organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-3-(2,3-Di­chloro­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, cDepartment of Physics, Acharya Institute of Technology, Visvesvaraya Technological University, Bangalore 560 107, India, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and eDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: khalil.i@najah.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 November 2016; accepted 9 November 2016; online 15 November 2016)

In the title chalcone derivative, C15H9Cl2FO, the dihedral angle between the aromatic rings is 19.13 (15)° and the double bond adopts an E conformation. In the crystal, mol­ecules are connected by weak C—H⋯O hydrogen bonds, forming a chain propagating along the [001] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones are compounds that contain an α, β-unsaturated carbonyl function. The classical route for the synthesis of chalcones involves the Claisen–Schmidt condensation of an aromatic aldehyde and an aromatic ketone in the presence of aqueous alkaline bases (Jadav et al., 2015[Jadav, S. S., Kaptein, S., Timiri, A. K., De Burghgraeve, T., Badavath, V. N., Ganesan, R., Sinha, B. N., Neyts, J., Leyssen, P. & Jayaprakash, V. (2015). Bioorg. Med. Chem. Lett. 25, 1747-1752.]). As part of our studies in this area, we herein report the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
A view of the title compound, with displacement ellipsoids drawn at the 50% probability level.

The dihedral angle between the fluoro­phenyl and the di­chloro­phenyl rings is 19.35 (15)°. The trans conformation of the C7=C8 double bond in the central enone group is confirmed by the C7—C8=C9—C10 torsion angle value of −177.3 (2)°. The major twist in the mol­ecule occurs about the C1—C7 bond, as indicated by the C2—C1—C7—C8 torsion angle of −18.5 (4)°.

In the crystal, the mol­ecules are connected via weak C—H⋯O hydrogen bonds (Table 1[link]), forming a C(7) chain propagating along the [001] direction (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.54 3.465 (4) 177
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]).

Synthesis and crystallization

A mixture of 2,3-di­chloro­benzaldehyde (0.05 mmol), 1-(4-fluoro­phen­yl)ethanone (0.05 mmol) and sodium hydroxide (0.05 mmol) in 80% ethyl alcohol (25 ml) was stirred at room temperature for 3 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was poured in to ice-cold water and kept in the refrigerator for 18 h. The solid formed was filtered, and washed with cold acetic acid (5%). It was then recrystallized from di­chloro­methane solution (with 3–4 drops of aceto­nitrile added) to get the title compound in the form of green blocks, m.p. 105°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H9Cl2FO
Mr 295.12
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 15.662 (2), 8.1130 (14), 10.9108 (18)
β (°) 106.288 (6)
V3) 1330.8 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.40
Crystal size (mm) 0.28 × 0.26 × 0.25
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.372, 0.406
No. of measured, independent and observed [I > 2σ(I)] reflections 9531, 2163, 1881
Rint 0.053
(sin θ/λ)max−1) 0.584
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.210, 1.06
No. of reflections 2163
No. of parameters 173
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.52
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(E)-3-(2,3-Dichlorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one top
Crystal data top
C15H9Cl2FOF(000) = 600
Mr = 295.12Dx = 1.473 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1881 reflections
a = 15.662 (2) Åθ = 6.2–64.2°
b = 8.1130 (14) ŵ = 4.40 mm1
c = 10.9108 (18) ÅT = 296 K
β = 106.288 (6)°Block, green
V = 1330.8 (4) Å30.28 × 0.26 × 0.25 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2163 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1881 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.053
Detector resolution: 18.4 pixels mm-1θmax = 64.2°, θmin = 6.2°
φ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 99
Tmin = 0.372, Tmax = 0.406l = 1112
9531 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.210 w = 1/[σ2(Fo2) + (0.1575P)2 + 0.2475P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2163 reflectionsΔρmax = 0.51 e Å3
173 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (3)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02367 (6)0.65394 (16)0.20294 (10)0.0936 (5)
Cl20.12132 (5)0.46410 (11)0.11655 (7)0.0673 (4)
F10.76924 (12)0.0730 (3)0.6363 (2)0.0855 (8)
O10.40095 (14)0.1717 (3)0.2333 (2)0.0638 (8)
C10.21279 (17)0.4408 (3)0.3681 (3)0.0466 (9)
C20.2207 (2)0.4739 (5)0.4950 (3)0.0633 (11)
C30.1557 (2)0.5621 (5)0.5317 (4)0.0747 (14)
C40.0817 (2)0.6185 (4)0.4421 (4)0.0676 (11)
C50.07215 (18)0.5874 (4)0.3154 (3)0.0568 (10)
C60.13620 (16)0.4998 (3)0.2767 (3)0.0471 (8)
C70.27948 (17)0.3469 (3)0.3273 (3)0.0476 (9)
C80.36255 (17)0.3194 (3)0.3957 (3)0.0496 (9)
C90.42414 (17)0.2226 (3)0.3428 (3)0.0458 (8)
C100.51619 (16)0.1877 (3)0.4247 (3)0.0433 (8)
C110.56881 (19)0.0816 (4)0.3774 (3)0.0549 (10)
C120.6542 (2)0.0431 (4)0.4488 (4)0.0628 (11)
C130.68611 (17)0.1113 (4)0.5673 (3)0.0577 (10)
C140.6357 (2)0.2145 (4)0.6183 (3)0.0646 (11)
C150.55032 (18)0.2513 (4)0.5467 (3)0.0563 (10)
H20.270500.436400.557200.0760*
H30.162600.582800.617800.0890*
H40.038400.677500.466800.0810*
H70.262000.302200.245600.0570*
H80.382500.361500.478100.0590*
H110.546300.035800.296600.0660*
H120.689300.027900.416700.0750*
H140.658700.258700.699600.0770*
H150.515100.319800.580700.0680*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0664 (6)0.1289 (10)0.0747 (8)0.0475 (5)0.0020 (5)0.0026 (5)
Cl20.0556 (6)0.0992 (7)0.0429 (6)0.0174 (3)0.0071 (4)0.0060 (4)
F10.0460 (10)0.1197 (17)0.0812 (16)0.0191 (10)0.0020 (9)0.0054 (12)
O10.0558 (12)0.0856 (14)0.0449 (13)0.0090 (10)0.0059 (10)0.0047 (11)
C10.0388 (13)0.0550 (14)0.0430 (17)0.0003 (10)0.0066 (11)0.0061 (11)
C20.0520 (16)0.088 (2)0.0457 (19)0.0077 (14)0.0069 (14)0.0009 (15)
C30.067 (2)0.107 (3)0.049 (2)0.0118 (18)0.0146 (16)0.0114 (18)
C40.0566 (18)0.080 (2)0.067 (2)0.0125 (15)0.0187 (16)0.0123 (17)
C50.0472 (15)0.0613 (15)0.058 (2)0.0083 (12)0.0085 (13)0.0003 (14)
C60.0390 (13)0.0522 (13)0.0474 (17)0.0013 (11)0.0076 (11)0.0049 (12)
C70.0438 (14)0.0530 (14)0.0447 (17)0.0030 (10)0.0103 (11)0.0074 (12)
C80.0431 (14)0.0542 (15)0.0484 (17)0.0028 (11)0.0080 (11)0.0015 (12)
C90.0435 (13)0.0475 (13)0.0440 (17)0.0008 (10)0.0085 (11)0.0049 (11)
C100.0406 (13)0.0456 (12)0.0431 (16)0.0005 (10)0.0106 (11)0.0066 (11)
C110.0546 (16)0.0687 (17)0.0415 (18)0.0126 (13)0.0135 (13)0.0034 (13)
C120.0542 (16)0.076 (2)0.061 (2)0.0201 (14)0.0206 (15)0.0078 (15)
C130.0384 (14)0.0694 (17)0.062 (2)0.0054 (12)0.0086 (13)0.0101 (15)
C140.0502 (15)0.077 (2)0.058 (2)0.0015 (14)0.0010 (14)0.0128 (15)
C150.0449 (15)0.0621 (16)0.059 (2)0.0049 (12)0.0100 (13)0.0106 (14)
Geometric parameters (Å, º) top
Cl1—C51.737 (3)C10—C151.387 (4)
Cl2—C61.721 (3)C11—C121.382 (5)
F1—C131.345 (4)C12—C131.366 (5)
O1—C91.219 (4)C13—C141.371 (4)
C1—C21.381 (4)C14—C151.379 (4)
C1—C61.411 (4)C2—H20.9300
C1—C71.460 (4)C3—H30.9300
C2—C31.392 (5)C4—H40.9300
C3—C41.369 (5)C7—H70.9300
C4—C51.372 (5)C8—H80.9300
C5—C61.388 (4)C11—H110.9300
C7—C81.325 (4)C12—H120.9300
C8—C91.481 (4)C14—H140.9300
C9—C101.495 (4)C15—H150.9300
C10—C111.388 (4)
C2—C1—C6117.5 (3)F1—C13—C14119.4 (3)
C2—C1—C7122.4 (3)C12—C13—C14122.2 (3)
C6—C1—C7120.1 (3)C13—C14—C15118.7 (3)
C1—C2—C3121.4 (3)C10—C15—C14121.0 (3)
C2—C3—C4120.5 (4)C1—C2—H2119.00
C3—C4—C5119.3 (3)C3—C2—H2119.00
Cl1—C5—C4118.9 (2)C2—C3—H3120.00
Cl1—C5—C6119.9 (2)C4—C3—H3120.00
C4—C5—C6121.1 (3)C3—C4—H4120.00
Cl2—C6—C1120.4 (2)C5—C4—H4120.00
Cl2—C6—C5119.4 (2)C1—C7—H7117.00
C1—C6—C5120.2 (3)C8—C7—H7117.00
C1—C7—C8126.2 (3)C7—C8—H8120.00
C7—C8—C9120.9 (3)C9—C8—H8120.00
O1—C9—C8120.9 (3)C10—C11—H11120.00
O1—C9—C10119.6 (3)C12—C11—H11120.00
C8—C9—C10119.5 (3)C11—C12—H12121.00
C9—C10—C11118.0 (3)C13—C12—H12121.00
C9—C10—C15123.4 (2)C13—C14—H14121.00
C11—C10—C15118.6 (3)C15—C14—H14121.00
C10—C11—C12120.8 (3)C10—C15—H15120.00
C11—C12—C13118.8 (3)C14—C15—H15120.00
F1—C13—C12118.4 (3)
C6—C1—C2—C30.0 (5)C7—C8—C9—O13.0 (4)
C7—C1—C2—C3179.2 (3)C7—C8—C9—C10177.3 (2)
C2—C1—C6—Cl2179.9 (2)O1—C9—C10—C117.4 (4)
C2—C1—C6—C50.1 (4)O1—C9—C10—C15174.9 (3)
C7—C1—C6—Cl20.8 (3)C8—C9—C10—C11173.0 (3)
C7—C1—C6—C5179.2 (3)C8—C9—C10—C154.8 (4)
C2—C1—C7—C818.5 (4)C9—C10—C11—C12179.4 (3)
C6—C1—C7—C8162.3 (3)C15—C10—C11—C121.6 (5)
C1—C2—C3—C40.1 (6)C9—C10—C15—C14179.8 (3)
C2—C3—C4—C50.1 (5)C11—C10—C15—C142.1 (4)
C3—C4—C5—Cl1178.0 (3)C10—C11—C12—C130.1 (5)
C3—C4—C5—C60.0 (5)C11—C12—C13—F1179.9 (3)
Cl1—C5—C6—Cl22.1 (3)C11—C12—C13—C141.0 (5)
Cl1—C5—C6—C1177.9 (2)F1—C13—C14—C15179.4 (3)
C4—C5—C6—Cl2179.9 (3)C12—C13—C14—C150.6 (5)
C4—C5—C6—C10.1 (4)C13—C14—C15—C101.0 (5)
C1—C7—C8—C9179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.543.465 (4)177
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJadav, S. S., Kaptein, S., Timiri, A. K., De Burghgraeve, T., Badavath, V. N., Ganesan, R., Sinha, B. N., Neyts, J., Leyssen, P. & Jayaprakash, V. (2015). Bioorg. Med. Chem. Lett. 25, 1747–1752.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds