organic compounds
Benzene-1,2-diaminium bis(hydrogen phosphonate)
aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, Aksheyaa College of Engineering, Kancheepuram 603 314, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ntganesh@yahoo.co.in, chakkaravarthi_2005@yahoo.com
The 6H10N22+·2H2PO3−, contains half of a benzene-1,2-diaminium cation and a phosphite anion, the complete cation being generated by a crystallographic mirror plane. In the crystal, N—H⋯O hydrogen bonds generate R22(9) and R22(8) ring motifs and O—H⋯O hydrogen bonds generate an R22(8) ring motif. Overall, these generate a three-dimensional framework. The also features π–π interactions [centroid-to-centroid distance = 3.8642 (7) Å].
of the title molecular salt, CKeywords: crystal structure; molecular salt; hydrogen bonding.
CCDC reference: 1508896
Structure description
Inorganic-organic hybrid compounds provide a class of materials with interesting potential technological applications (Dai et al., 2002). We report herein the synthesis and the of the title molecular salt (Fig. 1). The salt contains half of a benzene-1,2-diaminium cation and a phosphite anion in the the complete cation being generated by a crystallographic mirror plane. The cation is protonated at the amine N atoms and the anion is deprotonated at a hydroxyl O atom. Bond lengths are comparable with those found in related structures (Idrissi et al., 2002; Soudani et al., 2013).
In the crystal, classical N—H⋯O and O—H⋯O hydrogen bonds (Table 1, Fig. 2) which link the adjacent ions into an infinite three dimensional framework. The N1—H1A⋯O1 and N1—H1C⋯O3 hydrogen bonds generate an R22(9) ring motif while an R22(8) ring motif is generated by N1—H1C⋯O3 and N1—H1B⋯O3 hydrogen bonds and the O2—H2A⋯O1 hydrogen bonds generate an R22(8) ring motif (Table 1, Fig. 3). The also features π–π interactions [Cg1⋯Cg1i, Cg1⋯Cg1ii, Cg1⋯Cg1iii and Cg1⋯Cg1iv with equal distances of 3.8642 (7) Å; Cg1 is the centroid of the C1/C2/C3/C1a/C2a/C3a ring; symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, 2 − z; (iii) x, 1 − y, − + z; (iv) x, 1 − y, + z].
Synthesis and crystallization
o-Phenlyenediamine (0.5 g) and phosphorous acid (1.6 g) were dissolved in 10 ml of Millipore water and allowed to evaporate slowly at room temperature. Good quality crystals suitable for data collection were collected after a period of one week.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1508896
https://doi.org/10.1107/S2414314616015911/vm4016sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616015911/vm4016Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616015911/vm4016Isup3.cml
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).C6H10N22+·2H2PO3− | F(000) = 568 |
Mr = 272.13 | Dx = 1.561 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.6564 (6) Å | Cell parameters from 4562 reflections |
b = 12.3755 (4) Å | θ = 2.9–32.4° |
c = 7.7281 (3) Å | µ = 0.39 mm−1 |
β = 117.586 (1)° | T = 295 K |
V = 1157.61 (8) Å3 | Block, colourless |
Z = 4 | 0.26 × 0.24 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 1822 reflections with I > 2σ(I) |
ω and φ scan | Rint = 0.021 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | θmax = 33.0°, θmin = 2.4° |
Tmin = 0.699, Tmax = 0.747 | h = −18→20 |
8958 measured reflections | k = −18→18 |
2065 independent reflections | l = −11→11 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3312P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.092 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.35 e Å−3 |
2065 reflections | Δρmin = −0.28 e Å−3 |
93 parameters | Extinction correction: SHELXL2016 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
4 restraints | Extinction coefficient: 0.0168 (18) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.44886 (8) | 0.40189 (8) | 0.66686 (14) | 0.02418 (18) | |
C2 | 0.39713 (9) | 0.49869 (9) | 0.58591 (17) | 0.0325 (2) | |
H2 | 0.328163 | 0.498858 | 0.476438 | 0.039* | |
C3 | 0.44871 (12) | 0.59530 (9) | 0.6689 (2) | 0.0408 (3) | |
H3 | 0.414075 | 0.660483 | 0.615223 | 0.049* | |
N1 | 0.39441 (7) | 0.30090 (7) | 0.57724 (13) | 0.02768 (18) | |
O1 | 0.00568 (7) | 0.64051 (7) | 0.50188 (13) | 0.0394 (2) | |
O2 | 0.15544 (8) | 0.49792 (7) | 0.63278 (16) | 0.0452 (2) | |
O3 | 0.20193 (7) | 0.68978 (7) | 0.73819 (12) | 0.0366 (2) | |
P1 | 0.12641 (2) | 0.61846 (2) | 0.57358 (4) | 0.02759 (10) | |
H1 | 0.1469 (14) | 0.6272 (12) | 0.429 (2) | 0.040 (4)* | |
H1A | 0.4365 (11) | 0.2541 (11) | 0.558 (2) | 0.039 (4)* | |
H1B | 0.3384 (9) | 0.3133 (11) | 0.4632 (14) | 0.031 (3)* | |
H1C | 0.3696 (12) | 0.2700 (12) | 0.649 (2) | 0.040 (4)* | |
H2A | 0.1013 (12) | 0.4605 (15) | 0.573 (3) | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0213 (4) | 0.0239 (4) | 0.0272 (4) | 0.0007 (3) | 0.0111 (3) | 0.0009 (3) |
C2 | 0.0324 (5) | 0.0294 (5) | 0.0371 (5) | 0.0081 (4) | 0.0172 (4) | 0.0080 (4) |
C3 | 0.0518 (7) | 0.0244 (5) | 0.0538 (7) | 0.0067 (4) | 0.0308 (6) | 0.0068 (5) |
N1 | 0.0201 (4) | 0.0267 (4) | 0.0277 (4) | −0.0007 (3) | 0.0039 (3) | 0.0014 (3) |
O1 | 0.0259 (4) | 0.0282 (4) | 0.0485 (5) | 0.0018 (3) | 0.0041 (3) | −0.0065 (3) |
O2 | 0.0287 (4) | 0.0268 (4) | 0.0617 (6) | 0.0019 (3) | 0.0053 (4) | 0.0001 (4) |
O3 | 0.0281 (4) | 0.0352 (4) | 0.0350 (4) | −0.0029 (3) | 0.0048 (3) | −0.0104 (3) |
P1 | 0.02555 (15) | 0.02557 (15) | 0.02480 (14) | −0.00026 (8) | 0.00585 (10) | −0.00370 (8) |
C1—C2 | 1.3843 (13) | N1—H1B | 0.872 (9) |
C1—C1i | 1.3928 (19) | N1—H1C | 0.861 (9) |
C1—N1 | 1.4552 (12) | O1—P1 | 1.5012 (9) |
C2—C3 | 1.3852 (17) | O2—P1 | 1.5569 (9) |
C2—H2 | 0.9300 | O2—H2A | 0.811 (9) |
C3—C3i | 1.381 (3) | O3—P1 | 1.4987 (8) |
C3—H3 | 0.9300 | P1—H1 | 1.276 (16) |
N1—H1A | 0.876 (9) | ||
C2—C1—C1i | 120.05 (6) | H1A—N1—H1B | 106.3 (14) |
C2—C1—N1 | 119.13 (9) | C1—N1—H1C | 110.0 (11) |
C1i—C1—N1 | 120.81 (5) | H1A—N1—H1C | 107.5 (15) |
C1—C2—C3 | 119.61 (11) | H1B—N1—H1C | 107.8 (14) |
C1—C2—H2 | 120.2 | P1—O2—H2A | 109.8 (15) |
C3—C2—H2 | 120.2 | O3—P1—O1 | 114.38 (5) |
C3i—C3—C2 | 120.32 (7) | O3—P1—O2 | 109.47 (5) |
C3i—C3—H3 | 119.8 | O1—P1—O2 | 111.67 (5) |
C2—C3—H3 | 119.8 | O3—P1—H1 | 110.5 (7) |
C1—N1—H1A | 114.7 (10) | O1—P1—H1 | 108.1 (8) |
C1—N1—H1B | 110.2 (9) | O2—P1—H1 | 102.1 (7) |
C1i—C1—C2—C3 | 1.30 (18) | C1—C2—C3—C3i | 0.2 (2) |
N1—C1—C2—C3 | −179.38 (10) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1ii | 0.88 (2) | 1.85 (2) | 2.7217 (14) | 171 (2) |
N1—H1B···O3iii | 0.87 (1) | 1.87 (1) | 2.7220 (13) | 165 (1) |
N1—H1C···O3iv | 0.86 (2) | 1.87 (2) | 2.7193 (14) | 169 (1) |
O2—H2A···O1v | 0.81 (2) | 1.80 (2) | 2.5959 (14) | 166 (2) |
Symmetry codes: (ii) x+1/2, y−1/2, z; (iii) x, −y+1, z−1/2; (iv) −x+1/2, y−1/2, −z+3/2; (v) −x, −y+1, −z+1. |
Acknowledgements
The authors acknowledge the SAIF, IIT, Madras, for the data collection.
References
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Hu, S. M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, Q.-Q. (2002). Inorg. Chem. 41, 1391–1396. Web of Science CSD CrossRef PubMed CAS Google Scholar
Idrissi, A. K., Saadi, M., Rafiq, M. & Holt, E. M. (2002). Acta Cryst. C58, o604–o605. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soudani, S., Kefi, R., Jelsch, C., Wenger, E. & Ben Nasr, C. (2013). Acta Cryst. E69, o600. CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.