organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[({5-[(4-Methyl­phen­­oxy)methyl]-4-phenyl-4H-1,2,4-triazol-3-yl}sulfan­yl)meth­yl]-1H-benzo[d][1,2,3]triazole

CROSSMARK_Color_square_no_text.svg

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cChemistry Department, Faculty of Science, Sana'a University, Sana'a, Yemen, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and fChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
*Correspondence e-mail: s.mohamed@mmu.ac.uk

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 19 November 2016; accepted 22 November 2016; online 25 November 2016)

The title mol­ecule, C23H20N6OS, adopts a cup-shaped conformation with the planes of the two benzene rings and the benzotriazole unit close to being parallel. The crystal packing features C—H⋯π(ring) and offset ππ stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Triazole scaffold compounds have been proved to be an inter­esting class of heterocyclic compounds due to their various applications in medicinal chemistry (Aher et al., 2009[Aher, N. G., Pore, V. S., Mishra, N. N., Kumar, A., Shukla, P. K., Sharma, A. & Bhat, M. K. (2009). Bioorg. Med. Chem. Lett. 19, 759-763.]; El-Emary, 2007[El-Emary, T. I. (2007). Jnl Chin. Chem. Soc. 54, 507-518.]). Triazole-based drugs such as fluconazole, ketoconazole, itraconazole, voriconazole, ravuconazole and posaconazole have shown remarkable anti-fungal activities (Sheehan et al., 1999[Sheehan, D. J., Hitchcock, C. A. & Sibley, C. M. (1999). Clin. Microbiol. Rev. 12, 40-79.]; Süküroglu et al., 2005[Süküroglu, M., Ergün, B. Ç., ünlü, S., Sahin, M. F., Küpeli, E., Yesilada, E. & Banoglu, E. (2005). Arch. Pharm. Res. 28, 509-517.]; Bekhit et al., 2005[Bekhit, A. A., Ashour, H. M. & Guemei, A. A. (2005). Arch. Pharm. Pharm. Med. Chem. 338, 167-174.]; Cunico et al., 2006[Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A., Zanatta, N., de Souza, M. V., Freitas, I. O., Soares, R. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649-653.]). In this context we report herein the synthesis and crystal structure of the title compound.

The title mol­ecule (Fig. 1[link]) adopts a cup-shaped conformation with the C11–C16 ring nearly perpendicular to the plane of the triazole ring [dihedral angle = 85.27 (5)°]. The dihedral angle between the triazole ring and the C1–C6 ring is 81.65 (5)° while that between the triazole ring and the mean plane of the benzotriazole moiety is 88.37 (4)°. Fig. 2[link] shows the packing of the title compound viewed along the b axis. The only significant inter­molecular inter­actions (Fig. 3[link]) appear to be C—H⋯π(ring) inter­actions (Table 1[link]) and offset ππ stacking between the triazole ring and its counterpart at −x, 1 − y, 1 − z [centroid–centroid distance = 3.379 (1) Å].

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg5i 0.958 (17) 2.944 (17) 3.7406 (17) 141.1 (12)
C17—H17BCg5ii 0.988 (17) 2.813 (16) 3.6331 (15) 140.5 (12)
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule, showing the atom-labelling scheme and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
Packing viewed along the b axis.
[Figure 3]
Figure 3
Detail of the inter­molecular inter­actions [C—H⋯π(ring): orange dotted lines; offset ππ-stacking: purple dotted line; symmetry codes: (i) x, −1 + y, z; (ii) −x, −[{1\over 2}] + y, 1.5 − z; (iii) −x, 1 − y, 1 − z].

Synthesis and crystallization

This compound was synthesized by reaction of 3-(p-tol­yloxy)methyl-4-phenyl-1,2,4-triazole-5(1H)-thione (0.01 mol) with 1-chloro­methyl-1,2,3-benzotriazole (0.01 mol) in an ethano­lic KOH solution 4% (30 ml) under reflux conditions for 30 min. The product that formed after cooling was collected and recrystallized from ethanol solution; yield: 83%, m.p. 396 K. IR: 1600 cm−1 (C=N), 1400 cm−1 (C—S—C). 1H NMR (CDCl3): 6.60–8.10 (m, 13H, Ar—H), 6.30 (s, 3H, NCH2N), 4.95 (s, 3H, OCH2), 2.3 (s, 3H, CH3 of p-tolyl residue).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C23H20N6OS
Mr 428.51
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.4306 (13), 7.3467 (7), 21.643 (2)
β (°) 103.299 (1)
V3) 2078.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.33 × 0.25 × 0.15
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.88, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 33010, 5562, 4453
Rint 0.045
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.09
No. of reflections 5562
No. of parameters 349
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.32
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-[({5-[(4-Methylphenoxy)methyl]-4-phenyl-4H-1,2,4-triazol-3-yl}sulfanyl)methyl]-1H-benzo[d][1,2,3]triazole top
Crystal data top
C23H20N6OSF(000) = 896
Mr = 428.51Dx = 1.370 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.4306 (13) ÅCell parameters from 9996 reflections
b = 7.3467 (7) Åθ = 2.8–29.0°
c = 21.643 (2) ŵ = 0.19 mm1
β = 103.299 (1)°T = 100 K
V = 2078.3 (4) Å3Block, colourless
Z = 40.33 × 0.25 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5562 independent reflections
Radiation source: fine-focus sealed tube4453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 1.6°
φ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 99
Tmin = 0.88, Tmax = 0.97l = 2929
33010 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.2704P]
where P = (Fo2 + 2Fc2)/3
5562 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The methyl group hydrogen atoms were placed in calculated positions (C—H = 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.5 times that of the attached carbon. All other hydrogen atoms were refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.05511 (2)0.90294 (4)0.58865 (2)0.01696 (10)
O10.29332 (7)0.33021 (12)0.52507 (4)0.0180 (2)
N10.14404 (8)0.60502 (13)0.55066 (5)0.0135 (2)
N20.01877 (8)0.53393 (14)0.59711 (5)0.0168 (2)
N30.05727 (8)0.37344 (14)0.57633 (5)0.0165 (2)
N40.07164 (8)0.90434 (14)0.71716 (5)0.0165 (2)
N50.09062 (9)0.74811 (15)0.75173 (6)0.0211 (2)
N60.15812 (10)0.78124 (15)0.80397 (6)0.0239 (3)
C10.35390 (10)0.28415 (16)0.58342 (6)0.0169 (3)
C20.31854 (10)0.21032 (17)0.63339 (7)0.0192 (3)
H20.2477 (13)0.191 (2)0.6297 (8)0.026 (4)*
C30.38853 (11)0.16552 (19)0.68954 (7)0.0211 (3)
H30.3635 (12)0.110 (2)0.7232 (8)0.024 (4)*
C40.49313 (11)0.19445 (18)0.69718 (7)0.0226 (3)
C50.52643 (11)0.26869 (19)0.64610 (8)0.0244 (3)
H50.6008 (14)0.287 (2)0.6521 (9)0.037 (5)*
C60.45866 (10)0.31422 (19)0.58997 (7)0.0221 (3)
H60.4824 (14)0.368 (2)0.5542 (9)0.033 (5)*
C70.56761 (12)0.1538 (2)0.75915 (8)0.0334 (4)
H7A0.59490.03060.75780.050*
H7B0.53250.16270.79400.050*
H7C0.62390.24190.76590.050*
C80.18636 (10)0.29304 (17)0.51388 (7)0.0174 (3)
H8A0.1629 (12)0.314 (2)0.4678 (9)0.023 (4)*
H8B0.1723 (12)0.168 (2)0.5242 (7)0.019 (4)*
C90.13027 (9)0.41955 (16)0.54828 (6)0.0142 (2)
C100.07239 (9)0.66752 (17)0.58130 (6)0.0142 (2)
C110.21804 (9)0.71140 (16)0.52779 (6)0.0141 (2)
C120.30946 (10)0.75493 (18)0.56988 (7)0.0195 (3)
H120.3219 (13)0.714 (2)0.6124 (9)0.028 (4)*
C130.38098 (10)0.85787 (19)0.54843 (7)0.0212 (3)
H130.4466 (13)0.886 (2)0.5775 (8)0.028 (4)*
C140.36072 (11)0.91489 (18)0.48581 (7)0.0202 (3)
H140.4079 (12)0.987 (2)0.4707 (8)0.024 (4)*
C150.26954 (11)0.86966 (19)0.44434 (7)0.0216 (3)
H150.2537 (14)0.906 (2)0.4011 (9)0.032 (5)*
C160.19657 (10)0.76632 (17)0.46520 (6)0.0180 (3)
H160.1347 (12)0.728 (2)0.4375 (8)0.020 (4)*
C170.00199 (10)0.90497 (18)0.65724 (6)0.0176 (3)
H17A0.0460 (11)1.016 (2)0.6523 (7)0.021 (4)*
H17B0.0455 (12)0.795 (2)0.6545 (8)0.024 (4)*
C180.18537 (10)0.96314 (18)0.80404 (6)0.0194 (3)
C190.13056 (9)1.04311 (17)0.74816 (6)0.0164 (2)
C200.14080 (11)1.22709 (18)0.73345 (7)0.0196 (3)
H200.1008 (13)1.280 (2)0.6972 (8)0.026 (4)*
C210.21081 (11)1.32446 (19)0.77793 (8)0.0244 (3)
H210.2206 (12)1.453 (2)0.7707 (7)0.022 (4)*
C220.26699 (11)1.2443 (2)0.83475 (8)0.0260 (3)
H220.3122 (14)1.319 (3)0.8643 (9)0.036 (5)*
C230.25476 (11)1.0653 (2)0.84924 (7)0.0249 (3)
H230.2920 (13)1.012 (2)0.8893 (9)0.031 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02206 (17)0.01508 (16)0.01524 (17)0.00036 (11)0.00735 (12)0.00031 (11)
O10.0165 (4)0.0206 (4)0.0181 (5)0.0001 (3)0.0061 (4)0.0015 (4)
N10.0145 (5)0.0147 (5)0.0117 (5)0.0014 (4)0.0040 (4)0.0001 (4)
N20.0168 (5)0.0172 (5)0.0170 (6)0.0002 (4)0.0052 (4)0.0008 (4)
N30.0163 (5)0.0163 (5)0.0167 (6)0.0009 (4)0.0036 (4)0.0002 (4)
N40.0187 (5)0.0167 (5)0.0142 (5)0.0015 (4)0.0042 (4)0.0006 (4)
N50.0274 (6)0.0183 (5)0.0173 (6)0.0021 (4)0.0041 (5)0.0016 (4)
N60.0316 (7)0.0182 (6)0.0192 (6)0.0034 (5)0.0004 (5)0.0010 (4)
C10.0186 (6)0.0140 (6)0.0181 (7)0.0017 (4)0.0045 (5)0.0010 (5)
C20.0167 (6)0.0201 (6)0.0222 (7)0.0006 (5)0.0071 (5)0.0004 (5)
C30.0235 (7)0.0212 (6)0.0199 (7)0.0021 (5)0.0079 (6)0.0007 (5)
C40.0221 (7)0.0202 (6)0.0240 (7)0.0019 (5)0.0026 (5)0.0020 (5)
C50.0159 (6)0.0244 (7)0.0323 (8)0.0024 (5)0.0043 (6)0.0001 (6)
C60.0193 (6)0.0221 (6)0.0264 (8)0.0025 (5)0.0086 (6)0.0009 (5)
C70.0282 (8)0.0382 (8)0.0290 (9)0.0005 (7)0.0031 (6)0.0036 (7)
C80.0167 (6)0.0180 (6)0.0177 (7)0.0009 (5)0.0045 (5)0.0023 (5)
C90.0145 (6)0.0149 (5)0.0120 (6)0.0017 (4)0.0006 (4)0.0007 (4)
C100.0156 (6)0.0159 (5)0.0108 (6)0.0002 (4)0.0027 (4)0.0000 (4)
C110.0147 (6)0.0136 (5)0.0150 (6)0.0020 (4)0.0059 (5)0.0012 (4)
C120.0205 (6)0.0232 (6)0.0137 (6)0.0032 (5)0.0021 (5)0.0005 (5)
C130.0163 (6)0.0238 (6)0.0222 (7)0.0053 (5)0.0019 (5)0.0029 (5)
C140.0203 (6)0.0206 (6)0.0224 (7)0.0071 (5)0.0105 (5)0.0024 (5)
C150.0271 (7)0.0245 (6)0.0139 (7)0.0082 (5)0.0061 (5)0.0008 (5)
C160.0189 (6)0.0202 (6)0.0143 (6)0.0057 (5)0.0027 (5)0.0000 (5)
C170.0166 (6)0.0237 (6)0.0130 (6)0.0023 (5)0.0041 (5)0.0017 (5)
C180.0222 (6)0.0184 (6)0.0173 (7)0.0048 (5)0.0039 (5)0.0012 (5)
C190.0178 (6)0.0184 (6)0.0145 (6)0.0024 (5)0.0069 (5)0.0019 (5)
C200.0214 (6)0.0189 (6)0.0212 (7)0.0027 (5)0.0103 (5)0.0007 (5)
C210.0245 (7)0.0178 (6)0.0342 (9)0.0006 (5)0.0137 (6)0.0052 (6)
C220.0211 (7)0.0258 (7)0.0303 (8)0.0006 (5)0.0042 (6)0.0139 (6)
C230.0247 (7)0.0271 (7)0.0202 (7)0.0066 (5)0.0003 (6)0.0063 (6)
Geometric parameters (Å, º) top
S1—C101.7571 (13)C7—H7C0.9800
S1—C171.8209 (14)C8—C91.4979 (17)
O1—C11.3780 (16)C8—H8A0.987 (18)
O1—C81.4272 (15)C8—H8B0.975 (16)
N1—C101.3677 (16)C11—C161.3787 (18)
N1—C91.3744 (15)C11—C121.3876 (17)
N1—C111.4388 (15)C12—C131.3840 (19)
N2—C101.3085 (16)C12—H120.948 (18)
N2—N31.4024 (15)C13—C141.384 (2)
N3—C91.3108 (17)C13—H130.979 (18)
N4—N51.3618 (15)C14—C151.3820 (19)
N4—C191.3681 (16)C14—H140.938 (17)
N4—C171.4385 (16)C15—C161.3944 (18)
N5—N61.2992 (16)C15—H150.948 (19)
N6—C181.3855 (17)C16—H160.948 (16)
C1—C21.3876 (19)C17—H17A0.996 (16)
C1—C61.3989 (18)C17—H17B0.988 (17)
C2—C31.3940 (19)C18—C191.3929 (18)
C2—H20.947 (17)C18—C231.4034 (19)
C3—C41.3925 (19)C19—C201.4026 (18)
C3—H30.958 (17)C20—C211.381 (2)
C4—C51.395 (2)C20—H200.927 (17)
C4—C71.507 (2)C21—C221.415 (2)
C5—C61.381 (2)C21—H210.968 (17)
C5—H50.986 (19)C22—C231.371 (2)
C6—H60.987 (19)C22—H220.950 (19)
C7—H7A0.9800C23—H230.976 (18)
C7—H7B0.9800
C10—S1—C1799.85 (6)N2—C10—N1111.46 (11)
C1—O1—C8117.88 (10)N2—C10—S1128.50 (10)
C10—N1—C9104.32 (10)N1—C10—S1119.78 (9)
C10—N1—C11127.10 (10)C16—C11—C12122.09 (12)
C9—N1—C11128.56 (10)C16—C11—N1119.47 (11)
C10—N2—N3106.32 (10)C12—C11—N1118.44 (11)
C9—N3—N2107.55 (10)C13—C12—C11118.89 (13)
N5—N4—C19110.15 (11)C13—C12—H12121.4 (10)
N5—N4—C17120.07 (11)C11—C12—H12119.7 (10)
C19—N4—C17129.78 (11)C12—C13—C14119.90 (12)
N6—N5—N4108.98 (11)C12—C13—H13119.3 (10)
N5—N6—C18108.24 (11)C14—C13—H13120.8 (10)
O1—C1—C2125.06 (12)C15—C14—C13120.55 (12)
O1—C1—C6114.97 (12)C15—C14—H14118.5 (10)
C2—C1—C6119.96 (13)C13—C14—H14120.9 (10)
C1—C2—C3119.25 (12)C14—C15—C16120.29 (13)
C1—C2—H2120.7 (11)C14—C15—H15122.6 (11)
C3—C2—H2120.1 (11)C16—C15—H15117.1 (11)
C4—C3—C2121.81 (13)C11—C16—C15118.28 (12)
C4—C3—H3119.6 (10)C11—C16—H16119.2 (10)
C2—C3—H3118.5 (10)C15—C16—H16122.4 (10)
C3—C4—C5117.64 (13)N4—C17—S1113.81 (9)
C3—C4—C7121.37 (14)N4—C17—H17A111.5 (9)
C5—C4—C7120.95 (13)S1—C17—H17A105.7 (9)
C6—C5—C4121.67 (13)N4—C17—H17B109.0 (10)
C6—C5—H5121.7 (12)S1—C17—H17B107.4 (10)
C4—C5—H5116.7 (12)H17A—C17—H17B109.3 (13)
C5—C6—C1119.66 (13)N6—C18—C19108.61 (11)
C5—C6—H6121.5 (11)N6—C18—C23130.52 (13)
C1—C6—H6118.9 (11)C19—C18—C23120.87 (13)
C4—C7—H7A109.5N4—C19—C18104.01 (11)
C4—C7—H7B109.5N4—C19—C20133.05 (12)
H7A—C7—H7B109.5C18—C19—C20122.94 (12)
C4—C7—H7C109.5C21—C20—C19115.32 (13)
H7A—C7—H7C109.5C21—C20—H20122.8 (10)
H7B—C7—H7C109.5C19—C20—H20121.8 (10)
O1—C8—C9113.50 (10)C20—C21—C22122.15 (13)
O1—C8—H8A102.5 (10)C20—C21—H21119.1 (9)
C9—C8—H8A109.0 (10)C22—C21—H21118.7 (9)
O1—C8—H8B112.5 (9)C23—C22—C21122.01 (13)
C9—C8—H8B109.0 (9)C23—C22—H22119.7 (12)
H8A—C8—H8B110.2 (13)C21—C22—H22118.3 (12)
N3—C9—N1110.33 (11)C22—C23—C18116.69 (13)
N3—C9—C8125.81 (11)C22—C23—H23121.4 (11)
N1—C9—C8123.71 (11)C18—C23—H23121.9 (11)
C10—N2—N3—C91.14 (13)C10—N1—C11—C1695.78 (15)
C19—N4—N5—N60.86 (15)C9—N1—C11—C1685.85 (16)
C17—N4—N5—N6179.06 (11)C10—N1—C11—C1284.43 (16)
N4—N5—N6—C180.46 (15)C9—N1—C11—C1293.95 (16)
C8—O1—C1—C22.58 (18)C16—C11—C12—C130.5 (2)
C8—O1—C1—C6176.39 (11)N1—C11—C12—C13179.73 (12)
O1—C1—C2—C3178.38 (12)C11—C12—C13—C140.2 (2)
C6—C1—C2—C30.54 (19)C12—C13—C14—C150.1 (2)
C1—C2—C3—C40.6 (2)C13—C14—C15—C160.2 (2)
C2—C3—C4—C50.7 (2)C12—C11—C16—C150.4 (2)
C2—C3—C4—C7177.05 (13)N1—C11—C16—C15179.85 (12)
C3—C4—C5—C60.7 (2)C14—C15—C16—C110.0 (2)
C7—C4—C5—C6177.08 (14)N5—N4—C17—S1103.00 (12)
C4—C5—C6—C10.6 (2)C19—N4—C17—S177.10 (15)
O1—C1—C6—C5178.49 (12)C10—S1—C17—N485.65 (10)
C2—C1—C6—C50.5 (2)N5—N6—C18—C190.09 (15)
C1—O1—C8—C973.43 (14)N5—N6—C18—C23179.99 (14)
N2—N3—C9—N11.38 (14)N5—N4—C19—C180.88 (14)
N2—N3—C9—C8174.26 (11)C17—N4—C19—C18179.04 (12)
C10—N1—C9—N31.07 (14)N5—N4—C19—C20179.58 (14)
C11—N1—C9—N3177.59 (11)C17—N4—C19—C200.5 (2)
C10—N1—C9—C8174.68 (11)N6—C18—C19—N40.59 (14)
C11—N1—C9—C86.7 (2)C23—C18—C19—N4179.50 (12)
O1—C8—C9—N3139.85 (13)N6—C18—C19—C20179.80 (12)
O1—C8—C9—N145.06 (17)C23—C18—C19—C200.1 (2)
N3—N2—C10—N10.48 (14)N4—C19—C20—C21179.46 (14)
N3—N2—C10—S1174.59 (9)C18—C19—C20—C211.06 (19)
C9—N1—C10—N20.32 (14)C19—C20—C21—C220.9 (2)
C11—N1—C10—N2178.37 (11)C20—C21—C22—C230.4 (2)
C9—N1—C10—S1174.37 (9)C21—C22—C23—C181.6 (2)
C11—N1—C10—S16.94 (17)N6—C18—C23—C22178.46 (14)
C17—S1—C10—N229.09 (13)C19—C18—C23—C221.4 (2)
C17—S1—C10—N1157.22 (10)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg5i0.958 (17)2.944 (17)3.7406 (17)141.1 (12)
C17—H17B···Cg5ii0.988 (17)2.813 (16)3.6331 (15)140.5 (12)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+3/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAher, N. G., Pore, V. S., Mishra, N. N., Kumar, A., Shukla, P. K., Sharma, A. & Bhat, M. K. (2009). Bioorg. Med. Chem. Lett. 19, 759–763.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBekhit, A. A., Ashour, H. M. & Guemei, A. A. (2005). Arch. Pharm. Pharm. Med. Chem. 338, 167–174.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A., Zanatta, N., de Souza, M. V., Freitas, I. O., Soares, R. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emary, T. I. (2007). Jnl Chin. Chem. Soc. 54, 507–518.  CAS Google Scholar
First citationSheehan, D. J., Hitchcock, C. A. & Sibley, C. M. (1999). Clin. Microbiol. Rev. 12, 40–79.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSüküroglu, M., Ergün, B. Ç., ünlü, S., Sahin, M. F., Küpeli, E., Yesilada, E. & Banoglu, E. (2005). Arch. Pharm. Res. 28, 509–517.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds