organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Benzyl-4-phenyl-1H-1,5-benzodiazepin-2(3H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: essaghouani.hanine@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 12 December 2016; accepted 14 December 2016; online 16 December 2016)

In the title mol­ecule, C22H18N2O, the seven-membered ring adopts a boat conformation with the planes of the pendant phenyl rings nearly perpendicular to the plane of the aromatic portion of the benzodiazepine core. Pairwise C—H⋯π(ring) inter­actions form inversion dimers which pack in zigzag layers associated through weak C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzodiazepines have attracted attention as an important class of heterocyclic compounds in the field of drugs and pharmaceuticals. These compounds are widely used as anti-anxiety agents (Kusanur et al., 2004[Kusanur, R. A., Ghate, M. & Kulkarni, M. V. (2004). J. Chem. Sci. 116, 265-270.]) and hypnotic agents (Zellou et al., 1998[Zellou, A., Cherrah, Y., Essassi, E. M. & Hassar, M. (1998). Ann. Pharm. Fr. 56, 175-180.]). The present work is a continuation of our work on 1,5-benzodiazepin-2-one derivatives (Ballo et al., 2010[Ballo, D., Ahabchane, N. H., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1277.]).

In the title compound (Fig. 1[link]), the dihedral angle between the mean planes of the C10–C15 and C1–C6 rings is 83.82 (6)° while that between the mean planes of the C1–C6 and C17–C22 rings is 87.32 (6)°. A conformational analysis of the seven-membered ring yielded the puckering parameters Q(2) = 0.879 (1) Å, Q(3) = 0.219 (1) Å, φ(2) = 207.53 (8)° and φ(3) = 307.8 (3)°, which indicates a boat conformation.

[Figure 1]
Figure 1
The title mol­ecule with the labeling scheme and 50% probability ellipsoids.

In the crystal, the mol­ecules form inversion dimers through pairwise C4—H4⋯π inter­actions (Table 1[link] and Fig. 2[link]). These dimers pack in zigzag layers which are associated through weak C14—H14⋯O1ii hydrogen bonds (Table 1[link] and Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.93 2.47 3.281 (2) 145
C4—H4⋯Cg1ii 0.93 2.98 3.767 (2) 143
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions with the C—H⋯O and C—H⋯π(ring) inter­actions shown, respectively, as black and orange dotted lines [symmetry codes: (i) −x + 1, −y, −z + 1; (ii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; Cg1 is the centroid of the C10–C15 ring].
[Figure 3]
Figure 3
Packing viewed along the b axis showing the zigzag layers. The inter­molecular inter­actions are represented as in Fig. 2[link]. H atoms not involved in inter­actions have been omitted for clarity.

Synthesis and crystallization

To a solution of 4-phenyl-1,5-benzodiazepin-2-one (2.36 g, 10 mmol) in DMF (40 ml) was added benzyl chloride (2.3 ml, 20 mmol), potassium carbonate (2.77 g, 20 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium bromide. The mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue was recrystallized from ethanol solution to afford the title compound as colourless crystals (yield: 68%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H18N2O
Mr 326.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 14.6973 (7), 5.9179 (3), 19.8537 (9)
β (°) 93.461 (1)
V3) 1723.67 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.43 × 0.30 × 0.22
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.87, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 30265, 4261, 3110
Rint 0.035
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.139, 1.07
No. of reflections 4261
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.15
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-Benzyl-4-phenyl-1H-1,5-benzodiazepin-2(3H)-one top
Crystal data top
C22H18N2OF(000) = 688
Mr = 326.38Dx = 1.258 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.6973 (7) ÅCell parameters from 9683 reflections
b = 5.9179 (3) Åθ = 2.4–27.5°
c = 19.8537 (9) ŵ = 0.08 mm1
β = 93.461 (1)°T = 296 K
V = 1723.67 (14) Å3Block, colourless
Z = 40.43 × 0.30 × 0.22 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4261 independent reflections
Radiation source: fine-focus sealed tube3110 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.1°
φ and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 77
Tmin = 0.87, Tmax = 0.98l = 2625
30265 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0823P)2 + 0.065P]
where P = (Fo2 + 2Fc2)/3
4261 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.15 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24295 (7)0.5688 (2)0.31026 (6)0.0954 (4)
N10.40947 (6)0.15215 (15)0.42752 (5)0.0473 (2)
N20.22089 (6)0.26574 (17)0.37616 (4)0.0514 (3)
C10.24093 (7)0.13976 (19)0.43604 (5)0.0458 (3)
C20.16861 (8)0.0487 (2)0.46964 (6)0.0577 (3)
H20.10910.07670.45320.069*
C30.18363 (10)0.0813 (2)0.52644 (7)0.0663 (4)
H30.13460.14070.54810.080*
C40.27189 (10)0.1238 (3)0.55135 (7)0.0663 (4)
H40.28230.20900.59040.080*
C50.34419 (9)0.0404 (2)0.51839 (6)0.0565 (3)
H50.40330.07310.53490.068*
C60.33060 (7)0.09273 (18)0.46054 (5)0.0449 (3)
C70.41683 (7)0.35018 (18)0.40285 (6)0.0459 (3)
C80.34347 (8)0.5261 (2)0.40845 (7)0.0596 (3)
H8A0.32410.53200.45430.071*
H8B0.36630.67390.39680.071*
C90.26510 (8)0.4603 (2)0.36051 (7)0.0602 (3)
C100.49709 (7)0.40460 (19)0.36411 (6)0.0466 (3)
C110.53994 (8)0.6133 (2)0.36959 (7)0.0624 (3)
H110.51810.72320.39800.075*
C120.61486 (9)0.6586 (2)0.33306 (8)0.0720 (4)
H120.64420.79740.33790.086*
C130.64630 (8)0.5000 (3)0.28976 (7)0.0673 (4)
H130.69570.53310.26430.081*
C140.60475 (8)0.2924 (3)0.28393 (6)0.0627 (3)
H140.62640.18450.25480.075*
C150.53077 (7)0.2438 (2)0.32134 (6)0.0522 (3)
H150.50340.10220.31780.063*
C160.14258 (8)0.1991 (3)0.33137 (6)0.0593 (3)
H16A0.13360.03750.33580.071*
H16B0.15710.22840.28520.071*
C170.05352 (7)0.3175 (2)0.34414 (5)0.0513 (3)
C180.04870 (9)0.5022 (2)0.38589 (7)0.0662 (4)
H180.10130.55640.40880.079*
C190.03416 (9)0.6081 (3)0.39392 (8)0.0759 (4)
H190.03690.73280.42230.091*
C200.11235 (9)0.5294 (3)0.36009 (8)0.0704 (4)
H200.16770.60160.36510.084*
C210.10814 (8)0.3448 (3)0.31912 (7)0.0668 (4)
H210.16090.29000.29660.080*
C220.02581 (8)0.2394 (2)0.31100 (6)0.0595 (3)
H220.02360.11410.28290.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0594 (6)0.1204 (9)0.1077 (8)0.0146 (6)0.0168 (5)0.0682 (8)
N10.0425 (5)0.0469 (5)0.0521 (5)0.0025 (4)0.0001 (4)0.0024 (4)
N20.0423 (5)0.0628 (6)0.0491 (5)0.0057 (4)0.0040 (4)0.0092 (4)
C10.0478 (6)0.0463 (6)0.0433 (6)0.0023 (4)0.0036 (4)0.0003 (4)
C20.0487 (6)0.0674 (8)0.0574 (7)0.0014 (5)0.0064 (5)0.0068 (6)
C30.0657 (8)0.0745 (9)0.0599 (8)0.0073 (7)0.0126 (6)0.0125 (7)
C40.0775 (9)0.0708 (9)0.0499 (7)0.0024 (7)0.0010 (6)0.0141 (6)
C50.0583 (7)0.0589 (7)0.0510 (6)0.0010 (5)0.0066 (5)0.0023 (5)
C60.0467 (6)0.0418 (5)0.0458 (6)0.0002 (4)0.0011 (4)0.0044 (5)
C70.0418 (5)0.0434 (6)0.0524 (6)0.0024 (4)0.0010 (4)0.0064 (5)
C80.0548 (7)0.0426 (6)0.0835 (9)0.0056 (5)0.0222 (6)0.0005 (6)
C90.0434 (6)0.0668 (8)0.0720 (8)0.0152 (5)0.0177 (5)0.0207 (7)
C100.0374 (5)0.0482 (6)0.0539 (6)0.0029 (4)0.0006 (4)0.0008 (5)
C110.0507 (7)0.0514 (7)0.0857 (9)0.0045 (5)0.0089 (6)0.0081 (6)
C120.0495 (7)0.0635 (8)0.1033 (11)0.0066 (6)0.0073 (7)0.0098 (8)
C130.0400 (6)0.0891 (10)0.0731 (8)0.0042 (6)0.0065 (5)0.0194 (8)
C140.0490 (6)0.0831 (9)0.0564 (7)0.0137 (6)0.0056 (5)0.0032 (6)
C150.0456 (6)0.0552 (7)0.0554 (6)0.0037 (5)0.0007 (5)0.0048 (5)
C160.0504 (6)0.0810 (9)0.0461 (6)0.0112 (6)0.0013 (5)0.0011 (6)
C170.0446 (6)0.0645 (7)0.0447 (6)0.0044 (5)0.0023 (4)0.0066 (5)
C180.0435 (6)0.0796 (9)0.0752 (8)0.0022 (6)0.0003 (6)0.0129 (7)
C190.0575 (8)0.0770 (9)0.0942 (11)0.0082 (7)0.0112 (7)0.0135 (8)
C200.0439 (6)0.0825 (10)0.0852 (10)0.0103 (6)0.0087 (6)0.0155 (8)
C210.0440 (6)0.0875 (10)0.0680 (8)0.0048 (6)0.0034 (5)0.0127 (7)
C220.0543 (7)0.0705 (8)0.0531 (7)0.0039 (6)0.0012 (5)0.0025 (6)
Geometric parameters (Å, º) top
O1—C91.2139 (15)C11—C121.3808 (18)
N1—C71.2773 (14)C11—H110.9300
N1—C61.4103 (13)C12—C131.372 (2)
N2—C91.3672 (16)C12—H120.9300
N2—C11.4190 (14)C13—C141.374 (2)
N2—C161.4653 (15)C13—H130.9300
C1—C21.3969 (16)C14—C151.3836 (17)
C1—C61.4048 (15)C14—H140.9300
C2—C31.3719 (18)C15—H150.9300
C2—H20.9300C16—C171.5193 (16)
C3—C41.383 (2)C16—H16A0.9700
C3—H30.9300C16—H16B0.9700
C4—C51.3731 (19)C17—C181.3766 (18)
C4—H40.9300C17—C221.3832 (17)
C5—C61.3971 (16)C18—C191.3873 (18)
C5—H50.9300C18—H180.9300
C7—C101.4820 (15)C19—C201.377 (2)
C7—C81.5078 (15)C19—H190.9300
C8—C91.5007 (19)C20—C211.366 (2)
C8—H8A0.9700C20—H200.9300
C8—H8B0.9700C21—C221.3795 (18)
C10—C151.3865 (15)C21—H210.9300
C10—C111.3879 (17)C22—H220.9300
C7—N1—C6119.87 (9)C12—C11—H11119.9
C9—N2—C1123.75 (10)C10—C11—H11119.9
C9—N2—C16117.08 (10)C13—C12—C11120.40 (13)
C1—N2—C16118.87 (10)C13—C12—H12119.8
C2—C1—C6118.89 (10)C11—C12—H12119.8
C2—C1—N2118.52 (10)C12—C13—C14119.99 (12)
C6—C1—N2122.49 (10)C12—C13—H13120.0
C3—C2—C1121.31 (12)C14—C13—H13120.0
C3—C2—H2119.3C13—C14—C15120.03 (12)
C1—C2—H2119.3C13—C14—H14120.0
C2—C3—C4119.79 (12)C15—C14—H14120.0
C2—C3—H3120.1C14—C15—C10120.48 (12)
C4—C3—H3120.1C14—C15—H15119.8
C5—C4—C3120.02 (12)C10—C15—H15119.8
C5—C4—H4120.0N2—C16—C17115.33 (10)
C3—C4—H4120.0N2—C16—H16A108.4
C4—C5—C6121.21 (11)C17—C16—H16A108.4
C4—C5—H5119.4N2—C16—H16B108.4
C6—C5—H5119.4C17—C16—H16B108.4
C5—C6—C1118.75 (10)H16A—C16—H16B107.5
C5—C6—N1116.23 (9)C18—C17—C22118.64 (11)
C1—C6—N1124.74 (10)C18—C17—C16122.87 (11)
N1—C7—C10119.13 (9)C22—C17—C16118.47 (11)
N1—C7—C8121.86 (10)C17—C18—C19120.36 (12)
C10—C7—C8118.90 (10)C17—C18—H18119.8
C9—C8—C7107.40 (10)C19—C18—H18119.8
C9—C8—H8A110.2C20—C19—C18120.24 (14)
C7—C8—H8A110.2C20—C19—H19119.9
C9—C8—H8B110.2C18—C19—H19119.9
C7—C8—H8B110.2C21—C20—C19119.65 (12)
H8A—C8—H8B108.5C21—C20—H20120.2
O1—C9—N2121.64 (14)C19—C20—H20120.2
O1—C9—C8122.78 (13)C20—C21—C22120.21 (12)
N2—C9—C8115.56 (10)C20—C21—H21119.9
C15—C10—C11118.80 (11)C22—C21—H21119.9
C15—C10—C7119.57 (10)C21—C22—C17120.89 (13)
C11—C10—C7121.63 (10)C21—C22—H22119.6
C12—C11—C10120.27 (13)C17—C22—H22119.6
C9—N2—C1—C2139.33 (12)C7—C8—C9—N266.58 (13)
C16—N2—C1—C234.13 (15)N1—C7—C10—C1538.62 (15)
C9—N2—C1—C644.34 (16)C8—C7—C10—C15137.79 (12)
C16—N2—C1—C6142.19 (11)N1—C7—C10—C11141.23 (12)
C6—C1—C2—C31.24 (19)C8—C7—C10—C1142.37 (16)
N2—C1—C2—C3177.70 (12)C15—C10—C11—C120.15 (19)
C1—C2—C3—C40.1 (2)C7—C10—C11—C12179.70 (11)
C2—C3—C4—C51.5 (2)C10—C11—C12—C131.6 (2)
C3—C4—C5—C61.6 (2)C11—C12—C13—C141.8 (2)
C4—C5—C6—C10.32 (18)C12—C13—C14—C150.5 (2)
C4—C5—C6—N1174.53 (12)C13—C14—C15—C101.00 (18)
C2—C1—C6—C51.09 (17)C11—C10—C15—C141.16 (17)
N2—C1—C6—C5177.40 (10)C7—C10—C15—C14178.99 (10)
C2—C1—C6—N1172.58 (11)C9—N2—C16—C1781.50 (13)
N2—C1—C6—N13.73 (17)C1—N2—C16—C1792.40 (13)
C7—N1—C6—C5140.63 (11)N2—C16—C17—C1811.36 (18)
C7—N1—C6—C145.55 (15)N2—C16—C17—C22170.31 (11)
C6—N1—C7—C10175.68 (9)C22—C17—C18—C190.5 (2)
C6—N1—C7—C80.61 (16)C16—C17—C18—C19177.85 (13)
N1—C7—C8—C973.35 (14)C17—C18—C19—C200.1 (2)
C10—C7—C8—C9102.95 (11)C18—C19—C20—C210.7 (2)
C1—N2—C9—O1176.47 (11)C19—C20—C21—C220.8 (2)
C16—N2—C9—O12.89 (17)C20—C21—C22—C170.2 (2)
C1—N2—C9—C84.97 (16)C18—C17—C22—C210.41 (19)
C16—N2—C9—C8178.55 (9)C16—C17—C22—C21177.99 (12)
C7—C8—C9—O1111.96 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.932.473.2808 (17)145
C4—H4···Cg1ii0.932.983.767 (2)143
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBallo, D., Ahabchane, N. H., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKusanur, R. A., Ghate, M. & Kulkarni, M. V. (2004). J. Chem. Sci. 116, 265–270.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZellou, A., Cherrah, Y., Essassi, E. M. & Hassar, M. (1998). Ann. Pharm. Fr. 56, 175–180.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds