and crystallization

The title compound was synthesized using 2-amino-3-methylpyridine (0.54 g) and phthalic acid (0.83 g) in an equimolar ratio. These reactants were dissolved in 15 ml acetone. The white precipitate that formed was dissolved in water and kept at room temperature. Crystals suitable for X-ray diffraction were harvested after 90 d.

Figure 1

The molecular structure of the title molecular salt, with the atom labelling and 30% probability displacement ellipsoids.

A partial view of the crystal packing showing the various ring motifs.

Table 2	
Experimental	details.

 $D - H \cdots A$

169 (2) 171 (3) 173 (2) 162 (3)

Crystal data	
Chemical formula	$C_6H_0N_2^+ \cdot C_8H_5O_4^-$
м.	274.27
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	295
a, b, c (Å)	7.1675 (4), 8.8143 (6), 10.6613 (7)
α, β, γ (°)	91.968 (4), 96.362 (3), 94.745 (3)
$V(A^3)$	666.46 (7)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.28 \times 0.24 \times 0.20$
• • • •	
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker,
	2004)
T_{\min}, T_{\max}	0.686, 0.746
No. of measured, independent and	17030, 3982, 2056
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.032
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.714
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.059, 0.189, 1.02
No. of reflections	3982
No. of parameters	198
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
	refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.23, -0.21

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figure 3

The crystal packing of the title molecular salt viewed along a axis. The hydrogen bonds are shown as dashed lines. H atoms not involving in hydrogen bonds have been omitted for clarity.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Liu, T. & Hu, Y. (2002). Bioorg. Med. Chem. Lett. 12, 2411-2413.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Sivakumar, P., Devi, R. N., Israel, S. & Chakkaravarthi, G. (2016). *IUCrData*, **1**, x161332.
- Sivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016). *IUCrData*, **1**, x160817.
- Spanka, C., Glatthar, R., Desrayaud, S., Fendt, M., Orain, D., Troxler, T. & Vranesic, I. (2010). *Bioorg. Med. Chem. Lett.* 20, 184–188.
 Spek, A. L. (2009). *Acta Cryst.* D65, 148–155.

full crystallographic data

IUCrData (2017). **2**, x170422 [https://doi.org/10.1107/S2414314617004229]

2-Amino-3-methylpyridinium hydrogen phthalate

P. Sivakumar, C. Anzline, S. Sudhahar, S. Israel and G. Chakkaravarthi

2-Amino-3-methylpyridinium 2-carboxybenzoate

Crystal data $C_{6}H_{9}N_{2}^{+}C_{8}H_{5}O_{4}^{-}$ Z = 2 $M_r = 274.27$ F(000) = 288Triclinic, $P\overline{1}$ $D_{\rm x} = 1.367 {\rm Mg} {\rm m}^{-3}$ a = 7.1675 (4) Å Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 5483 reflections b = 8.8143 (6) Å $\theta = 0.7 - 0.8^{\circ}$ c = 10.6613 (7) Å $\alpha = 91.968 \ (4)^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ $\beta = 96.362 (3)^{\circ}$ T = 295 K $\gamma = 94.745 (3)^{\circ}$ Block, colourless $V = 666.46 (7) \text{ Å}^3$ $0.28 \times 0.24 \times 0.20$ mm Data collection 3982 independent reflections

2056 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.032$ $\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$ $h = -10 \rightarrow 10$ $k = -12 \rightarrow 12$ $l = -15 \rightarrow 15$

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.059$ and constrained refinement $wR(F^2) = 0.189$ $w = 1/[\sigma^2(F_o^2) + (0.0632P)^2 + 0.3832P]$ S = 1.02where $P = (F_0^2 + 2F_c^2)/3$ 3982 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 198 parameters $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles: correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.1981 (3)	0.4914 (2)	0.4055 (2)	0.0475 (5)	
C2	0.1063 (3)	0.4009 (3)	0.3006 (2)	0.0541 (6)	
C3	0.0722 (4)	0.2491 (3)	0.3165 (3)	0.0643 (7)	
H3	0.008907	0.188210	0.249572	0.077*	
C4	0.1284 (4)	0.1811 (3)	0.4291 (3)	0.0713 (8)	
H4	0.105614	0.076634	0.437016	0.086*	
C5	0.2171 (4)	0.2715 (3)	0.5265 (3)	0.0652 (7)	
H5	0.256743	0.229168	0.602565	0.078*	
C6	0.0549 (4)	0.4731 (4)	0.1789 (3)	0.0785 (8)	
H6A	-0.003326	0.396615	0.117308	0.118*	
H6B	0.166452	0.520748	0.149629	0.118*	
H6C	-0.031501	0.548357	0.191184	0.118*	
C7	0.7494 (3)	0.9694 (3)	0.9900 (2)	0.0530 (5)	
H7	0.825134	1.060789	1.001807	0.064*	
C8	0.6526 (3)	0.9306 (2)	0.8717 (2)	0.0454 (5)	
C9	0.5434 (3)	0.7897 (2)	0.85357 (19)	0.0449 (5)	
C10	0.5318 (4)	0.6995 (3)	0.9578 (2)	0.0551 (6)	
H10	0.458464	0.606925	0.947484	0.066*	
C11	0.6243 (4)	0.7420 (3)	1.0749 (2)	0.0624 (6)	
H11	0.610918	0.680227	1.142917	0.075*	
C12	0.7365 (4)	0.8762 (3)	1.0907 (2)	0.0606 (6)	
H12	0.803702	0.904462	1.168821	0.073*	
C13	0.6793 (3)	1.0500 (3)	0.7754 (2)	0.0550 (6)	
C14	0.4398 (3)	0.7183 (3)	0.7314 (2)	0.0513 (5)	
N1	0.2482 (3)	0.4225 (2)	0.5137 (2)	0.0549 (5)	
H1	0.305 (4)	0.489 (3)	0.587 (3)	0.081 (9)*	
N2	0.2385 (3)	0.6404 (2)	0.4039 (2)	0.0616 (6)	
H2A	0.295 (4)	0.692 (3)	0.475 (3)	0.069 (8)*	
H2B	0.214 (5)	0.690 (4)	0.329 (4)	0.102 (11)*	
01	0.8082 (3)	1.1491 (2)	0.7962 (2)	0.0837 (6)	
O2	0.5619 (3)	1.0490 (2)	0.67375 (17)	0.0682 (5)	
H2	0.458 (4)	0.927 (3)	0.658 (3)	0.073 (8)*	
03	0.3884 (3)	0.8012 (2)	0.64200 (17)	0.0697 (5)	
04	0.4074 (3)	0.57795 (19)	0.72482 (17)	0.0698 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0440 (11)	0.0456 (11)	0.0546 (12)	0.0028 (9)	0.0125 (9)	0.0049 (9)
C2	0.0457 (12)	0.0579 (13)	0.0590 (13)	0.0013 (10)	0.0116 (10)	-0.0018 (11)
C3	0.0598 (15)	0.0574 (14)	0.0748 (17)	-0.0079 (11)	0.0181 (13)	-0.0106 (13)
C4	0.0817 (19)	0.0452 (13)	0.090 (2)	-0.0019 (12)	0.0298 (16)	0.0021 (13)
C5	0.0791 (17)	0.0515 (14)	0.0687 (16)	0.0057 (12)	0.0204 (14)	0.0156 (12)
C6	0.0835 (19)	0.089 (2)	0.0596 (16)	0.0048 (16)	-0.0041 (14)	0.0064 (14)
C7	0.0506 (12)	0.0498 (12)	0.0576 (13)	0.0043 (10)	-0.0002 (10)	0.0059 (10)

C8	0.0430 (11)	0.0459 (11)	0.0488 (11)	0.0094 (9)	0.0050 (9)	0.0110 (9)
C9	0.0481 (11)	0.0427 (11)	0.0454 (11)	0.0107 (9)	0.0053 (9)	0.0077 (9)
C10	0.0710 (15)	0.0419 (11)	0.0532 (13)	0.0086 (10)	0.0055 (11)	0.0122 (10)
C11	0.0827 (17)	0.0547 (14)	0.0508 (13)	0.0121 (12)	0.0031 (12)	0.0151 (11)
C12	0.0698 (15)	0.0622 (15)	0.0488 (13)	0.0101 (12)	-0.0029 (11)	0.0067 (11)
C13	0.0545 (13)	0.0506 (13)	0.0612 (14)	0.0055 (10)	0.0072 (11)	0.0150 (10)
C14	0.0511 (12)	0.0530 (13)	0.0502 (12)	0.0038 (10)	0.0063 (10)	0.0095 (10)
N1	0.0619 (12)	0.0476 (11)	0.0554 (11)	0.0023 (9)	0.0079 (9)	0.0065 (9)
N2	0.0789 (15)	0.0460 (11)	0.0576 (13)	-0.0022 (10)	0.0026 (11)	0.0049 (10)
01	0.0794 (13)	0.0740 (13)	0.0917 (14)	-0.0203 (10)	-0.0063 (11)	0.0352 (11)
O2	0.0857 (12)	0.0547 (10)	0.0608 (10)	0.0000 (9)	-0.0071 (9)	0.0206 (8)
O3	0.0829 (12)	0.0593 (11)	0.0597 (10)	-0.0096 (9)	-0.0156 (9)	0.0151 (8)
04	0.0957 (14)	0.0493 (10)	0.0600 (10)	-0.0054 (9)	-0.0018 (9)	0.0042 (8)

Geometric parameters (Å, °)

C1—N2	1.322 (3)	C8—C13	1.511 (3)
C1—N1	1.350 (3)	C9—C10	1.394 (3)
C1—C2	1.417 (3)	C9—C14	1.516 (3)
С2—С3	1.360 (3)	C10—C11	1.372 (3)
C2—C6	1.488 (4)	C10—H10	0.9300
С3—С4	1.395 (4)	C11—C12	1.369 (4)
С3—Н3	0.9300	C11—H11	0.9300
C4—C5	1.353 (4)	C12—H12	0.9300
C4—H4	0.9300	C13—O1	1.214 (3)
C5—N1	1.345 (3)	C13—O2	1.295 (3)
С5—Н5	0.9300	C14—O4	1.238 (3)
С6—Н6А	0.9600	C14—O3	1.262 (3)
С6—Н6В	0.9600	N1—H1	0.99 (3)
С6—Н6С	0.9600	N2—H2A	0.91 (3)
C7—C12	1.380 (3)	N2—H2B	0.93 (4)
С7—С8	1.388 (3)	O2—H2	1.25 (3)
С7—Н7	0.9300	O3—H2	1.18 (3)
С8—С9	1.407 (3)		
N2—C1—N1	117.6 (2)	C10—C9—C8	117.8 (2)
N2—C1—C2	123.9 (2)	C10—C9—C14	114.34 (19)
N1—C1—C2	118.6 (2)	C8—C9—C14	127.84 (19)
C3—C2—C1	117.4 (2)	C11—C10—C9	122.6 (2)
C3—C2—C6	122.9 (2)	C11—C10—H10	118.7
C1—C2—C6	119.7 (2)	C9—C10—H10	118.7
C2—C3—C4	122.6 (3)	C12—C11—C10	119.3 (2)
С2—С3—Н3	118.7	C12—C11—H11	120.3
С4—С3—Н3	118.7	C10-C11-H11	120.3
C5—C4—C3	118.0 (2)	C11—C12—C7	119.7 (2)
C5—C4—H4	121.0	C11—C12—H12	120.2
C3—C4—H4	121.0	C7—C12—H12	120.2
N1—C5—C4	120.2 (3)	O1—C13—O2	120.6 (2)

N1—C5—H5	119.9	O1—C13—C8	119.3 (2)
С4—С5—Н5	119.9	O2—C13—C8	120.1 (2)
С2—С6—Н6А	109.5	O4—C14—O3	122.6 (2)
С2—С6—Н6В	109.5	O4—C14—C9	117.2 (2)
H6A—C6—H6B	109.5	O3—C14—C9	120.2 (2)
С2—С6—Н6С	109.5	C5—N1—C1	123.1 (2)
Н6А—С6—Н6С	109.5	C5—N1—H1	119.8 (18)
H6B—C6—H6C	109.5	C1—N1—H1	117.0 (18)
С12—С7—С8	121.9 (2)	C1—N2—H2A	119.4 (17)
С12—С7—Н7	119.1	C1—N2—H2B	120 (2)
С8—С7—Н7	119.1	H2A—N2—H2B	121 (3)
C7—C8—C9	118.69 (19)	С13—О2—Н2	111.5 (12)
C7—C8—C13	113.89 (19)	С14—О3—Н2	112.0 (13)
C9—C8—C13	127.4 (2)		
N2—C1—C2—C3	-179.4 (2)	C14—C9—C10—C11	176.7 (2)
N2—C1—C2—C3 N1—C1—C2—C3	-179.4 (2) 0.8 (3)	C14—C9—C10—C11 C9—C10—C11—C12	176.7 (2) -1.6 (4)
N2—C1—C2—C3 N1—C1—C2—C3 N2—C1—C2—C6	-179.4 (2) 0.8 (3) 1.7 (4)	C14—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C7	176.7 (2) -1.6 (4) 2.4 (4)
N2-C1-C2-C3 N1-C1-C2-C3 N2-C1-C2-C6 N1-C1-C2-C6	-179.4 (2) 0.8 (3) 1.7 (4) -178.1 (2)	C14—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C7 C8—C7—C12—C11	176.7 (2) -1.6 (4) 2.4 (4) -0.6 (4)
N2-C1-C2-C3 N1-C1-C2-C3 N2-C1-C2-C6 N1-C1-C2-C6 C1-C2-C3-C4	-179.4 (2) 0.8 (3) 1.7 (4) -178.1 (2) -1.8 (4)	C14—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C7 C8—C7—C12—C11 C7—C8—C13—O1	176.7 (2) -1.6 (4) 2.4 (4) -0.6 (4) 16.2 (3)
N2-C1-C2-C3 N1-C1-C2-C3 N2-C1-C2-C6 N1-C1-C2-C6 C1-C2-C3-C4 C6-C2-C3-C4	-179.4 (2) 0.8 (3) 1.7 (4) -178.1 (2) -1.8 (4) 177.0 (3)	C14—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C7 C8—C7—C12—C11 C7—C8—C13—O1 C9—C8—C13—O1	176.7 (2) -1.6 (4) 2.4 (4) -0.6 (4) 16.2 (3) -163.9 (2)
N2-C1-C2-C3 N1-C1-C2-C3 N2-C1-C2-C6 N1-C1-C2-C6 C1-C2-C3-C4 C6-C2-C3-C4 C2-C3-C4-C5	-179.4 (2) 0.8 (3) 1.7 (4) -178.1 (2) -1.8 (4) 177.0 (3) 1.3 (4)	C14—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C7 C8—C7—C12—C11 C7—C8—C13—O1 C9—C8—C13—O1 C7—C8—C13—O1 C7—C8—C13—O2	176.7 (2) -1.6 (4) 2.4 (4) -0.6 (4) 16.2 (3) -163.9 (2) -161.7 (2)
N2-C1-C2-C3 N1-C1-C2-C3 N2-C1-C2-C6 N1-C1-C2-C6 C1-C2-C3-C4 C6-C2-C3-C4 C2-C3-C4-C5 C3-C4-C5-N1	-179.4 (2) 0.8 (3) 1.7 (4) -178.1 (2) -1.8 (4) 177.0 (3) 1.3 (4) 0.3 (4)	C14—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C7 C8—C7—C12—C11 C7—C8—C13—O1 C9—C8—C13—O1 C7—C8—C13—O2 C9—C8—C13—O2	176.7 (2) -1.6 (4) 2.4 (4) -0.6 (4) 16.2 (3) -163.9 (2) -161.7 (2) 18.3 (4)
N2-C1-C2-C3 $N1-C1-C2-C3$ $N2-C1-C2-C6$ $N1-C1-C2-C6$ $C1-C2-C3-C4$ $C6-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-N1$ $C12-C7-C8-C9$	-179.4 (2) 0.8 (3) 1.7 (4) -178.1 (2) -1.8 (4) 177.0 (3) 1.3 (4) 0.3 (4) -2.1 (3)	C14—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C7 C8—C7—C12—C11 C7—C8—C13—O1 C9—C8—C13—O1 C7—C8—C13—O2 C9—C8—C13—O2 C10—C9—C14—O4	176.7 (2) -1.6 (4) 2.4 (4) -0.6 (4) 16.2 (3) -163.9 (2) -161.7 (2) 18.3 (4) -21.6 (3)
N2-C1-C2-C3 $N1-C1-C2-C3$ $N2-C1-C2-C6$ $N1-C1-C2-C6$ $C1-C2-C3-C4$ $C6-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-N1$ $C12-C7-C8-C9$ $C12-C7-C8-C13$	-179.4 (2) 0.8 (3) 1.7 (4) -178.1 (2) -1.8 (4) 177.0 (3) 1.3 (4) 0.3 (4) -2.1 (3) 177.8 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$176.7 (2) \\ -1.6 (4) \\ 2.4 (4) \\ -0.6 (4) \\ 16.2 (3) \\ -163.9 (2) \\ -161.7 (2) \\ 18.3 (4) \\ -21.6 (3) \\ 155.8 (2)$
N2-C1-C2-C3 $N1-C1-C2-C3$ $N2-C1-C2-C6$ $N1-C1-C2-C6$ $C1-C2-C3-C4$ $C6-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-N1$ $C12-C7-C8-C9$ $C12-C7-C8-C13$ $C7-C8-C9-C10$	-179.4 (2) 0.8 (3) 1.7 (4) -178.1 (2) -1.8 (4) 177.0 (3) 1.3 (4) 0.3 (4) -2.1 (3) 177.8 (2) 2.8 (3)	$\begin{array}{c} C14-C9-C10-C11\\ C9-C10-C11-C12\\ C10-C11-C12-C7\\ C8-C7-C12-C11\\ C7-C8-C13-O1\\ C9-C8-C13-O1\\ C7-C8-C13-O2\\ C9-C8-C13-O2\\ C9-C8-C13-O2\\ C10-C9-C14-O4\\ C8-C9-C14-O4\\ C10-C9-C14-O3\\ \end{array}$	$176.7 (2) \\ -1.6 (4) \\ 2.4 (4) \\ -0.6 (4) \\ 16.2 (3) \\ -163.9 (2) \\ -161.7 (2) \\ 18.3 (4) \\ -21.6 (3) \\ 155.8 (2) \\ 157.6 (2)$
N2-C1-C2-C3 $N1-C1-C2-C3$ $N2-C1-C2-C6$ $N1-C1-C2-C6$ $C1-C2-C3-C4$ $C6-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-N1$ $C12-C7-C8-C9$ $C12-C7-C8-C13$ $C7-C8-C9-C10$ $C13-C8-C9-C10$	-179.4 (2) 0.8 (3) 1.7 (4) -178.1 (2) -1.8 (4) 177.0 (3) 1.3 (4) 0.3 (4) -2.1 (3) 177.8 (2) 2.8 (3) -177.1 (2)	$\begin{array}{c} C14-C9-C10-C11\\ C9-C10-C11-C12\\ C10-C11-C12-C7\\ C8-C7-C12-C11\\ C7-C8-C13-O1\\ C9-C8-C13-O1\\ C7-C8-C13-O2\\ C9-C8-C13-O2\\ C9-C8-C13-O2\\ C10-C9-C14-O4\\ C8-C9-C14-O4\\ C10-C9-C14-O3\\ C8-C9-C14-O3\\ C8-C9-C14-O3\\ \end{array}$	$176.7 (2) \\ -1.6 (4) \\ 2.4 (4) \\ -0.6 (4) \\ 16.2 (3) \\ -163.9 (2) \\ -161.7 (2) \\ 18.3 (4) \\ -21.6 (3) \\ 155.8 (2) \\ 157.6 (2) \\ -24.9 (3) $
N2-C1-C2-C3 $N1-C1-C2-C3$ $N2-C1-C2-C6$ $N1-C1-C2-C6$ $C1-C2-C3-C4$ $C6-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-N1$ $C12-C7-C8-C9$ $C12-C7-C8-C13$ $C7-C8-C9-C10$ $C13-C8-C9-C10$ $C7-C8-C9-C14$	-179.4 (2) 0.8 (3) 1.7 (4) -178.1 (2) -1.8 (4) 177.0 (3) 1.3 (4) 0.3 (4) -2.1 (3) 177.8 (2) 2.8 (3) -177.1 (2) -174.5 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	176.7 (2) $-1.6 (4)$ $2.4 (4)$ $-0.6 (4)$ $16.2 (3)$ $-163.9 (2)$ $-161.7 (2)$ $18.3 (4)$ $-21.6 (3)$ $155.8 (2)$ $157.6 (2)$ $-24.9 (3)$ $-1.4 (4)$
N2-C1-C2-C3 $N1-C1-C2-C3$ $N2-C1-C2-C6$ $N1-C1-C2-C6$ $C1-C2-C3-C4$ $C6-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-N1$ $C12-C7-C8-C9$ $C12-C7-C8-C13$ $C7-C8-C9-C10$ $C13-C8-C9-C10$ $C7-C8-C9-C14$ $C13-C8-C9-C14$	-179.4 (2) 0.8 (3) 1.7 (4) -178.1 (2) -1.8 (4) 177.0 (3) 1.3 (4) 0.3 (4) -2.1 (3) 177.8 (2) 2.8 (3) -177.1 (2) -174.5 (2) 5.5 (4)	$\begin{array}{c} C14-C9-C10-C11\\ C9-C10-C11-C12\\ C10-C11-C12-C7\\ C8-C7-C12-C11\\ C7-C8-C13-O1\\ C9-C8-C13-O1\\ C7-C8-C13-O2\\ C9-C8-C13-O2\\ C9-C8-C13-O2\\ C10-C9-C14-O4\\ C8-C9-C14-O4\\ C10-C9-C14-O3\\ C8-C9-C14-O3\\ C8-C9-C14-O3\\ C4-C5-N1-C1\\ N2-C1-N1-C5\\ \end{array}$	176.7 (2) $-1.6 (4)$ $2.4 (4)$ $-0.6 (4)$ $16.2 (3)$ $-163.9 (2)$ $-161.7 (2)$ $18.3 (4)$ $-21.6 (3)$ $155.8 (2)$ $157.6 (2)$ $-24.9 (3)$ $-1.4 (4)$ $-179.0 (2)$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	D···· A	D—H··· A
O3—H2…O2	1.18 (3)	1.25 (3)	2.417 (2)	169 (2)
N1—H1…O4	0.99 (3)	1.70 (3)	2.685 (3)	171 (3)
N2—H2A···O3	0.91 (3)	2.01 (3)	2.916 (3)	173 (2)
N2—H2 B ····O1 ⁱ	0.93 (4)	1.99 (4)	2.885 (3)	162 (3)

Symmetry code: (i) -x+1, -y+2, -z+1.