organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 4-(furan-2-yl)-6-methyl-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate: a triclinic polymorph

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Idhaya College for Women, Kumbakonam-1, India, bDepartment of Physics, Kunthavai Naachiar Govt. Arts College (W) (Autonomous), Thanjavur-7, India, cDepartment of Chemistry, College of Engineering, Guindy, Anna University, Chennai-25, India, dCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-25, India, and eCentre of Advanced study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-25, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 30 November 2016; accepted 3 December 2016; online 9 December 2016)

The title compound, C12H14N2O4, crystallizes in the triclinic space group P-1. The previously reported polymorph occurs in the monoclinic space group P21/c, and has two independent mol­ecules in the asymmetric unit [Wang (2010[Wang, H.-Y. (2010). Acta Cryst. E66, o2822.]). Acta Cryst. E66, o2822]. The di­hydro­pyrimidine ring adopts a screw-boat conformation. The furan ring is positioned axially and makes a dihedral angle of 85.94 (7)° with the mean plane through the pyrimidine ring. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent years, di­hydro­pyrimidines (DHPMs, `Biginelli compounds') and their derivatives have attracted considerable attention in synthetic organic chemistry because of their wide range of biological activities, such as anti­viral, anti­tumor, anti­bacterial and anti-inflammatory properties (Kappe 2000[Kappe, C. O. (2000). Acc. Chem. Res. 33, 879-888.]; Kulkarni et al., 2009[Kulkarni, M. G., Chavhan, S. W., Shinde, M. P., Gaikwad, D. D., Borhade, A. S., Dhondge, A. P., Shaikh, Y. B., Ningdale, V. B., Desai, M. P. & Birhade, D. R. (2009). Beilstein J. Org. Chem. 5, 1-4.]; Patil et al., 2011[Patil, D. D., Mhaske, D. K., Wadhawa, G. C. & Patare, M. A. (2011). J. Pharm. Res. Opn. 6, 172-174.]). The Biginelli reaction is a well-known multi-component reaction involving a one-pot cyclo­condensation of an aldehyde, β-ketoester and urea/thio­urea. Multi-component reactions (MCRs) have recently gained tremendous importance in organic and medicinal chemistry (Kulkarni et al., 2009[Kulkarni, M. G., Chavhan, S. W., Shinde, M. P., Gaikwad, D. D., Borhade, A. S., Dhondge, A. P., Shaikh, Y. B., Ningdale, V. B., Desai, M. P. & Birhade, D. R. (2009). Beilstein J. Org. Chem. 5, 1-4.]). They are also very potent calcium channel modulators (Kappe 1998[Kappe, C. O. (1998). Molecules, 3, 1-9.]; Jauk et al., 2000[Jauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227-239.]). Furthermore, apart from synthetic DHPM derivatives, several marine natural products with inter­esting biological activities containing the di­hydro­pyrimidine-5-carboxyl­ate core have also been isolated. Most notable among these are the batzelladine alkaloids A and B, which inhibit the binding of HIV envelope protein gp-120 to human CD4 cells and, therefore, are potential leads for AIDS therapy (Kappe, 2000[Kappe, C. O. (2000). Acc. Chem. Res. 33, 879-888.]). As part of our studies in this area, we have determined the crystal structure of the title compound presented herein. It is one of the analogues of our previously reported DHPM structures (Suresh et al., 2015a[Suresh, M., Padusha, M. S. A., Novina, J. J., Vasuki, G., Viswanathan, V. & Velmurugan, D. (2015a). Acta Cryst. E71, 821-823.],b[Suresh, M., Padusha, M. S. A., Novina, J. J., Vasuki, G., Viswanathan, V. & Velmurugan, D. (2015b). Acta Cryst. E71, o81-o82.]; Novina et al., 2015[Novina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2015). Acta Cryst. E71, o206-o207.]).

In the title compound, Fig. 1[link], the furan ring at the chiral carbon atom C4 is positioned axially and bis­ects the pyrimidine ring with a dihedral angle of 85.94 (7)°. The pyrimidine ring adopts a screw-boat conformation with atoms N1 and C4 displaced by −0.1674 (10) and 0.1603 (9) Å, respectively, from the mean plane of the other atoms (C1/N2/C2/C3). The puckering parameters are q2 = 0.2446 (16) Å, q3 = 0.1048 (16) Å, Q = 0.2661 (16) Å, θ = 66.8 (3)° and φ = 327.6 (4)°. The ethyl acetate group attached to the pyrimidine ring shows an extended conformation [C3—C6—O3—C7 = −179.29 (12)°].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif (Fig. 2[link] and Table 1[link]). The dimers are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along the a–axis direction (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.00 2.855 (2) 176
N1—H1⋯O2ii 0.86 2.34 3.142 (2) 156
C5—H5A⋯O1iii 0.96 2.52 3.141 (2) 122
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y, z; (iii) x+1, y, z.
[Figure 2]
Figure 2
The crystal packing of the title compound, showing the R22(8) ring motif, viewed normal to the bc plane. Hydrogen bonds are shown as dashed lines (see Table 1[link]).

Synthesis and crystallization

A mixture of ethyl­aceto­acetate (1.3 ml, 0.01 mol), furfural (1 ml, 0.01 mol), and urea (1.8 g, 0.03 mol) in ethanol (5 ml) was heated under reflux in the presence of CeCl3·7H2O (25 mol %) for 8 h (monitored by TLC). The reaction mixture, after being cooled to room temperature, was poured onto crushed ice and stirred for 5–10 min. The precipitate was then washed with water, filtered, dried and again washed with petroleum ether (40–60%) and dried in a vacuum. The compound was recrystallized from absolute ethanol giving colourless block-like crystals [m.p. 435–438 K, yield 88%].

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H14N2O4
Mr 250.25
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.4670 (2), 8.8307 (3), 10.5426 (3)
α, β, γ (°) 106.833 (2), 108.557 (2), 99.420 (2)
V3) 605.20 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.19 × 0.16 × 0.13
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.980, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 9061, 2458, 2116
Rint 0.022
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.123, 1.08
No. of reflections 2458
No. of parameters 166
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.36
Computer programs: APEX2, SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Ethyl 4-(furan-2-yl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate top
Crystal data top
C12H14N2O4Z = 2
Mr = 250.25F(000) = 264
Triclinic, P1Dx = 1.373 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4670 (2) ÅCell parameters from 2458 reflections
b = 8.8307 (3) Åθ = 2.2–26.3°
c = 10.5426 (3) ŵ = 0.10 mm1
α = 106.833 (2)°T = 296 K
β = 108.557 (2)°Block, colourless
γ = 99.420 (2)°0.19 × 0.16 × 0.13 mm
V = 605.20 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2458 independent reflections
Radiation source: fine-focus sealed tube2116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and φ scanθmax = 26.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.980, Tmax = 0.987k = 1010
9061 measured reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.1739P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2458 reflectionsΔρmax = 0.31 e Å3
166 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.7408 (2)0.90463 (16)0.92870 (14)0.0670 (4)
C100.5796 (3)0.7209 (3)0.9849 (2)0.0647 (5)
H100.50050.62410.97910.078*
C110.6772 (3)0.8695 (3)1.1090 (2)0.0699 (6)
H110.67530.88751.19990.084*
C120.7690 (3)0.9745 (3)1.0699 (2)0.0725 (6)
H120.84331.08211.12960.087*
O10.32040 (15)0.90923 (14)0.55610 (13)0.0463 (3)
N20.60593 (17)0.84873 (15)0.56522 (14)0.0391 (3)
H20.63400.92420.53260.047*
O21.01790 (16)0.58238 (15)0.69053 (14)0.0529 (3)
C30.71862 (19)0.65870 (17)0.66569 (15)0.0346 (3)
O30.79382 (16)0.45399 (13)0.75180 (13)0.0474 (3)
C60.8590 (2)0.56456 (18)0.70103 (16)0.0378 (3)
N10.39886 (17)0.70961 (15)0.64088 (13)0.0384 (3)
H10.27890.66580.62630.046*
C10.4345 (2)0.82776 (18)0.58816 (15)0.0354 (3)
C20.73651 (19)0.75677 (17)0.59092 (15)0.0350 (3)
C40.5541 (2)0.65133 (17)0.72213 (16)0.0354 (3)
H40.49690.53580.70540.042*
C90.6239 (2)0.74810 (18)0.87951 (16)0.0388 (3)
C70.9206 (3)0.3533 (2)0.7928 (2)0.0510 (4)
H7A1.04950.42300.86290.061*
H7B0.93650.28400.70930.061*
C50.8859 (2)0.7784 (2)0.52603 (19)0.0501 (4)
H5A1.00550.85810.59790.075*
H5B0.83610.81620.44860.075*
H5C0.91180.67490.49000.075*
C80.8261 (4)0.2502 (3)0.8552 (3)0.0700 (6)
H8A0.81600.32000.93990.105*
H8B0.90410.17900.88010.105*
H8C0.69690.18480.78610.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0817 (9)0.0548 (8)0.0514 (7)0.0049 (7)0.0300 (7)0.0097 (6)
C100.0792 (13)0.0694 (12)0.0645 (12)0.0188 (10)0.0445 (11)0.0339 (10)
C110.0797 (14)0.0946 (16)0.0453 (10)0.0336 (12)0.0338 (10)0.0241 (10)
C120.0817 (14)0.0704 (13)0.0480 (10)0.0099 (11)0.0246 (10)0.0043 (9)
O10.0360 (6)0.0589 (7)0.0635 (7)0.0228 (5)0.0282 (5)0.0348 (6)
N20.0326 (6)0.0449 (7)0.0532 (7)0.0143 (5)0.0248 (5)0.0260 (6)
O20.0403 (6)0.0607 (7)0.0782 (8)0.0246 (5)0.0336 (6)0.0363 (6)
C30.0303 (7)0.0343 (7)0.0405 (7)0.0091 (5)0.0179 (6)0.0110 (6)
O30.0455 (6)0.0469 (6)0.0666 (7)0.0214 (5)0.0303 (5)0.0300 (6)
C60.0362 (7)0.0360 (7)0.0431 (8)0.0109 (6)0.0196 (6)0.0121 (6)
N10.0261 (6)0.0458 (7)0.0495 (7)0.0094 (5)0.0190 (5)0.0215 (6)
C10.0292 (6)0.0404 (7)0.0383 (7)0.0100 (6)0.0157 (5)0.0138 (6)
C20.0292 (7)0.0371 (7)0.0399 (7)0.0091 (6)0.0171 (6)0.0116 (6)
C40.0320 (7)0.0342 (7)0.0470 (8)0.0105 (5)0.0211 (6)0.0177 (6)
C90.0370 (7)0.0426 (8)0.0473 (8)0.0155 (6)0.0229 (6)0.0214 (6)
C70.0530 (9)0.0506 (9)0.0620 (10)0.0262 (8)0.0265 (8)0.0274 (8)
C50.0438 (9)0.0659 (11)0.0649 (10)0.0250 (8)0.0362 (8)0.0357 (9)
C80.0852 (15)0.0629 (12)0.0862 (14)0.0319 (11)0.0446 (12)0.0428 (11)
Geometric parameters (Å, º) top
O4—C91.3575 (19)O3—C71.4528 (19)
O4—C121.366 (2)N1—C11.3444 (19)
C10—C91.328 (2)N1—C41.4702 (18)
C10—C111.432 (3)N1—H10.8600
C10—H100.9300C2—C51.4967 (19)
C11—C121.301 (3)C4—C91.496 (2)
C11—H110.9300C4—H40.9800
C12—H120.9300C7—C81.481 (3)
O1—C11.2312 (17)C7—H7A0.9700
N2—C11.3700 (17)C7—H7B0.9700
N2—C21.3791 (18)C5—H5A0.9600
N2—H20.8600C5—H5B0.9600
O2—C61.2152 (18)C5—H5C0.9600
C3—C21.347 (2)C8—H8A0.9600
C3—C61.465 (2)C8—H8B0.9600
C3—C41.5258 (18)C8—H8C0.9600
O3—C61.3378 (18)
C9—O4—C12106.82 (15)N2—C2—C5112.94 (12)
C9—C10—C11106.66 (18)N1—C4—C9109.89 (11)
C9—C10—H10126.7N1—C4—C3109.59 (11)
C11—C10—H10126.7C9—C4—C3113.30 (11)
C12—C11—C10106.67 (17)N1—C4—H4108.0
C12—C11—H11126.7C9—C4—H4108.0
C10—C11—H11126.7C3—C4—H4108.0
C11—C12—O4110.45 (19)C10—C9—O4109.38 (15)
C11—C12—H12124.8C10—C9—C4133.32 (16)
O4—C12—H12124.8O4—C9—C4116.85 (12)
C1—N2—C2124.35 (12)O3—C7—C8107.47 (15)
C1—N2—H2117.8O3—C7—H7A110.2
C2—N2—H2117.8C8—C7—H7A110.2
C2—C3—C6121.82 (12)O3—C7—H7B110.2
C2—C3—C4119.48 (12)C8—C7—H7B110.2
C6—C3—C4118.62 (12)H7A—C7—H7B108.5
C6—O3—C7117.05 (12)C2—C5—H5A109.5
O2—C6—O3122.08 (14)C2—C5—H5B109.5
O2—C6—C3126.50 (14)H5A—C5—H5B109.5
O3—C6—C3111.41 (12)C2—C5—H5C109.5
C1—N1—C4123.44 (11)H5A—C5—H5C109.5
C1—N1—H1118.3H5B—C5—H5C109.5
C4—N1—H1118.3C7—C8—H8A109.5
O1—C1—N1123.84 (12)C7—C8—H8B109.5
O1—C1—N2120.65 (13)H8A—C8—H8B109.5
N1—C1—N2115.45 (12)C7—C8—H8C109.5
C3—C2—N2119.95 (12)H8A—C8—H8C109.5
C3—C2—C5127.10 (13)H8B—C8—H8C109.5
C9—C10—C11—C121.0 (3)C1—N2—C2—C312.1 (2)
C10—C11—C12—O40.8 (3)C1—N2—C2—C5166.89 (14)
C9—O4—C12—C110.3 (3)C1—N1—C4—C991.93 (16)
C7—O3—C6—O20.7 (2)C1—N1—C4—C333.18 (18)
C7—O3—C6—C3179.29 (12)C2—C3—C4—N120.23 (18)
C2—C3—C6—O212.9 (2)C6—C3—C4—N1162.82 (12)
C4—C3—C6—O2163.98 (15)C2—C3—C4—C9102.90 (15)
C2—C3—C6—O3168.65 (13)C6—C3—C4—C974.05 (16)
C4—C3—C6—O314.48 (18)C11—C10—C9—O40.8 (2)
C4—N1—C1—O1159.14 (14)C11—C10—C9—C4172.63 (17)
C4—N1—C1—N223.7 (2)C12—O4—C9—C100.3 (2)
C2—N2—C1—O1176.44 (13)C12—O4—C9—C4173.67 (15)
C2—N2—C1—N10.8 (2)N1—C4—C9—C1096.8 (2)
C6—C3—C2—N2177.23 (12)C3—C4—C9—C10140.24 (19)
C4—C3—C2—N20.4 (2)N1—C4—C9—O474.56 (16)
C6—C3—C2—C54.0 (2)C3—C4—C9—O448.40 (18)
C4—C3—C2—C5179.20 (14)C6—O3—C7—C8175.87 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.002.855 (2)176
N1—H1···O2ii0.862.343.142 (2)156
C5—H5A···O1iii0.962.523.141 (2)122
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+1, y, z.
 

Acknowledgements

We are grateful to the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227–239.  Web of Science CrossRef CAS Google Scholar
First citationKappe, C. O. (1998). Molecules, 3, 1–9.  Web of Science CrossRef CAS Google Scholar
First citationKappe, C. O. (2000). Acc. Chem. Res. 33, 879–888.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKulkarni, M. G., Chavhan, S. W., Shinde, M. P., Gaikwad, D. D., Borhade, A. S., Dhondge, A. P., Shaikh, Y. B., Ningdale, V. B., Desai, M. P. & Birhade, D. R. (2009). Beilstein J. Org. Chem. 5, 1–4.  CrossRef Google Scholar
First citationNovina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2015). Acta Cryst. E71, o206–o207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, D. D., Mhaske, D. K., Wadhawa, G. C. & Patare, M. A. (2011). J. Pharm. Res. Opn. 6, 172–174.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, M., Padusha, M. S. A., Novina, J. J., Vasuki, G., Viswanathan, V. & Velmurugan, D. (2015a). Acta Cryst. E71, 821–823.  CSD CrossRef IUCr Journals Google Scholar
First citationSuresh, M., Padusha, M. S. A., Novina, J. J., Vasuki, G., Viswanathan, V. & Velmurugan, D. (2015b). Acta Cryst. E71, o81–o82.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-Y. (2010). Acta Cryst. E66, o2822.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds