organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-N′-[4-(Di­methyl­amino)­benzyl­­idene]propiono­hydrazide monohydrate

CROSSMARK_Color_square_no_text.svg

aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, bDepartment of Chemistry, SDM Institute of Technology, Ujire 574 240, India, cDepartment of P.G. Studies in Chemistry, Alva's College, Moodabidri 574 227, India, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and eDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, Palestine
*Correspondence e-mail: warad@najah.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 October 2016; accepted 25 October 2016; online 28 October 2016)

In the title hydrated hydrazine compound, C12H17N3O·H2O, the C=N bond adopts an E conformation. In the crystal, water mol­ecules bridge the hydrazine mol­ecules, via N—H⋯O and O—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. There are C—H⋯π inter­actions present within the sheets, and further C—H⋯π inter­actions link the sheets to form a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A number of industrial and biologically active compounds can be synthesized using Schiff bases as substrates via cyclo­addition, ring closure and replacement reactions. In addition, Schiff bases are also known to have biological activities, such as anti­fungal (Singh & Dash, 1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]), anti­microbial (El-Masry et al., 2000[El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429-1438.]) and anti­tumor (Desai et al., 2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]), and they have been used as herbicides. Schiff bases have also been employed as ligands for the complexation of metal ions (Aydogan et al., 2001[Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]), since many of these complexes may be useful and serve as models for biologically important species (Dharmaraj et al., 2001[Dharmaraj, N., Viswanalhamurthi, P. & Natarajan, K. (2001). Transition Met. Chem. 26, 105-109.]). In view of the importance of Schiff base hydrazones, we report herein on the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1[link]), the C9=N2 double bond adopts an E conformation. The methyl­eneformohydrazide unit [atoms O1/N2/N3/C9/C10; maximum deviation = 0.043 (1) Å for atom N2] is inclined to the benzene ring (C3–C8) by 8.94 (9)°. The solvent water mol­ecule is linked to the hydrazine mol­ecule by an N—H⋯O hydrogen bond (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H8⋯O2 0.86 1.98 2.8330 (18) 175
O2—H18⋯O1i 0.83 (2) 2.21 (2) 2.9272 (18) 144 (2)
O2—H18⋯N2i 0.83 (2) 2.45 (2) 3.1684 (18) 145 (2)
O2—H19⋯O1ii 0.82 (3) 1.97 (2) 2.7845 (18) 172 (2)
C1—H14⋯Cg1iii 0.96 2.83 3.567 (2) 135
C2—H16⋯Cg1iv 0.96 2.91 3.701 (2) 140
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level and the N—H⋯O hydrogen bond is shown as a dashed line (see Table 1[link]).

In the crystal, water mol­ecules bridge the hydrazine mol­ecules via N—H⋯O and O—H⋯O hydrogen bonds, forming sheets parallel to the bc plane (Table 1[link] and Fig. 2[link]). There are C—H⋯π inter­actions present within the sheets, and further C—H⋯π inter­actions link the sheets to form a three-dimensional structure (Table 1[link] and Fig. 3[link]).

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, H atoms not involved in hydrogen bonding have been omitted.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, H atoms not involved in the various inter­molecular inter­actions have been omitted.

Synthesis and crystallization

A mixture of 4-(di­methyl­amino)­benzaldehyde (0.01 mol) and hydrazine hydrate (0.01 mol) in 15 ml of propanoic acid was refluxed for ca 2 h. On cooling, the solid that separated was filtered off and recrystallized from di­methyl­formamide (DMF). Colourless block-like crystals were grown from DMF by slow evaporation of the solvent (yield 82%, m.p. 409 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The water H atoms were located in a difference Fourier map and refined, with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C12H17N3O·H2O
Mr 237.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.5756 (7), 10.5214 (6), 10.5737 (6)
β (°) 112.279 (3)
V3) 1294.60 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.69
Crystal size (mm) 0.29 × 0.26 × 0.22
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.826, 0.864
No. of measured, independent and observed [I > 2σ(I)] reflections 10783, 2072, 1799
Rint 0.053
(sin θ/λ)max−1) 0.581
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.141, 1.11
No. of reflections 2072
No. of parameters 163
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

(E)-N'-[4-(Dimethylamino)benzylidene]propionohydrazide monohydrate top
Crystal data top
C12H17N3O·H2OF(000) = 512
Mr = 237.30Dx = 1.217 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2072 reflections
a = 12.5756 (7) Åθ = 3.8–63.7°
b = 10.5214 (6) ŵ = 0.69 mm1
c = 10.5737 (6) ÅT = 296 K
β = 112.279 (3)°Block, colourless
V = 1294.60 (13) Å30.29 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2072 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1799 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.053
Detector resolution: 18.4 pixels mm-1θmax = 63.7°, θmin = 3.8°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1211
Tmin = 0.826, Tmax = 0.864l = 1112
10783 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0887P)2 + 0.250P]
where P = (Fo2 + 2Fc2)/3
2072 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.21 e Å3
3 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01204 (10)0.62894 (12)0.61531 (12)0.0317 (4)
N10.66806 (12)0.86484 (13)0.57578 (14)0.0262 (4)
N20.20753 (11)0.76812 (13)0.69793 (13)0.0223 (4)
N30.12447 (11)0.78061 (13)0.75446 (13)0.0223 (4)
C10.67145 (15)0.78096 (18)0.46817 (17)0.0300 (5)
C20.74862 (15)0.97087 (16)0.61820 (18)0.0276 (5)
C30.57562 (14)0.86170 (15)0.61455 (15)0.0214 (5)
C40.49094 (14)0.76498 (15)0.56646 (15)0.0218 (5)
C50.39942 (13)0.75970 (15)0.60754 (15)0.0213 (5)
C60.38583 (14)0.85007 (15)0.69790 (15)0.0215 (5)
C70.46896 (14)0.94588 (15)0.74484 (16)0.0229 (5)
C80.56171 (14)0.95285 (15)0.70483 (16)0.0232 (5)
C90.29009 (14)0.84864 (15)0.74319 (15)0.0222 (5)
C100.03017 (14)0.70707 (15)0.70870 (16)0.0235 (5)
C110.05031 (14)0.72381 (16)0.78285 (17)0.0261 (5)
C120.03320 (16)0.61625 (18)0.88521 (18)0.0314 (6)
O20.16326 (10)0.94926 (11)0.97640 (12)0.0275 (4)
H10.674400.694200.497500.0450*
H20.043300.620200.953500.0470*
H30.808500.958500.584100.0410*
H40.497400.704100.506100.0260*
H50.345500.695000.574800.0260*
H60.615101.018000.737700.0280*
H70.461701.006800.804800.0270*
H80.133500.835100.818300.0270*
H90.035500.804700.830300.0310*
H100.129200.723800.717600.0310*
H110.044200.536100.838600.0470*
H120.087900.624600.928000.0470*
H130.288600.908300.807400.0270*
H140.603800.793700.387300.0450*
H150.738400.799500.448600.0450*
H160.708801.048700.582300.0410*
H170.781600.975200.716200.0410*
H180.1452 (18)0.9041 (17)1.0300 (19)0.0410*
