organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2,2-di­methyl-4-oxo-6-phenyl-3,4-di­hydro-2H-pyran-5-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aPG & Research Department of Physics, National College (Autonomous), Tiruchirappalli 620 001, Tamilnadu, India, bSchool of Chemistry, Bharathidasan University, Palkalaiperur, Tiruchirappalli 620 024, Tamilnadu, India, and cLaboratorio de Políimeros, Centro de Química Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Complejo de Ciencias, ICUAP, Edif. 103H, 22 Sur y San Claudio, C.P. 72570 Puebla, Puebla, Mexico
*Correspondence e-mail: sunvag@gmail.com

Edited by R. J. Butcher, Howard University, USA (Received 17 November 2016; accepted 2 December 2016; online 9 December 2016)

The title compound, C16H18O4, is a derivative of 3,4-di­hydro-2H-pyran-4-one. The plane of the pyranone ring system forms a dihedral angle of 42.76 (10)° with that of the phenyl group. The crystal structure is stabilized by C—H⋯O inter­actions that enclose an R21(6) ring motif and link the molecules into chains along the c axis. A short intra­molecular O⋯O contact [2.942 (3) Å] gives rise to an S(5) motif.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Derivatives of the 4H-pyran-4-one heterocyclic system, also known as 4-pyrones or γ-pyrones, are usually quite stable crystalline compounds (Joule et al., 1995[Joule, J. A., Mills, K. & Smith, G. F. (1995). Heterocyclic Chemistry, 3rd ed., pp. 148-162. London: Chapman and Hall.]). They are reported as compounds acting as melanocortin receptors showing fungicidal, insecticidal, acaricidal, anti­viral and anti­convulsant activities (Wang et al., 2006[Wang, X.-S., Zhou, J.-X., Zeng, Z.-S., Li, Y.-L., Shi, D.-Q. & Tu, S.-J. (2006). ARKIVOC, xi, 107-113.], and references therein). As part of our inter­est in the structural investigations of 4H-pyran-4-one derivatives, we report herein on the crystal structure determination and the geometry optimization of the title compound ethyl 2,2-dimethyl-4-oxo-6-phenyl-3,4-di­hydro-2H-pyran-5-carboxyl­ate, (I). Theoretical calculations of the mol­ecular structure, carried out using MOPAC2012's PM7 geometry optimization algorithm (Stewart, 2012[Stewart, J. J. P. (2012). MOPAC2012. https://OpenMOPAC.net.]; Maia et al., 2012[Maia, J. D. C., Carvalho, G. A. U., Mangueira, C. P. Jr, Santana, S. R., Cabral, L. A. F. & Rocha, G. B. (2012). J. Chem. Theory Comput. 8, 3072-3081.]), are in satisfactory agreement with the results of the X-ray crystal structure analysis.

A perspective view of (I), with the atomic numbering scheme, is illustrated in Fig. 1[link]. The 3,4-di­hydro-2H-pyran-4-one moiety (atoms C7–C11/O1/O2) forms a dihedral angle of 42.76 (10)° with the plane of the phenyl group. The phenyl group is almost planar, with an r.m.s. deviation of the fitted atoms of 0.006 Å, whereas the pyran and 3,4-di­hydro-2H-pyran-4-one moieties are not planar (r.m.s deviations = 0.179 and 0.194 Å, respectively).

[Figure 1]
Figure 1
The mol­ecular structure of (I), with displacement ellipsoids for the non-H atoms drawn at the 30% probability level.

The corresponding bond lengths in the pyran ring are in good agreement with those reported in the literature (Dinçer et al., 2004[Dinçer, M., Yıldırım, İ., Koca, İ. & Özdemir, N. (2004). Acta Cryst. E60, o207-o209.]), except for the O1—C8 and C8—C9 bond lengths [1.476 (2) and 1.519 (3) Å, respectively], which have larger values when compared to the corresponding positions in the related structure (1.367 and 1.342 Å; Dinçer et al., 2004[Dinçer, M., Yıldırım, İ., Koca, İ. & Özdemir, N. (2004). Acta Cryst. E60, o207-o209.]). This is due to the fact that the reported structure is a dihydropyran with two methyl substitutions at C8 of the pyran ring, while the related structure is a tetra-substituted pyran. It could also be evidenced from the fragment overlay (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) of 3,4-di­hydro-2H-pyran-4-one moieties of (I) with the corresponding moiety in 3,5-bis­(4-methyl­benzo­yl)-2,6-bis­(4-methyl­phen­yl)-4H-pyran-4-one, (II) (Dinçer et al., 2004[Dinçer, M., Yıldırım, İ., Koca, İ. & Özdemir, N. (2004). Acta Cryst. E60, o207-o209.]) (r.m.s deviation = 1.072 Å). The corres­ponding positions in (I) is also superimposed with 4-(4-fluoro­phen­yl)-6-methyl­amino-5-nitro-2-phenyl-4H-pyran-3-carbo­nitrile, (III) (Vishnupriya et al., 2013[Vishnupriya, R., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2013). Acta Cryst. E69, o687-o688.]), gave an r.m.s deviation of 1.401 Å (Fig. 2[link]).

[Figure 2]
Figure 2
A superimposed fit of (I) (green) and related literature (black).

Also, the pyran ring of (I) is puckered (puckering parameters: Q = 0.439 (2) Å, q2 = 0.348 (2) Å, q3 = 0.269 (2) Å θ = 52.3 (3)° and φ = 271.6 (4)°, with atom C8 deviating by 0.576 (2) Å from the C7/C9–C11/O1 plane; the ring is in a half-chair conformation. The relative conformation about the bond joining the 3,4-di­hydro-2H-pyran-4-one moiety with the benzyl group of (I), defined by the C1—C6—C7—O1 and C5—C6—C7—C11 torsion angles, is (−)synclinal in both the crystal structure [−42.0 (3) and −43.3 (3)°] and the optimized structure (−51.06 and −50.41°). Whereas the C1—C6—C7—C11 and C5—C6—C7—O1 torsion angles are (+)anti­clinal in both the crystal structure [138.6 (2) and 136.1 (2)°] and the optimized structure (129.70 and 128.83°).

A geometry optimization of (I) with a Parameterized Model 7 computation was performed using MOPAC2012. Hartree–Fock closed-shell (restricted) wavefunctions were used for calculations. The HOMO and LUMO energy levels were found to be −9.734 and −0.800 eV, respectively. The total energy and dipole moment of the title mol­ecules are −3389.77227 eV and 5.358 Debye, respectively. In the geometry-optimized structure of (I), it was observed that the O1—C8 bond length decreased to 1.456 Å (1.476 Å in the crystal structure). Also, the C6—C7 bond length in the geometry-optimized structure increased to 1.468 Å (1.483 Å in the crystal structure). The O1—C7—C6 bond angle decreased from 110.42 to 109.81° and the O1—C8—C9 bond angle increased from 108.85 to 110.75°. A superimposed fit of (I) with its energy-minimized mol­ecule gives an r.m.s. deviation of 0.452 Å (Fig. 3[link]).

[Figure 3]
Figure 3
A superimposed fit of (I) (red) and its energy-minimized counterpart (blue).

The inter­action between C9—O2 and C15—O2 via atoms H9B and H15A, Table 1[link], enclosing an [R_{2}^{1}](6) ring motif, form a chain of molecules along the c axis (Fig. 4[link]). A short intra­molecular contact is also found between the atoms O2 and O4 [2.942 (3) Å], giving rise to an S(5) motif.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O2i 0.97 2.60 3.470 (3) 150
C15—H15A⋯O2i 0.96 2.54 3.406 (3) 151
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+1].
[Figure 4]
Figure 4
The crystal packing of (I), showing the C—H⋯O inter­actions in the [R_{2}^{1}](6) motif along the c axis as dashed lines. Other H atoms have been omitted for clarity.

When compared with a similar pyran derivative, i.e. 4-(4-fluoro­phen­yl)-6-methyl­amino-5-nitro-2-phenyl-4H-pyran-3-car­bo­nitrile (Vishnupriya et al., 2013[Vishnupriya, R., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2013). Acta Cryst. E69, o687-o688.]), the six-membered central pyran ring adopts a boat conformation in the related structure, whereas it is in a half-chair conformation in (I). The variation in conformation between the two structures is also reflected in the dihedral angle between the central pyran ring and the phenyl ring at atom C7 [49.22 (2)° in the related structure and 39.39 (10)° in (I)].

Synthesis and crystallization

To a solution of ethyl benzoyl­acetate (192 mg, 1.0 mmol), CaCl2 (11 mg, 0.1 mmol), tri­ethyl­amine (278 µl, 2.0 mmol) in di­chloro­methane (4 ml) was added senecioyl chloride (systematic name: 3-methylbut-2-enoyl chloride) (112 µl, 1.0 mmol) dropwise at 283 K. After completion of the addition, the reaction mixture was stirred at room temperature for 6 h. The progress of the reaction was monitored by thin-layer chromatography (TLC). The reaction mixture was quenched with water, neutralized with dilute HCl, extracted with CH2Cl2 (2 × 8 ml) and washed with brine. The organic layer was separated, dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography (EtOAc/hexane = 2:8 v/v as eluent). The title compound was obtained as a colourless solid (yield 80%, 219 mg) which was crystallized from hexa­ne/EtOAc (m.p. 351–353 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H18O4
Mr 274.30
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 10.4566 (2), 5.9821 (1), 12.2040 (3)
β (°) 97.460 (1)
V3) 756.93 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.18 × 0.16 × 0.10
 
Data collection
Diffractometer Bruker SMART CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 9344, 4067, 2956
Rint 0.022
(sin θ/λ)max−1) 0.730
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.122, 1.05
No. of reflections 4067
No. of parameters 181
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.18
Absolute structure Flack x determined using 1007 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.3 (4)
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), QMOL (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), MOPAC (Stewart, 2012[Stewart, J. J. P. (2012). MOPAC2012. https://OpenMOPAC.net.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. ReportORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: QMOL (Gans & Shalloway, 2001), Mercury (Macrae et al., 2008), ORTEPIII (Burnett & Johnson, 1996) and MOPAC (Stewart, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Ethyl 2,2-dimethyl-4-oxo-6-phenyl-3,4-dihydro-2H-pyran-5-carboxylate top
Crystal data top
C16H18O4Dx = 1.204 Mg m3
Mr = 274.30Melting point: 353 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.4566 (2) ÅCell parameters from 4503 reflections
b = 5.9821 (1) Åθ = 2.8–27.1°
c = 12.2040 (3) ŵ = 0.09 mm1
β = 97.460 (1)°T = 296 K
V = 756.93 (3) Å3Prism, colourless
Z = 20.18 × 0.16 × 0.10 mm
F(000) = 292
Data collection top
Bruker SMART CCD area detector
diffractometer
2956 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 31.3°, θmin = 1.7°
φ and ω scansh = 1413
9344 measured reflectionsk = 88
4067 independent reflectionsl = 1715
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.0653P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4067 reflectionsΔρmax = 0.17 e Å3
181 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack x determined using 1007 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.3 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12555 (13)0.2273 (3)0.39523 (11)0.0489 (4)
O20.50752 (14)0.2713 (4)0.37581 (15)0.0755 (6)
O30.3243 (2)0.3359 (4)0.10399 (14)0.0881 (8)
O40.40770 (18)0.6100 (4)0.21193 (13)0.0752 (6)
C10.0461 (2)0.2348 (5)0.20244 (19)0.0561 (5)
H10.04620.10110.24130.067*
C20.1503 (2)0.2900 (6)0.1253 (2)0.0729 (8)
H20.21910.19120.11110.087*
C30.1528 (3)0.4892 (5)0.0698 (2)0.0674 (7)
H30.22350.52610.01870.081*
C40.0512 (3)0.6335 (5)0.08947 (19)0.0627 (6)
H40.05320.76910.05200.075*
C50.0551 (2)0.5787 (4)0.16510 (18)0.0541 (5)
H50.12440.67690.17770.065*
C60.05799 (18)0.3777 (4)0.22179 (15)0.0424 (4)
C70.16819 (18)0.3149 (4)0.30515 (15)0.0423 (4)
C80.2174 (2)0.1069 (4)0.47652 (17)0.0530 (5)
C90.3435 (2)0.2362 (4)0.49400 (17)0.0528 (5)
H9A0.33000.37700.53020.063*
H9B0.40700.15120.54200.063*
C100.3938 (2)0.2810 (4)0.38704 (18)0.0521 (5)
C110.29465 (19)0.3414 (4)0.29526 (16)0.0459 (5)
C120.3405 (2)0.4251 (5)0.19222 (17)0.0547 (6)
C130.4738 (3)0.6981 (8)0.1238 (2)0.0963 (13)
H13A0.51130.57600.08650.116*
H13B0.41250.77460.07010.116*
C140.5723 (3)0.8489 (8)0.1667 (3)0.1034 (13)
H14A0.61500.90560.10750.155*
H14B0.53490.97070.20270.155*
H14C0.63360.77250.21910.155*
C150.2348 (3)0.1253 (5)0.4300 (3)0.0783 (9)
H15A0.29420.20900.48080.117*
H15B0.15310.20070.41920.117*
H15C0.26810.11280.36050.117*
C160.1518 (3)0.1011 (8)0.5791 (2)0.0875 (10)
H16A0.20580.02460.63690.131*
H16B0.13670.25110.60230.131*
H16C0.07100.02390.56380.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0441 (7)0.0547 (9)0.0467 (7)0.0023 (7)0.0011 (6)0.0116 (7)
O20.0423 (8)0.1023 (16)0.0785 (11)0.0052 (10)0.0048 (7)0.0141 (11)
O30.0995 (14)0.115 (2)0.0519 (9)0.0407 (14)0.0162 (9)0.0276 (11)
O40.0920 (13)0.0859 (14)0.0504 (8)0.0423 (12)0.0197 (8)0.0099 (9)
C10.0504 (11)0.0567 (14)0.0589 (12)0.0055 (11)0.0020 (9)0.0120 (11)
C20.0513 (12)0.080 (2)0.0815 (17)0.0104 (13)0.0140 (11)0.0144 (16)
C30.0580 (13)0.0758 (19)0.0637 (14)0.0122 (13)0.0104 (11)0.0126 (13)
C40.0772 (16)0.0557 (15)0.0529 (12)0.0123 (13)0.0002 (11)0.0138 (11)
C50.0625 (12)0.0468 (13)0.0516 (11)0.0038 (11)0.0021 (9)0.0065 (10)
C60.0434 (10)0.0437 (11)0.0397 (9)0.0029 (9)0.0035 (7)0.0003 (8)
C70.0465 (10)0.0401 (11)0.0396 (9)0.0008 (9)0.0027 (7)0.0020 (8)
C80.0549 (11)0.0503 (13)0.0498 (10)0.0030 (11)0.0086 (9)0.0126 (10)
C90.0562 (11)0.0478 (12)0.0495 (11)0.0008 (11)0.0115 (9)0.0011 (10)
C100.0460 (10)0.0511 (14)0.0565 (11)0.0084 (10)0.0042 (9)0.0112 (11)
C110.0448 (10)0.0484 (13)0.0437 (9)0.0061 (9)0.0024 (8)0.0055 (9)
C120.0472 (11)0.0685 (17)0.0479 (11)0.0093 (11)0.0042 (9)0.0089 (11)
C130.097 (2)0.142 (4)0.0517 (13)0.052 (2)0.0141 (13)0.0076 (17)
C140.106 (2)0.127 (3)0.0813 (19)0.042 (2)0.0285 (18)0.006 (2)
C150.0798 (17)0.0445 (14)0.100 (2)0.0041 (13)0.0282 (16)0.0054 (14)
C160.0816 (17)0.122 (3)0.0569 (14)0.016 (2)0.0003 (12)0.0320 (17)
Geometric parameters (Å, º) top
O1—C71.345 (2)C8—C91.519 (3)
O1—C81.476 (2)C8—C151.521 (4)
O2—C101.216 (2)C9—C101.493 (3)
O3—C121.194 (3)C9—H9A0.9700
O4—C121.316 (3)C9—H9B0.9700
O4—C131.452 (3)C10—C111.469 (3)
C1—C61.380 (3)C11—C121.489 (3)
C1—C21.384 (3)C13—C141.417 (5)
C1—H10.9300C13—H13A0.9700
C2—C31.369 (4)C13—H13B0.9700
C2—H20.9300C14—H14A0.9600
C3—C41.366 (4)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C4—C51.389 (3)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.386 (3)C15—H15C0.9600
C5—H50.9300C16—H16A0.9600
C6—C71.483 (3)C16—H16B0.9600
C7—C111.353 (3)C16—H16C0.9600
C8—C161.505 (3)
C7—O1—C8118.91 (15)H9A—C9—H9B108.0
C12—O4—C13117.7 (2)O2—C10—C11122.0 (2)
C6—C1—C2120.2 (2)O2—C10—C9123.4 (2)
C6—C1—H1119.9C11—C10—C9114.65 (17)
C2—C1—H1119.9C7—C11—C10120.29 (18)
C3—C2—C1120.4 (3)C7—C11—C12122.69 (18)
C3—C2—H2119.8C10—C11—C12117.00 (17)
C1—C2—H2119.8O3—C12—O4123.4 (2)
C4—C3—C2119.9 (2)O3—C12—C11126.0 (2)
C4—C3—H3120.0O4—C12—C11110.56 (18)
C2—C3—H3120.0C14—C13—O4110.5 (2)
C3—C4—C5120.3 (2)C14—C13—H13A109.6
C3—C4—H4119.8O4—C13—H13A109.6
C5—C4—H4119.8C14—C13—H13B109.6
C6—C5—C4120.0 (2)O4—C13—H13B109.6
C6—C5—H5120.0H13A—C13—H13B108.1
C4—C5—H5120.0C13—C14—H14A109.5
C1—C6—C5119.12 (19)C13—C14—H14B109.5
C1—C6—C7119.06 (19)H14A—C14—H14B109.5
C5—C6—C7121.8 (2)C13—C14—H14C109.5
O1—C7—C11123.38 (17)H14A—C14—H14C109.5
O1—C7—C6110.42 (15)H14B—C14—H14C109.5
C11—C7—C6126.20 (17)C8—C15—H15A109.5
O1—C8—C16104.07 (19)C8—C15—H15B109.5
O1—C8—C9108.85 (18)H15A—C15—H15B109.5
C16—C8—C9112.1 (2)C8—C15—H15C109.5
O1—C8—C15107.07 (18)H15A—C15—H15C109.5
C16—C8—C15112.3 (3)H15B—C15—H15C109.5
C9—C8—C15112.0 (2)C8—C16—H16A109.5
C10—C9—C8111.47 (17)C8—C16—H16B109.5
C10—C9—H9A109.3H16A—C16—H16B109.5
C8—C9—H9A109.3C8—C16—H16C109.5
C10—C9—H9B109.3H16A—C16—H16C109.5
C8—C9—H9B109.3H16B—C16—H16C109.5
C6—C1—C2—C31.8 (4)C15—C8—C9—C1064.4 (3)
C1—C2—C3—C40.8 (4)C8—C9—C10—O2140.8 (3)
C2—C3—C4—C50.4 (4)C8—C9—C10—C1140.0 (3)
C3—C4—C5—C60.6 (4)O1—C7—C11—C102.2 (3)
C2—C1—C6—C51.6 (4)C6—C7—C11—C10177.1 (2)
C2—C1—C6—C7179.8 (2)O1—C7—C11—C12176.0 (2)
C4—C5—C6—C10.4 (3)C6—C7—C11—C124.7 (3)
C4—C5—C6—C7178.6 (2)O2—C10—C11—C7169.0 (2)
C8—O1—C7—C1114.6 (3)C9—C10—C11—C711.7 (3)
C8—O1—C7—C6165.99 (18)O2—C10—C11—C129.3 (4)
C1—C6—C7—O142.0 (3)C9—C10—C11—C12169.9 (2)
C5—C6—C7—O1136.1 (2)C13—O4—C12—O35.2 (4)
C1—C6—C7—C11138.6 (2)C13—O4—C12—C11172.1 (3)
C5—C6—C7—C1143.3 (3)C7—C11—C12—O362.4 (4)
C7—O1—C8—C16161.9 (2)C10—C11—C12—O3115.9 (3)
C7—O1—C8—C942.2 (3)C7—C11—C12—O4120.3 (2)
C7—O1—C8—C1579.0 (2)C10—C11—C12—O461.4 (3)
O1—C8—C9—C1053.7 (3)C12—O4—C13—C14161.2 (3)
C16—C8—C9—C10168.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.972.603.470 (3)150
C15—H15A···O2i0.962.543.406 (3)151
Symmetry code: (i) x+1, y1/2, z+1.
 

Acknowledgements

NS thanks Professor A. Ilangovan, School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India, for kind help with the data collection.

References

First citationBruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. ReportORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDinçer, M., Yıldırım, İ., Koca, İ. & Özdemir, N. (2004). Acta Cryst. E60, o207–o209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJoule, J. A., Mills, K. & Smith, G. F. (1995). Heterocyclic Chemistry, 3rd ed., pp. 148–162. London: Chapman and Hall.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaia, J. D. C., Carvalho, G. A. U., Mangueira, C. P. Jr, Santana, S. R., Cabral, L. A. F. & Rocha, G. B. (2012). J. Chem. Theory Comput. 8, 3072–3081.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, J. J. P. (2012). MOPAC2012. https://OpenMOPAC.netGoogle Scholar
First citationVishnupriya, R., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2013). Acta Cryst. E69, o687–o688.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, X.-S., Zhou, J.-X., Zeng, Z.-S., Li, Y.-L., Shi, D.-Q. & Tu, S.-J. (2006). ARKIVOC, xi, 107–113.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds