metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Di­aqua­bis­­(1,1,1,5,5,5-hexa­fluoro­penta­ne-2,4-dionato-κ2O,O′)cobalt(II) dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
*Correspondence e-mail: tmochida@platinum.kobe-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 December 2016; accepted 2 January 2017; online 6 January 2017)

The CoII atom in the mononuclear title compound, [Co(C5HF6O2)2(H2O)2]·2H2O, is situated on an inversion centre and exhibits a slightly distorted octa­hedral coordination sphere. In the crystal, mol­ecules are arranged in layers parallel to (100), held together by O—H⋯O and O—H⋯F hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Metal complexes with hfac ligands (hfac = 1,1,1,5,5,5-hexa­fluoro-2,4-penta­nedionate, C5HF6O2) can occur with various numbers of aqua ligands [M(hfac)2(H2O)n] (Maverick et al., 2002[Maverick, A. W., Fronczek, F. R., Maverick, E. F., Billodeaux, D. R., Cygan, Z. T. & Isovitsch, R. A. (2002). Inorg. Chem. 41, 6488-6492.]). These compounds are useful precursors of numerous complexes used in supra­molecular chemistry (Horikoshi et al., 2005[Horikoshi, R., Mochida, T., Kurihara, M. & Mikuriya, M. (2005). Cryst. Growth Des. 5, 243-249.]).

An isomer of the mol­ecular entity cis-[Co(hfac)2(H2O)2] (Petrukhina et al., 2005[Petrukhina, M. A., Henck, C., Li, B., Block, E., Jin, J., Zhang, S. & Clerac, R. (2005). Inorg. Chem. 44, 77-84.]) was now obtained as a dihydrate with a trans-configuration about the CoII atom, representing the title compound [Co(hfac)2(H2O)2]·2H2O (Fig. 1[link]). The metal cation is situated on an inversion centre, hence only half of the complex is present in the asymmetric unit. The symmetry-related hfac ligands chelate the CoII atom in the equatorial plane, the slightly distorted coordination sphere being completed by two axially bound water mol­ecules. The hydrogen atoms of the two solvate water mol­ecules hydrogen-bond to the two O atom pairs of the hfac ligands, whereas the hydrogen atoms of the aqua ligands hydrogen-bond to the oxygen atoms of the solvate water mol­ecules which leads to the formation of a two-dimensional network structure extending parallel to (100) (Table 1[link], Fig. 2[link]). Additional intra­layer O—H⋯F hydrogen bonds between the solvate water mol­ecules and the F atoms of the hfac ligands are present (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H5⋯O2 0.88 (3) 2.13 (3) 2.853 (2) 140 (3)
O4—H5⋯F6 0.88 (3) 2.32 (3) 3.105 (3) 148 (3)
O4—H4⋯O1i 0.77 (3) 2.03 (3) 2.766 (2) 160 (3)
O4—H4⋯F3i 0.77 (3) 2.55 (3) 3.086 (3) 129 (3)
O3—H2⋯O4ii 0.76 (3) 2.00 (3) 2.756 (3) 175 (3)
O3—H1⋯O4iii 0.84 (3) 1.85 (3) 2.687 (3) 175 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.
[Figure 1]
Figure 1
The mol­ecular components in the title structure, with displacement ellipsoids drawn at the 50% probability level. Primed atoms are related to the non-primed atoms by the symmetry operation −x + 1, −y + 1, −z + 1.
[Figure 2]
Figure 2
Packing diagram of the title structure in a view along [100]. O–H⋯O inter­actions are illustrated as dashed lines.

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed no other examples of structurally characterized dihydrate crystals with formula [M(hfac)2(H2O)n]·2H2O. In the monohydrate crystals of trans-[M(hfac)2(H2O)2]·H2O [M = Zn (Adams et al., 1986[Adams, R. P., Allen, H. C. Jr, Rychlewska, U. & Hodgson, D. J. (1986). Inorg. Chim. Acta, 119, 67-74.]), Mn (Dickman et al., 1997[Dickman, M. H. (1997). Acta Cryst. C53, 402-404.]), and Cu (Maverick et al., 2002[Maverick, A. W., Fronczek, F. R., Maverick, E. F., Billodeaux, D. R., Cygan, Z. T. & Isovitsch, R. A. (2002). Inorg. Chem. 41, 6488-6492.])], of which the Zn and Mn compounds are isotypic with each other, the solvate water mol­ecule forms hydrogen bonds with two of the four oxygen atoms of the hfac ligands in the complex, whereas the other two oxygen atoms form hydrogen bonds with the aqua ligands of an adjacent complex. In contrast, cis-[M(hfac)2(H2O)2] [M = Co (Petrukhina et al., 2005[Petrukhina, M. A., Henck, C., Li, B., Block, E., Jin, J., Zhang, S. & Clerac, R. (2005). Inorg. Chem. 44, 77-84.]), Zn (Adams & Allen, 1986[Adams, R. P., Allen, H. C. Jr, Rychlewska, U. & Hodgson, D. J. (1986). Inorg. Chim. Acta, 119, 67-74.]), Ni (Romero et al., 1992[Romero, R. R., Cervantes-Lee, F. & Porter, L. C. (1992). Acta Cryst. C48, 993-995.]) and Mn (Troyanov et al., 1999[Troyanov, S. I., Gorbenko, O. Yu. & Bosak, A. A. (1999). Polyhedron, 18, 3505-3509.])] form no crystals with additional solvate water mol­ecules, and the crystals obtained are isotypic with each other. Thus, the cis- and trans-[M(hfac)2(H2O)2] isomers occur as anhydrate and dihydrate crystals, respectively, for the Co, Zn, and Mn complexes.

Synthesis and crystallization

Slow evaporation of a di­chloro­methane solution of commercially available Co(hfac)2·nH2O (12 mg) and a tetra­nuclear ruthenium complex produced pale orange platy crystals of the title compound (7 mg).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Co(C5HF6O2)2(H2O)]·2H2O
Mr 545.11
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.139 (7), 6.979 (4), 12.546 (8)
β (°) 102.221 (7)
V3) 953.2 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.05
Crystal size (mm) 0.15 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.83, 0.90
No. of measured, independent and observed [I > 2σ(I)] reflections 4980, 2085, 1897
Rint 0.033
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.09
No. of reflections 2085
No. of parameters 158
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Diaquabis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato-κ2O,O')cobalt(II) dihydrate top
Crystal data top
[Co(C5HF6O2)2(H2O)]·2H2OF(000) = 538
Mr = 545.11Dx = 1.899 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.139 (7) ÅCell parameters from 3472 reflections
b = 6.979 (4) Åθ = 3.3–28.7°
c = 12.546 (8) ŵ = 1.05 mm1
β = 102.221 (7)°T = 100 K
V = 953.2 (10) Å3Plate, clear light orange
Z = 20.15 × 0.14 × 0.10 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
2085 independent reflections
Bruker Helios multilayer confocal mirror monochromator1897 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.033
phi an_diffrn_radiation_type scansθmax = 27.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 1314
Tmin = 0.83, Tmax = 0.90k = 86
4980 measured reflectionsl = 1516
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0286P)2 + 0.6401P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2085 reflectionsΔρmax = 0.46 e Å3
158 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.79557 (17)0.8251 (3)0.70389 (15)0.0275 (4)
C20.73400 (16)0.6744 (3)0.62063 (14)0.0215 (4)
C30.80755 (17)0.5324 (3)0.59026 (16)0.0259 (4)
H30.89330.53590.62010.031*
C40.76128 (16)0.3842 (3)0.51766 (14)0.0224 (4)
C50.85596 (17)0.2501 (3)0.48259 (16)0.0280 (4)
Co10.50.50.50.01650 (11)
F10.77683 (13)0.7802 (2)0.80271 (10)0.0447 (3)
F20.91612 (11)0.8405 (2)0.71227 (11)0.0430 (3)
F30.74684 (13)0.99850 (17)0.67922 (12)0.0421 (3)
F40.88486 (14)0.3160 (2)0.39182 (12)0.0557 (4)
F50.95906 (12)0.2319 (2)0.55607 (13)0.0543 (4)
F60.81060 (12)0.0745 (2)0.46112 (13)0.0465 (4)
H10.508 (2)0.769 (4)0.362 (2)0.038 (7)*
H20.484 (3)0.612 (5)0.304 (2)0.047 (8)*
H40.481 (3)0.085 (4)0.366 (2)0.042 (7)*
H50.601 (3)0.087 (5)0.388 (2)0.051 (8)*
O10.61928 (11)0.69704 (18)0.59076 (10)0.0219 (3)
O20.65242 (11)0.34813 (19)0.47266 (10)0.0234 (3)
O30.49099 (16)0.6521 (2)0.36142 (12)0.0318 (3)
O40.53489 (14)0.02958 (19)0.35107 (11)0.0238 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0239 (9)0.0314 (10)0.0260 (9)0.0047 (8)0.0026 (7)0.0066 (8)
C20.0218 (8)0.0226 (9)0.0197 (8)0.0037 (7)0.0035 (6)0.0016 (7)
C30.0197 (8)0.0304 (10)0.0260 (9)0.0010 (7)0.0018 (7)0.0044 (8)
C40.0212 (8)0.0244 (9)0.0221 (8)0.0024 (7)0.0054 (7)0.0007 (7)
C50.0217 (9)0.0298 (10)0.0322 (10)0.0035 (8)0.0052 (7)0.0047 (8)
Co10.01709 (18)0.01662 (18)0.01582 (17)0.00037 (11)0.00357 (12)0.00182 (11)
F10.0567 (8)0.0541 (9)0.0234 (6)0.0155 (7)0.0089 (6)0.0115 (6)
F20.0248 (6)0.0510 (8)0.0512 (8)0.0109 (6)0.0037 (5)0.0231 (6)
F30.0424 (8)0.0254 (7)0.0518 (9)0.0030 (5)0.0048 (6)0.0113 (5)
F40.0596 (9)0.0653 (10)0.0540 (9)0.0242 (8)0.0388 (8)0.0114 (8)
F50.0313 (7)0.0642 (10)0.0592 (9)0.0217 (7)0.0089 (6)0.0226 (8)
F60.0346 (7)0.0317 (7)0.0748 (10)0.0046 (6)0.0148 (6)0.0181 (7)
O10.0214 (6)0.0209 (6)0.0226 (6)0.0017 (5)0.0028 (5)0.0047 (5)
O20.0199 (6)0.0241 (7)0.0261 (6)0.0006 (5)0.0044 (5)0.0065 (5)
O30.0598 (10)0.0190 (7)0.0172 (7)0.0053 (7)0.0099 (6)0.0018 (5)
O40.0297 (7)0.0202 (6)0.0214 (6)0.0008 (6)0.0056 (6)0.0034 (5)
Geometric parameters (Å, º) top
C1—F21.329 (2)C5—F61.331 (3)
C1—F31.336 (3)Co1—O3i2.0215 (17)
C1—F11.337 (2)Co1—O32.0215 (17)
C1—C21.538 (3)Co1—O12.0766 (14)
C2—O11.263 (2)Co1—O1i2.0766 (14)
C2—C31.389 (3)Co1—O22.0904 (15)
C3—C41.402 (3)Co1—O2i2.0904 (15)
C3—H30.95O3—H10.84 (3)
C4—O21.250 (2)O3—H20.76 (3)
C4—C51.542 (3)O4—H40.77 (3)
C5—F51.318 (2)O4—H50.88 (3)
C5—F41.330 (3)
F2—C1—F3107.40 (17)O3i—Co1—O3180.0
F2—C1—F1107.40 (16)O3i—Co1—O188.09 (7)
F3—C1—F1106.94 (16)O3—Co1—O191.91 (7)
F2—C1—C2114.03 (16)O3i—Co1—O1i91.91 (7)
F3—C1—C2111.18 (16)O3—Co1—O1i88.09 (7)
F1—C1—C2109.57 (16)O1—Co1—O1i180.00 (5)
O1—C2—C3128.77 (17)O3i—Co1—O288.89 (6)
O1—C2—C1113.18 (16)O3—Co1—O291.11 (6)
C3—C2—C1118.03 (16)O1—Co1—O288.74 (6)
C2—C3—C4123.17 (17)O1i—Co1—O291.26 (6)
C2—C3—H3118.4O3i—Co1—O2i91.11 (6)
C4—C3—H3118.4O3—Co1—O2i88.89 (6)
O2—C4—C3129.04 (17)O1—Co1—O2i91.26 (6)
O2—C4—C5113.93 (16)O1i—Co1—O2i88.74 (6)
C3—C4—C5116.96 (16)O2—Co1—O2i180.00 (7)
F5—C5—F4107.42 (18)C2—O1—Co1124.71 (12)
F5—C5—F6106.87 (17)C4—O2—Co1124.59 (12)
F4—C5—F6107.21 (17)Co1—O3—H1122.6 (18)
F5—C5—C4113.96 (17)Co1—O3—H2127 (2)
F4—C5—C4109.78 (17)H1—O3—H2110 (3)
F6—C5—C4111.30 (16)H4—O4—H5105 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H5···O20.88 (3)2.13 (3)2.853 (2)140 (3)
O4—H5···F60.88 (3)2.32 (3)3.105 (3)148 (3)
O4—H4···O1i0.77 (3)2.03 (3)2.766 (2)160 (3)
O4—H4···F3i0.77 (3)2.55 (3)3.086 (3)129 (3)
O3—H2···O4ii0.76 (3)2.00 (3)2.756 (3)175 (3)
O3—H1···O4iii0.84 (3)1.85 (3)2.687 (3)175 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

This work was financially supported by KAKENHI (grant number 16H04132).

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (award No. KAKENHI: 16H04132).

References

First citationAdams, R. P., Allen, H. C. Jr, Rychlewska, U. & Hodgson, D. J. (1986). Inorg. Chim. Acta, 119, 67–74.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDickman, M. H. (1997). Acta Cryst. C53, 402–404.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHorikoshi, R., Mochida, T., Kurihara, M. & Mikuriya, M. (2005). Cryst. Growth Des. 5, 243–249.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaverick, A. W., Fronczek, F. R., Maverick, E. F., Billodeaux, D. R., Cygan, Z. T. & Isovitsch, R. A. (2002). Inorg. Chem. 41, 6488–6492.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPetrukhina, M. A., Henck, C., Li, B., Block, E., Jin, J., Zhang, S. & Clerac, R. (2005). Inorg. Chem. 44, 77–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationRomero, R. R., Cervantes-Lee, F. & Porter, L. C. (1992). Acta Cryst. C48, 993–995.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTroyanov, S. I., Gorbenko, O. Yu. & Bosak, A. A. (1999). Polyhedron, 18, 3505–3509.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds