organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Bromo-1,2,3,4-tetra­hydro­quinoline-8-carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Mathematics and Science Education, Division of Science Education, Faculty of Education, Kırıkkale University, 71450, Yahşihan, Kırıkkale, Turkey, cDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eDepartment of Nutrition and Dietetics, School of Health Sciences, İstanbul Gelişim University, 34315 Avcılar, İstanbul, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 November 2016; accepted 19 November 2016; online 25 November 2016)

In the title compound, C10H9BrN2, one of the methyl­ene groups of the piperidine ring is disordered over two sets of sites in a 0.692 (8):0.308 (8) ratio, which leads to two envelope conformations. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(12) loops.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cyano quinoline compounds can deactivate the action of growth factor receptor protein tyrocine kinases (Berger et al., 2008[Berger, D. M., Dutia, M., Powell, D., Floyd, M. B., Torres, N., Mallon, R., Wojciechowicz, D., Kim, S., Feldberg, L., Collins, K. & Chaudhary, I. (2008). Bioorg. Med. Chem. 16, 9202-9211.]) and bind with biological systems (Fleming et al., 2010[Fleming, F. F., Yao, L., Ravikumar, P. C., Funk, L. & Shook, B. C. (2010). J. Med. Chem. 53, 7902-7917.]). As part of our ongoing synthetic and structural studies in this area (Ökten & Çakmak, 2015[Ökten, S. & Çakmak, O. (2015). Tetrahedron Lett. 56, 5337-5340.]), we now describe the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
A view of the title compound, with displacement ellipsoids drawn at the 50% probability level. The minor component of the disorder is not shown.

The piperidine ring is disordered over two conformations in a 0.692 (8):0.308 (8) ratio. Both disorder components lead to an envelope conformation for the ring, with methyl­ene atom C8 as the flap with it and its attached H atoms either above or below the plane of the other atoms.

In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds (Table 1[link] and Fig. 2[link]) generate [R_{2}^{2}](12) loops. Br⋯Br contacts [3.6394 (14) Å] just shorter than the van der Waals contact distance (3.70 Å) are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 0.85 (2) 2.29 (3) 3.075 (4) 153 (2)
Symmetry code: (i) -x+2, -y+2, -z+1.
[Figure 2]
Figure 2
A view down the b axis of the dimers linked by pairs of N—H⋯N hydrogen bonds (shown as dashed lines).

Synthesis and crystallization

6-Bromo-8-cyano-1,2,3,4-tetra­hydro­quinoline was prepared by the literature method (Ökten & Çakmak, 2015[Ökten, S. & Çakmak, O. (2015). Tetrahedron Lett. 56, 5337-5340.]). Recrystallization from a CH2Cl2/hexane (2:1, 5 ml) solvent mixture gave colourless prisms.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The central carbon atom (C8) and its attached H atoms of the three methyl­ene groups in the piperidine ring are positionally disordered over two sets of sites (C8A and C8B) in a 0.692 (8): 0.308 (8) ratio. The other two methyl­ene C atoms (C6 and C7) in the piperidine ring are also refined as disordered and constrained with the EXYZ and EADP instructions to aid in the location of their attached H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C10H9BrN2
Mr 237.09
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 14.189 (5), 5.0064 (14), 14.683 (5)
β (°) 113.008 (13)
V3) 960.1 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.23
Crystal size (mm) 0.19 × 0.15 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 35875, 2412, 1837
Rint 0.043
(sin θ/λ)max−1) 0.672
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.10
No. of reflections 2412
No. of parameters 133
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.47
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

6-Bromo-1,2,3,4-tetrahydroquinoline-8-carbonitrile top
Crystal data top
C10H9BrN2F(000) = 472
Mr = 237.09Dx = 1.640 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9423 reflections
a = 14.189 (5) Åθ = 3.0–27.8°
b = 5.0064 (14) ŵ = 4.23 mm1
c = 14.683 (5) ÅT = 296 K
β = 113.008 (13)°Prism, colourless
V = 960.1 (5) Å30.19 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.043
φ and ω scansθmax = 28.5°, θmin = 3.0°
35875 measured reflectionsh = 1918
2412 independent reflectionsk = 66
1837 reflections with I > 2σ(I)l = 1919
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0285P)2 + 0.7134P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.36 e Å3
2412 reflectionsΔρmin = 0.47 e Å3
133 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0135 (11)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.61037 (2)0.18750 (7)0.58211 (2)0.0649 (1)
N11.03058 (15)0.6179 (5)0.65068 (16)0.0490 (7)
N20.86937 (18)0.9940 (5)0.44726 (18)0.0611 (8)
C10.92333 (18)0.3281 (4)0.70001 (16)0.0394 (7)
C20.82674 (19)0.2339 (5)0.68257 (17)0.0446 (8)
C30.74161 (17)0.3303 (5)0.60479 (17)0.0431 (7)
C40.75099 (17)0.5260 (5)0.54363 (16)0.0426 (7)
C50.84797 (17)0.6238 (5)0.55964 (16)0.0388 (7)
C60.93628 (16)0.5253 (4)0.63672 (15)0.0373 (7)
C7A1.12305 (19)0.5279 (6)0.7306 (2)0.0585 (9)0.692 (8)
C7B1.12305 (19)0.5279 (6)0.7306 (2)0.0585 (9)0.308 (8)
C8A1.0989 (3)0.4295 (9)0.8157 (3)0.0525 (14)0.692 (8)
C8B1.1163 (6)0.2658 (19)0.7700 (7)0.051 (3)0.308 (8)
C9A1.0160 (2)0.2262 (6)0.7852 (2)0.0527 (8)0.692 (8)
C9B1.0160 (2)0.2262 (6)0.7852 (2)0.0527 (8)0.308 (8)
C100.85870 (18)0.8300 (5)0.49630 (18)0.0447 (7)
H7A11.171600.674000.752500.0700*0.692 (8)
H1N1.037 (2)0.731 (4)0.6103 (17)0.054 (8)*
H20.818400.103000.723800.0540*
H7A21.154100.385100.707200.0700*0.692 (8)
H8A11.160300.352600.865400.0630*0.692 (8)
H40.693400.592400.492200.0510*
H8A21.078600.579800.845600.0630*0.692 (8)
H9A10.997500.185000.840600.0630*0.692 (8)
H9A21.040100.063300.765800.0630*0.692 (8)
H7B11.141100.656900.784000.0700*0.308 (8)
H7B21.178200.525300.707100.0700*0.308 (8)
H8B11.173700.242300.832800.0610*0.308 (8)
H8B21.121300.130100.724900.0610*0.308 (8)
H9B11.006900.037400.794300.0630*0.308 (8)
H9B21.021100.318100.845100.0630*0.308 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0467 (2)0.0867 (3)0.0617 (2)0.0181 (1)0.0216 (1)0.0032 (2)
N10.0394 (10)0.0536 (13)0.0496 (12)0.0030 (9)0.0125 (9)0.0126 (10)
N20.0559 (13)0.0667 (16)0.0585 (14)0.0000 (11)0.0200 (11)0.0202 (12)
C10.0435 (12)0.0372 (12)0.0339 (11)0.0006 (9)0.0114 (9)0.0004 (9)
C20.0499 (13)0.0471 (14)0.0375 (12)0.0058 (10)0.0178 (10)0.0019 (10)
C30.0385 (11)0.0510 (14)0.0406 (12)0.0074 (10)0.0163 (9)0.0061 (11)
C40.0392 (11)0.0488 (14)0.0352 (11)0.0017 (10)0.0097 (9)0.0016 (10)
C50.0431 (12)0.0387 (12)0.0328 (10)0.0010 (9)0.0128 (9)0.0001 (9)
C60.0406 (11)0.0364 (12)0.0331 (11)0.0009 (9)0.0124 (9)0.0031 (9)
C7A0.0393 (13)0.0695 (19)0.0601 (16)0.0044 (12)0.0122 (12)0.0094 (14)
C7B0.0393 (13)0.0695 (19)0.0601 (16)0.0044 (12)0.0122 (12)0.0094 (14)
C8A0.044 (2)0.060 (3)0.042 (2)0.0004 (18)0.0044 (16)0.0050 (19)
C8B0.042 (4)0.059 (6)0.046 (5)0.006 (4)0.010 (4)0.006 (4)
C9A0.0500 (14)0.0538 (15)0.0462 (13)0.0050 (12)0.0102 (11)0.0093 (12)
C9B0.0500 (14)0.0538 (15)0.0462 (13)0.0050 (12)0.0102 (11)0.0093 (12)
C100.0400 (12)0.0499 (14)0.0395 (12)0.0001 (10)0.0105 (10)0.0018 (11)
Geometric parameters (Å, º) top
Br1—C31.899 (3)C8A—C9A1.486 (5)
N1—C61.354 (3)C8B—C9B1.537 (10)
N1—C7A1.448 (4)C2—H20.9300
N1—C7B1.448 (4)C4—H40.9300
N2—C101.141 (4)C7A—H7A10.9700
C1—C21.376 (4)C7A—H7A20.9700
C1—C61.416 (3)C7B—H7B10.9700
C1—C9A1.506 (4)C7B—H7B20.9700
C1—C9B1.506 (4)C8A—H8A10.9700
N1—H1N0.85 (2)C8A—H8A20.9700
C2—C31.385 (4)C8B—H8B10.9700
C3—C41.370 (3)C8B—H8B20.9700
C4—C51.391 (4)C9A—H9A10.9700
C5—C101.437 (4)C9A—H9A20.9700
C5—C61.409 (3)C9B—H9B10.9700
C7A—C8A1.502 (5)C9B—H9B20.9700
C7B—C8B1.452 (10)
C6—N1—C7A123.0 (2)C5—C4—H4121.00
C6—N1—C7B123.0 (2)N1—C7A—H7A1110.00
C2—C1—C6119.5 (2)N1—C7A—H7A2110.00
C2—C1—C9A121.4 (2)C8A—C7A—H7A1110.00
C2—C1—C9B121.4 (2)C8A—C7A—H7A2110.00
C6—C1—C9A119.1 (2)H7A1—C7A—H7A2108.00
C6—C1—C9B119.1 (2)H7B1—C7B—H7B2108.00
C6—N1—H1N119.4 (19)N1—C7B—H7B2108.00
C7A—N1—H1N117.5 (19)C8B—C7B—H7B1109.00
C7B—N1—H1N117.5 (19)N1—C7B—H7B1108.00
C1—C2—C3121.2 (2)C8B—C7B—H7B2108.00
Br1—C3—C2119.54 (19)C7A—C8A—H8A2109.00
Br1—C3—C4119.61 (18)C9A—C8A—H8A1109.00
C2—C3—C4120.9 (2)C7A—C8A—H8A1109.00
C3—C4—C5118.9 (2)H8A1—C8A—H8A2108.00
C6—C5—C10119.0 (2)C9A—C8A—H8A2109.00
C4—C5—C10119.4 (2)C7B—C8B—H8B2109.00
C4—C5—C6121.5 (2)C7B—C8B—H8B1109.00
N1—C6—C1120.9 (2)H8B1—C8B—H8B2108.00
N1—C6—C5121.2 (2)C9B—C8B—H8B1109.00
C1—C6—C5117.9 (2)C9B—C8B—H8B2109.00
N1—C7A—C8A110.3 (3)C1—C9A—H9A2110.00
N1—C7B—C8B115.1 (4)H9A1—C9A—H9A2108.00
C7A—C8A—C9A112.6 (3)C8A—C9A—H9A1110.00
C7B—C8B—C9B112.5 (6)C8A—C9A—H9A2110.00
C1—C9A—C8A110.5 (3)C1—C9A—H9A1110.00
C1—C9B—C8B113.1 (4)C1—C9B—H9B1109.00
N2—C10—C5178.6 (3)C1—C9B—H9B2109.00
C1—C2—H2119.00C8B—C9B—H9B1109.00
C3—C2—H2119.00C8B—C9B—H9B2109.00
C3—C4—H4121.00H9B1—C9B—H9B2108.00
C7A—N1—C6—C11.1 (4)C1—C2—C3—C41.0 (4)
C7A—N1—C6—C5178.2 (2)Br1—C3—C4—C5178.36 (18)
C6—N1—C7A—C8A25.7 (4)C2—C3—C4—C51.2 (4)
C6—C1—C2—C30.7 (4)C3—C4—C5—C10179.7 (2)
C9A—C1—C2—C3179.3 (2)C3—C4—C5—C60.3 (4)
C2—C1—C6—N1178.6 (2)C4—C5—C6—N1178.7 (2)
C2—C1—C9A—C8A154.6 (3)C4—C5—C6—C12.0 (3)
C6—C1—C9A—C8A25.3 (3)C10—C5—C6—N11.3 (3)
C2—C1—C6—C52.1 (3)C10—C5—C6—C1178.1 (2)
C9A—C1—C6—N11.5 (3)N1—C7A—C8A—C9A52.7 (4)
C9A—C1—C6—C5177.9 (2)C7A—C8A—C9A—C152.4 (4)
C1—C2—C3—Br1178.54 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.85 (2)2.29 (3)3.075 (4)153 (2)
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

This study was supported financially by grants from the Scientific and Technological Research Council of Turkey (TÜBİTAK, project No. 112 T394). The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

References

First citationBerger, D. M., Dutia, M., Powell, D., Floyd, M. B., Torres, N., Mallon, R., Wojciechowicz, D., Kim, S., Feldberg, L., Collins, K. & Chaudhary, I. (2008). Bioorg. Med. Chem. 16, 9202–9211.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFleming, F. F., Yao, L., Ravikumar, P. C., Funk, L. & Shook, B. C. (2010). J. Med. Chem. 53, 7902–7917.  Web of Science CrossRef CAS PubMed Google Scholar
First citationÖkten, S. & Çakmak, O. (2015). Tetrahedron Lett. 56, 5337–5340.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds