organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Benzene-1,2-diaminium bis­­(hydrogen phospho­nate)

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, Aksheyaa College of Engineering, Kancheepuram 603 314, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ntganesh@yahoo.co.in, chakkaravarthi_2005@yahoo.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 5 October 2016; accepted 8 October 2016; online 14 October 2016)

The asymmetric unit of the title mol­ecular salt, C6H10N22+·2H2PO3, contains half of a benzene-1,2-diaminium cation and a phosphite anion, the complete cation being generated by a crystallographic mirror plane. In the crystal, N—H⋯O hydrogen bonds generate R22(9) and R22(8) ring motifs and O—H⋯O hydrogen bonds generate an R22(8) ring motif. Overall, these generate a three-dimensional framework. The crystal structure also features ππ inter­actions [centroid-to-centroid distance = 3.8642 (7) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Inorganic-organic hybrid compounds provide a class of materials with inter­esting potential technological applications (Dai et al., 2002[Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Hu, S. M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, Q.-Q. (2002). Inorg. Chem. 41, 1391-1396.]). We report herein the synthesis and the crystal structure of the title mol­ecular salt (Fig. 1[link]). The salt contains half of a benzene-1,2-diaminium cation and a phosphite anion in the asymmetric unit, the complete cation being generated by a crystallographic mirror plane. The cation is protonated at the amine N atoms and the anion is deprotonated at a hydroxyl O atom. Bond lengths are comparable with those found in related structures (Idrissi et al., 2002[Idrissi, A. K., Saadi, M., Rafiq, M. & Holt, E. M. (2002). Acta Cryst. C58, o604-o605.]; Soudani et al., 2013[Soudani, S., Kefi, R., Jelsch, C., Wenger, E. & Ben Nasr, C. (2013). Acta Cryst. E69, o600.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with atom labelling and 30% probability displacement ellipsoids. [Symmetry code: (a) 1 − x, y, [{3\over 2}] − z.]

In the crystal, classical N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]) which link the adjacent ions into an infinite three dimensional framework. The N1—H1A⋯O1 and N1—H1C⋯O3 hydrogen bonds generate an R22(9) ring motif while an R22(8) ring motif is generated by N1—H1C⋯O3 and N1—H1B⋯O3 hydrogen bonds and the O2—H2A⋯O1 hydrogen bonds generate an R22(8) ring motif (Table 1[link], Fig. 3[link]). The crystal structure also features ππ inter­actions [Cg1⋯Cg1i, Cg1⋯Cg1ii, Cg1⋯Cg1iii and Cg1⋯Cg1iv with equal distances of 3.8642 (7) Å; Cg1 is the centroid of the C1/C2/C3/C1a/C2a/C3a ring; symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, 2 − z; (iii) x, 1 − y, −[{1\over 2}] + z; (iv) x, 1 − y, [{1\over 2}] + z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 (2) 1.85 (2) 2.7217 (14) 171 (2)
N1—H1B⋯O3ii 0.87 (1) 1.87 (1) 2.7220 (13) 165 (1)
N1—H1C⋯O3iii 0.86 (2) 1.87 (2) 2.7193 (14) 169 (1)
O2—H2A⋯O1iv 0.81 (2) 1.80 (2) 2.5959 (14) 166 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x, -y+1, -z+1.
[Figure 2]
Figure 2
The crystal packing of the title mol­ecular salt viewed along the c axis. The hydrogen bonds are shown as dashed lines. H atoms not involving in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
A partial view of the crystal packing showing different ring motifs.

Synthesis and crystallization

o-Phenlyenedi­amine (0.5 g) and phospho­rous acid (1.6 g) were dissolved in 10 ml of Millipore water and allowed to evaporate slowly at room temperature. Good quality crystals suitable for X-ray intensity data collection were collected after a period of one week.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H10N22+·2H2PO3
Mr 272.13
Crystal system, space group Monoclinic, C2/c
Temperature (K) 295
a, b, c (Å) 13.6564 (6), 12.3755 (4), 7.7281 (3)
β (°) 117.586 (1)
V3) 1157.61 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.26 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.699, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 8958, 2065, 1822
Rint 0.021
(sin θ/λ)max−1) 0.766
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.092, 1.07
No. of reflections 2065
No. of parameters 93
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

Benzene-1,2-diaminium bis(hydrogen phosphonate) top
Crystal data top
C6H10N22+·2H2PO3F(000) = 568
Mr = 272.13Dx = 1.561 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.6564 (6) ÅCell parameters from 4562 reflections
b = 12.3755 (4) Åθ = 2.9–32.4°
c = 7.7281 (3) ŵ = 0.39 mm1
β = 117.586 (1)°T = 295 K
V = 1157.61 (8) Å3Block, colourless
Z = 40.26 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1822 reflections with I > 2σ(I)
ω and φ scanRint = 0.021
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 33.0°, θmin = 2.4°
Tmin = 0.699, Tmax = 0.747h = 1820
8958 measured reflectionsk = 1818
2065 independent reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3312P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.35 e Å3
2065 reflectionsΔρmin = 0.28 e Å3
93 parametersExtinction correction: SHELXL2016 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.0168 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44886 (8)0.40189 (8)0.66686 (14)0.02418 (18)
C20.39713 (9)0.49869 (9)0.58591 (17)0.0325 (2)
H20.3281630.4988580.4764380.039*
C30.44871 (12)0.59530 (9)0.6689 (2)0.0408 (3)
H30.4140750.6604830.6152230.049*
N10.39441 (7)0.30090 (7)0.57724 (13)0.02768 (18)
O10.00568 (7)0.64051 (7)0.50188 (13)0.0394 (2)
O20.15544 (8)0.49792 (7)0.63278 (16)0.0452 (2)
O30.20193 (7)0.68978 (7)0.73819 (12)0.0366 (2)
P10.12641 (2)0.61846 (2)0.57358 (4)0.02759 (10)
H10.1469 (14)0.6272 (12)0.429 (2)0.040 (4)*
H1A0.4365 (11)0.2541 (11)0.558 (2)0.039 (4)*
H1B0.3384 (9)0.3133 (11)0.4632 (14)0.031 (3)*
H1C0.3696 (12)0.2700 (12)0.649 (2)0.040 (4)*
H2A0.1013 (12)0.4605 (15)0.573 (3)0.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0213 (4)0.0239 (4)0.0272 (4)0.0007 (3)0.0111 (3)0.0009 (3)
C20.0324 (5)0.0294 (5)0.0371 (5)0.0081 (4)0.0172 (4)0.0080 (4)
C30.0518 (7)0.0244 (5)0.0538 (7)0.0067 (4)0.0308 (6)0.0068 (5)
N10.0201 (4)0.0267 (4)0.0277 (4)0.0007 (3)0.0039 (3)0.0014 (3)
O10.0259 (4)0.0282 (4)0.0485 (5)0.0018 (3)0.0041 (3)0.0065 (3)
O20.0287 (4)0.0268 (4)0.0617 (6)0.0019 (3)0.0053 (4)0.0001 (4)
O30.0281 (4)0.0352 (4)0.0350 (4)0.0029 (3)0.0048 (3)0.0104 (3)
P10.02555 (15)0.02557 (15)0.02480 (14)0.00026 (8)0.00585 (10)0.00370 (8)
Geometric parameters (Å, º) top
C1—C21.3843 (13)N1—H1B0.872 (9)
C1—C1i1.3928 (19)N1—H1C0.861 (9)
C1—N11.4552 (12)O1—P11.5012 (9)
C2—C31.3852 (17)O2—P11.5569 (9)
C2—H20.9300O2—H2A0.811 (9)
C3—C3i1.381 (3)O3—P11.4987 (8)
C3—H30.9300P1—H11.276 (16)
N1—H1A0.876 (9)
C2—C1—C1i120.05 (6)H1A—N1—H1B106.3 (14)
C2—C1—N1119.13 (9)C1—N1—H1C110.0 (11)
C1i—C1—N1120.81 (5)H1A—N1—H1C107.5 (15)
C1—C2—C3119.61 (11)H1B—N1—H1C107.8 (14)
C1—C2—H2120.2P1—O2—H2A109.8 (15)
C3—C2—H2120.2O3—P1—O1114.38 (5)
C3i—C3—C2120.32 (7)O3—P1—O2109.47 (5)
C3i—C3—H3119.8O1—P1—O2111.67 (5)
C2—C3—H3119.8O3—P1—H1110.5 (7)
C1—N1—H1A114.7 (10)O1—P1—H1108.1 (8)
C1—N1—H1B110.2 (9)O2—P1—H1102.1 (7)
C1i—C1—C2—C31.30 (18)C1—C2—C3—C3i0.2 (2)
N1—C1—C2—C3179.38 (10)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.88 (2)1.85 (2)2.7217 (14)171 (2)
N1—H1B···O3iii0.87 (1)1.87 (1)2.7220 (13)165 (1)
N1—H1C···O3iv0.86 (2)1.87 (2)2.7193 (14)169 (1)
O2—H2A···O1v0.81 (2)1.80 (2)2.5959 (14)166 (2)
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x, y+1, z1/2; (iv) x+1/2, y1/2, z+3/2; (v) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Hu, S. M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, Q.-Q. (2002). Inorg. Chem. 41, 1391–1396.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationIdrissi, A. K., Saadi, M., Rafiq, M. & Holt, E. M. (2002). Acta Cryst. C58, o604–o605.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoudani, S., Kefi, R., Jelsch, C., Wenger, E. & Ben Nasr, C. (2013). Acta Cryst. E69, o600.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds