

ISSN 2414-3146

Received 15 January 2017 Accepted 21 March 2017

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; benzimidazole; 2heteroaryl benzimidazole; julolidine; hydrogen bonds.

CCDC reference: 1539272

Structural data: full structural data are available from iucrdata.iucr.org

9-(1*H*-Benzo[*d*]imidazol-2-yl)-2,3,6,7-tetrahydro-1*H*,5*H*-pyrido[3,2,1-*ij*]quinoline

Gerardo García González and M. V. Basavanag Unnamatla*

Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, CP 36050, Guanajuato, Gto., Mexico. *Correspondence e-mail: muralivenkat@ugto.mx

The title compound, $C_{19}H_{19}N_3$, is a 2-heteroaryl benzimidazole derivative obtained through a straightforward and efficient protocol starting from julolidine-9-carbaldehyde and 1,2-phenylendiamine. The mean planes of the heterocyclic moieties in the molecule, benzimidazole and julolidine, form a dihedral angle of 40.9 (1)°. In the crystal, $N-H \cdots N$ hydrogen bonds link the imidazole rings, forming chains along the *c*-axis direction.

Structure description

Benzimidazole derivatives play an important role as pharmacophores in pharmaceuticals, and have been shown to possess different biological properties, such as antioxidant (Ayhan-Kilcigil *et al.*, 2004) and antifungal (Preston *et al.*, 1974) activity. We present here the crystal structure of a 2-heteroaryl benzimidazole derivative (Fig. 1). The compound contains two heterocycles, which are skewed with an N1-C1-C8-C9 torsion angle of -34.7 (5)°. The dihedral angle between the mean planes of the benzimidazole and the julolidine moieties is 40.9 (1)°.

In the crystal, a supramolecular structure based on intermolecular $N2-H2\cdots N1^{i}$ hydrogen bonds is formed (Table 1), featuring zigzag chains of molecules in the [001] direction (Fig. 2).

Synthesis and crystallization

The title compound was synthesized (Fig. 3) by mixing equimolar amounts of o-phenylenediamine (1 mmol) and 9-julolidine carboxaldehyde (1 mmol) in ethanol. The resulting mixture was refluxed for 3 h. After cooling to room temperature, the solvents were removed under reduced pressure, and the residue purified by silica gel chromatography with petroleum ether/ethylacetate (6:4, v:v) as eluent, to afford the title

Figure 1

The molecular structure of the compound, showing displacement ellipsoids drawn at the 50% probability level.

compound as a colourless solid (95% yield). The compound was recrystallized from petroleum ether/diethyl ether (1:1, v:v).

¹H NMR (500 MHz, CDCl₃), δ (p.p.m.): 7.57 (*s*, 1H), 7.50 (*s*, 2H), 7.26 (*s*, 2H), 7.20 (*dd*, *J* = 6.0, 3.1 Hz, 2H), 3.24–3.21 (*m*, 4H), 2.78 (*t*, *J* = 6.3 Hz, 4H), 2.00–1.94 (*m*, 4H). ¹³C NMR (126 MHz, CDCl₃), δ (p.p.m.): 152.8, 144.8, 125.5, 122.4, 121.4, 50.0, 27.8, 21.8.

Figure 2

Crystal-packing diagram, viewed along the c axis. The chain motifs are normal to the projection view.

Table 1 Hydrogen-bond geometry (Å, °).						
$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$		
$N2-H2\cdots N1^{i}$	0.88	1.98	2.852 (4)	173		

Symmetry code: (i) $-x + \frac{1}{2}, y, z + \frac{1}{2}$.

 Table 2

 Experimental details.

=	
Crystal data	
Chemical formula	$C_{19}H_{19}N_3$
M _r	289.37
Crystal system, space group	Orthorhombic, $Pca2_1$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	14.0540 (11), 11.2639 (6), 9.6184 (5)
$V(Å^3)$	1522.62 (16)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.08
Crystal size (mm)	$0.53 \times 0.34 \times 0.26$
Data collection	
Diffractometer	Rigaku OD SuperNova, Single source at offset, EosS2
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.878, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4617, 2727, 2528
R _{int}	0.021
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.691
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.056, 0.154, 1.05
No. of reflections	2727
No. of parameters	200
No. of restraints	67
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.79, -0.34

Computer programs: CrysAlis PRO (Rigaku OD, 2015), olex2.solve (Bourhis et al., 2015), SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The methylene C atoms (C11, C12, C13, C16, C17, C18) in the julolidine group were refined with restrained displacement parameters: rigid-bond restraints were applied and atoms closer than 2 Å were restrained to have similar U_{ij} parameters within a standard deviation of 0.04 Å²; finally, these C atoms were restrained to approximate an isotropic behaviour (Sheldrick, 2015).

Figure 3 The reaction scheme.

Acknowledgements

The authors are grateful to the Universidad de Guanajuato for access to the single-crystal analysis facility.

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (award No. 123732); Universidad de Guanajuato (award No. DAIP-1105/2016).

References

- Ayhan-Kilcigil, G., Kus, C., Çoban, T., Can-Eke, B. & Iscan, M. (2004). J. Enzyme Inhib. Med. Chem. 19, 129–135.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Preston, P. N. (1974). Chem. Rev. 74, 279-314.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2017). **2**, x170445 [https://doi.org/10.1107/S241431461700445X]

9-(1*H*-Benzo[*d*]imidazol-2-yl)-2,3,6,7-tetrahydro-1*H*,5*H*-pyrido[3,2,1*ij*]quinoline

Gerardo García González and M. V. Basavanag Unnamatla

9-(1H-Benzo[d]imidazol-2-yl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinoline

Crystal data

C₁₉H₁₉N₃ $M_r = 289.37$ Orthorhombic, $Pca2_1$ a = 14.0540 (11) Å b = 11.2639 (6) Å c = 9.6184 (5) Å V = 1522.62 (16) Å³ Z = 4F(000) = 616

Data collection

Rigaku OD SuperNova, Single source at offset, EosS2 diffractometer Radiation source: SuperNova (Mo) X-ray Source Detector resolution: 8.0945 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.154$ S = 1.052727 reflections 200 parameters 67 restraints 0 constraints Primary atom site location: structure-invariant direct methods $D_x = 1.262 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2311 reflections $\theta = 4.4-28.4^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.53 \times 0.34 \times 0.26 \text{ mm}$

 $T_{\min} = 0.878, T_{\max} = 1.000$ 4617 measured reflections
2727 independent reflections
2528 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$ $\theta_{\max} = 29.4^{\circ}, \theta_{\min} = 3.4^{\circ}$ $h = -18 \rightarrow 10$ $k = -15 \rightarrow 13$ $l = -13 \rightarrow 11$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0917P)^2 + 0.6633P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.79$ e Å⁻³ $\Delta\rho_{min} = -0.34$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.1962 (2)	0.8178 (2)	0.3418 (3)	0.0216 (6)	
N2	0.2282 (2)	0.8416 (2)	0.5680 (3)	0.0200 (6)	
H2	0.253182	0.828378	0.650431	0.029 (11)*	
N3	0.4176 (2)	0.3248 (2)	0.5017 (3)	0.0286 (7)	
C1	0.2398 (2)	0.7740 (2)	0.4529 (3)	0.0184 (6)	
C2	0.1513 (2)	0.9199 (3)	0.3887 (3)	0.0215 (7)	
C3	0.1697 (2)	0.9357 (3)	0.5316 (3)	0.0213 (7)	
C4	0.1295 (3)	1.0267 (3)	0.6076 (4)	0.0285 (8)	
H4	0.142022	1.035931	0.704076	0.034*	
C5	0.0695 (3)	1.1045 (3)	0.5363 (4)	0.0345 (9)	
Н5	0.040386	1.168141	0.585225	0.041*	
C6	0.0517 (3)	1.0907 (3)	0.3954 (5)	0.0341 (8)	
H6	0.010790	1.145665	0.350216	0.041*	
C7	0.0913 (3)	0.9995 (3)	0.3184 (4)	0.0284 (8)	
H7	0.078437	0.991119	0.221969	0.034*	
C8	0.2907 (2)	0.6604 (2)	0.4590 (3)	0.0189 (6)	
C9	0.2574 (3)	0.5634 (3)	0.3814 (4)	0.0239 (7)	
Н9	0.205427	0.573953	0.319546	0.029*	
C10	0.2991 (3)	0.4531 (3)	0.3937 (4)	0.0253 (7)	
C11	0.2605 (3)	0.3483 (3)	0.3122 (5)	0.0415 (11)	
H11A	0.190698	0.356295	0.301694	0.050*	
H11B	0.289195	0.347109	0.218247	0.050*	
C12	0.2833 (3)	0.2335 (3)	0.3871 (6)	0.0477 (12)	
H12A	0.244727	0.228660	0.473014	0.057*	
H12B	0.265494	0.165665	0.326989	0.057*	
C13	0.3849 (3)	0.2240 (3)	0.4236 (5)	0.0405 (10)	
H13A	0.395126	0.150983	0.478932	0.049*	
H13B	0.422914	0.217004	0.337263	0.049*	
C14	0.3775 (2)	0.4364 (3)	0.4838 (3)	0.0211 (7)	
C15	0.4143 (2)	0.5353 (3)	0.5566 (3)	0.0223 (7)	
C16	0.5092 (3)	0.3136 (3)	0.5706 (5)	0.0398 (9)	
H16A	0.560227	0.327935	0.501689	0.048*	
H16B	0.516213	0.231204	0.604927	0.048*	
C17	0.5219 (4)	0.3968 (4)	0.6891 (6)	0.0535 (13)	
H17A	0.588222	0.391328	0.723392	0.064*	
H17B	0.479037	0.373227	0.765948	0.064*	
C18	0.5012 (3)	0.5218 (3)	0.6485 (4)	0.0338 (9)	
H18A	0.557154	0.554489	0.599026	0.041*	
H18B	0.491807	0.569539	0.733895	0.041*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

data reports

C19	0.3690 (2)	0.6436 (3)	0.5452 (3)	0.0208 (6)
H19	0.392053	0.708810	0.597922	0.025*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0255 (15)	0.0238 (12)	0.0156 (12)	-0.0003 (11)	-0.0014 (12)	-0.0011 (10)
N2	0.0275 (15)	0.0200 (11)	0.0126 (12)	0.0018 (10)	0.0012 (12)	0.0003 (10)
N3	0.0309 (16)	0.0221 (13)	0.0328 (16)	0.0040 (12)	0.0029 (14)	-0.0037 (11)
C1	0.0201 (15)	0.0214 (13)	0.0138 (13)	-0.0034 (11)	0.0027 (13)	-0.0010 (11)
C2	0.0269 (17)	0.0201 (14)	0.0175 (14)	-0.0017 (12)	0.0023 (14)	0.0019 (12)
C3	0.0238 (17)	0.0211 (13)	0.0191 (14)	-0.0007 (13)	0.0039 (14)	0.0014 (12)
C4	0.036 (2)	0.0284 (16)	0.0213 (16)	0.0023 (15)	0.0019 (16)	-0.0037 (13)
C5	0.040 (2)	0.0254 (15)	0.038 (2)	0.0084 (15)	0.0080 (19)	-0.0031 (15)
C6	0.037 (2)	0.0283 (17)	0.0370 (19)	0.0070 (15)	-0.0026 (19)	0.0035 (15)
C7	0.034 (2)	0.0272 (15)	0.0242 (16)	-0.0003 (15)	-0.0042 (16)	0.0037 (13)
C8	0.0220 (16)	0.0210 (13)	0.0137 (12)	-0.0005 (12)	0.0037 (13)	-0.0005 (11)
C9	0.0244 (17)	0.0264 (14)	0.0209 (14)	-0.0006 (13)	-0.0047 (14)	-0.0056 (13)
C10	0.0277 (18)	0.0234 (15)	0.0247 (15)	-0.0009 (13)	-0.0044 (16)	-0.0051 (13)
C11	0.046 (3)	0.0287 (16)	0.050 (3)	0.0014 (17)	-0.020 (2)	-0.0132 (17)
C12	0.041 (2)	0.0299 (18)	0.072 (3)	-0.0051 (16)	-0.004 (3)	-0.013 (2)
C13	0.056 (3)	0.0210 (16)	0.044 (2)	0.0042 (16)	-0.010 (2)	-0.0074 (15)
C14	0.0245 (17)	0.0221 (13)	0.0167 (15)	0.0002 (12)	0.0044 (14)	-0.0009 (11)
C15	0.0236 (16)	0.0273 (14)	0.0160 (14)	0.0017 (12)	0.0000 (14)	-0.0006 (12)
C16	0.046 (2)	0.0370 (18)	0.0358 (19)	0.0163 (18)	-0.012 (2)	-0.0017 (17)
C17	0.054 (3)	0.049 (2)	0.057 (3)	0.012 (2)	-0.023 (3)	-0.002 (2)
C18	0.034 (2)	0.0352 (18)	0.0320 (19)	0.0059 (17)	-0.0124 (18)	-0.0063 (15)
C19	0.0250 (16)	0.0235 (13)	0.0139 (14)	-0.0047 (12)	0.0004 (14)	-0.0026 (11)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N1—C1	1.327 (4)	C10-C14	1.415 (5)
N1-C2	1.387 (4)	C10—C11	1.517 (5)
N2-C1	1.354 (4)	C11—C12	1.514 (6)
N2—C3	1.386 (4)	C11—H11A	0.9900
N2—H2	0.8800	C11—H11B	0.9900
N3—C14	1.388 (4)	C12—C13	1.475 (6)
N3—C13	1.438 (5)	C12—H12A	0.9900
N3—C16	1.452 (5)	C12—H12B	0.9900
C1—C8	1.467 (4)	C13—H13A	0.9900
C2—C7	1.405 (5)	C13—H13B	0.9900
C2—C3	1.410 (5)	C14—C15	1.413 (4)
C3—C4	1.380 (5)	C15—C19	1.380 (4)
C4—C5	1.396 (5)	C15—C18	1.516 (5)
C4—H4	0.9500	C16—C17	1.487 (6)
C5—C6	1.387 (6)	C16—H16A	0.9900
С5—Н5	0.9500	C16—H16B	0.9900
C6—C7	1.383 (5)	C17—C18	1.490 (6)

data reports

С6—Н6	0.9500	C17—H17A	0.9900
С7—Н7	0.9500	C17—H17B	0.9900
C8—C19	1.390 (5)	C18—H18A	0.9900
C8—C9	1.403 (4)	C18—H18B	0.9900
C9—C10	1.379 (4)	С19—Н19	0.9500
С9—Н9	0.9500		
C1—N1—C2	104.9 (3)	C10—C11—H11B	109.7
C1—N2—C3	107.2 (3)	H11A—C11—H11B	108.2
C1—N2—H2	126.4	C13—C12—C11	112.4 (4)
C3—N2—H2	126.4	C13—C12—H12A	109.1
C14—N3—C13	121.4 (3)	C11—C12—H12A	109.1
C14—N3—C16	119.7 (3)	C13—C12—H12B	109.1
C13—N3—C16	116.9 (3)	C11—C12—H12B	109.1
N1—C1—N2	113.2 (3)	H12A—C12—H12B	107.9
N1—C1—C8	125.6 (3)	N3—C13—C12	112.1 (3)
N2—C1—C8	121.1 (3)	N3—C13—H13A	109.2
N1—C2—C7	130.3 (3)	C12—C13—H13A	109.2
N1—C2—C3	109.8 (3)	N3—C13—H13B	109.2
C7—C2—C3	119.9 (3)	C12—C13—H13B	109.2
C4—C3—N2	132.6 (3)	H13A—C13—H13B	107.9
C4—C3—C2	122.4 (3)	N3—C14—C15	120.2 (3)
N2—C3—C2	105.0 (3)	N3—C14—C10	120.8 (3)
C3—C4—C5	117.0 (3)	C15—C14—C10	118.9 (3)
C3—C4—H4	121.5	C19—C15—C14	119.2 (3)
C5—C4—H4	121.5	C19—C15—C18	120.5 (3)
C6—C5—C4	121.2 (3)	C14—C15—C18	120.3 (3)
С6—С5—Н5	119.4	N3—C16—C17	113.7 (3)
С4—С5—Н5	119.4	N3—C16—H16A	108.8
C7—C6—C5	122.3 (4)	C17—C16—H16A	108.8
С7—С6—Н6	118.9	N3—C16—H16B	108.8
С5—С6—Н6	118.9	C17—C16—H16B	108.8
C6—C7—C2	117.3 (3)	H16A—C16—H16B	107.7
С6—С7—Н7	121.3	C16—C17—C18	111.8 (4)
С2—С7—Н7	121.3	C16—C17—H17A	109.3
C19—C8—C9	118.3 (3)	C18—C17—H17A	109.3
C19—C8—C1	121.9 (3)	C16—C17—H17B	109.3
C9—C8—C1	119.7 (3)	C18—C17—H17B	109.3
C10—C9—C8	121.0 (3)	H17A—C17—H17B	107.9
С10—С9—Н9	119.5	C17—C18—C15	113.9 (3)
С8—С9—Н9	119.5	C17—C18—H18A	108.8
C9—C10—C14	120.2 (3)	C15—C18—H18A	108.8
C9—C10—C11	120.3 (3)	C17—C18—H18B	108.8
C14—C10—C11	119.5 (3)	C15—C18—H18B	108.8
C12—C11—C10	110.0 (3)	H18A—C18—H18B	107.7
C12—C11—H11A	109.7	C15—C19—C8	122.2 (3)
C10—C11—H11A	109.7	С15—С19—Н19	118.9
C12—C11—H11B	109.7	C8—C19—H19	118.9

C2—N1—C1—N2	-1.3 (4)	C14—C10—C11—C12	25.5 (6)
C2—N1—C1—C8	174.5 (3)	C10-C11-C12-C13	-51.3 (5)
C3—N2—C1—N1	2.1 (4)	C14—N3—C13—C12	-30.0 (5)
C3—N2—C1—C8	-174.0 (3)	C16—N3—C13—C12	166.2 (4)
C1—N1—C2—C7	-176.8 (4)	C11—C12—C13—N3	54.2 (6)
C1—N1—C2—C3	0.1 (4)	C13—N3—C14—C15	-176.7 (3)
C1—N2—C3—C4	175.1 (4)	C16—N3—C14—C15	-13.4 (5)
C1—N2—C3—C2	-1.9 (3)	C13—N3—C14—C10	3.8 (5)
N1—C2—C3—C4	-176.3 (3)	C16—N3—C14—C10	167.1 (3)
C7—C2—C3—C4	1.0 (5)	C9-C10-C14-N3	177.2 (3)
N1-C2-C3-N2	1.1 (4)	C11—C10—C14—N3	-2.0 (5)
C7—C2—C3—N2	178.4 (3)	C9-C10-C14-C15	-2.3 (5)
N2—C3—C4—C5	-177.1 (4)	C11—C10—C14—C15	178.5 (4)
C2—C3—C4—C5	-0.6 (5)	N3-C14-C15-C19	-175.2 (3)
C3—C4—C5—C6	-0.1 (6)	C10-C14-C15-C19	4.3 (5)
C4—C5—C6—C7	0.4 (7)	N3-C14-C15-C18	3.4 (5)
C5—C6—C7—C2	0.0 (6)	C10-C14-C15-C18	-177.0 (3)
N1—C2—C7—C6	175.9 (4)	C14—N3—C16—C17	38.2 (5)
C3—C2—C7—C6	-0.7 (5)	C13—N3—C16—C17	-157.8 (4)
N1-C1-C8-C19	148.5 (3)	N3-C16-C17-C18	-51.9 (6)
N2-C1-C8-C19	-36.0 (5)	C16—C17—C18—C15	41.9 (6)
N1-C1-C8-C9	-34.7 (5)	C19—C15—C18—C17	160.0 (4)
N2-C1-C8-C9	140.9 (3)	C14—C15—C18—C17	-18.6 (5)
C19—C8—C9—C10	2.2 (5)	C14—C15—C19—C8	-3.1(5)
C1—C8—C9—C10	-174.7 (3)	C18—C15—C19—C8	178.2 (3)
C8—C9—C10—C14	-1.0 (6)	C9—C8—C19—C15	-0.1 (5)
C8—C9—C10—C11	178.2 (4)	C1—C8—C19—C15	176.8 (3)
C9—C10—C11—C12	-153.7 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
N2—H2…N1 ⁱ	0.88	1.98	2.852 (4)	173

Symmetry code: (i) -x+1/2, *y*, z+1/2.