H190.1159 (16)1.0074 (15)0.955 (2)0.0410*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0339 (7)0.0360 (7)0.0292 (7)0.0111 (5)0.0165 (5)0.0072 (5)
N10.0251 (7)0.0296 (8)0.0265 (8)0.0065 (6)0.0126 (6)0.0058 (6)
N20.0233 (7)0.0256 (7)0.0212 (7)0.0004 (5)0.0120 (6)0.0020 (5)
N30.0242 (7)0.0253 (7)0.0206 (7)0.0012 (5)0.0120 (6)0.0019 (5)
C10.0277 (9)0.0365 (10)0.0292 (9)0.0041 (7)0.0145 (7)0.0067 (7)
C20.0262 (9)0.0271 (9)0.0309 (9)0.0042 (7)0.0125 (7)0.0007 (7)
C30.0223 (8)0.0228 (8)0.0177 (8)0.0001 (6)0.0061 (6)0.0033 (6)
C40.0259 (9)0.0204 (8)0.0178 (8)0.0005 (6)0.0068 (6)0.0007 (6)
C50.0218 (8)0.0211 (8)0.0192 (8)0.0027 (6)0.0056 (6)0.0018 (6)
C60.0231 (8)0.0221 (8)0.0184 (8)0.0007 (6)0.0069 (6)0.0049 (6)
C70.0281 (9)0.0209 (8)0.0202 (8)0.0009 (6)0.0098 (6)0.0012 (6)
C80.0252 (8)0.0208 (8)0.0226 (8)0.0042 (6)0.0078 (6)0.0011 (6)
C90.0264 (9)0.0217 (8)0.0183 (8)0.0012 (6)0.0081 (6)0.0020 (6)
C100.0254 (9)0.0235 (8)0.0227 (8)0.0012 (6)0.0104 (7)0.0045 (6)
C110.0228 (9)0.0281 (9)0.0284 (9)0.0024 (7)0.0109 (7)0.0015 (7)
C120.0354 (10)0.0341 (10)0.0323 (10)0.0016 (8)0.0216 (8)0.0028 (7)
O20.0310 (7)0.0269 (7)0.0278 (7)0.0054 (5)0.0148 (5)0.0026 (5)
Geometric parameters (Å, º) top
O1—C101.238 (2)C11—C121.524 (2)
O2—H180.83 (2)C1—H10.9600
O2—H190.823 (18)C1—H150.9600
N1—C11.453 (2)C1—H140.9600
N1—C31.372 (2)C2—H160.9600
N1—C21.459 (2)C2—H170.9600
N2—N31.393 (2)C2—H30.9600
N2—C91.284 (2)C4—H40.9300
N3—C101.343 (2)C5—H50.9300
N3—H80.8600C7—H70.9300
C3—C41.420 (2)C8—H60.9300
C3—C81.410 (2)C9—H130.9300
C4—C51.377 (3)C11—H100.9700
C5—C61.404 (2)C11—H90.9700
C6—C71.401 (2)C12—H120.9600
C6—C91.455 (3)C12—H20.9600
C7—C81.385 (3)C12—H110.9600
C10—C111.507 (3)
H18—O2—H19105 (2)N1—C1—H15109.00
C1—N1—C2118.82 (15)N1—C2—H3109.00
C1—N1—C3119.94 (14)N1—C2—H16109.00
C2—N1—C3119.67 (14)H3—C2—H16109.00
N3—N2—C9114.20 (13)H3—C2—H17109.00
N2—N3—C10119.64 (13)N1—C2—H17109.00
N2—N3—H8120.00H16—C2—H17109.00
C10—N3—H8120.00C5—C4—H4119.00
C4—C3—C8117.45 (16)C3—C4—H4119.00
N1—C3—C8121.51 (15)C4—C5—H5119.00
N1—C3—C4121.03 (14)C6—C5—H5119.00
C3—C4—C5121.26 (15)C6—C7—H7119.00
C4—C5—C6121.30 (15)C8—C7—H7119.00
C7—C6—C9119.37 (14)C7—C8—H6120.00
C5—C6—C9123.14 (15)C3—C8—H6120.00
C5—C6—C7117.49 (16)C6—C9—H13119.00
C6—C7—C8122.11 (15)N2—C9—H13119.00
C3—C8—C7120.38 (15)C10—C11—H9110.00
N2—C9—C6122.51 (14)C12—C11—H9110.00
O1—C10—N3122.71 (17)C12—C11—H10110.00
N3—C10—C11114.87 (14)C10—C11—H10110.00
O1—C10—C11122.39 (16)H9—C11—H10108.00
C10—C11—C12109.93 (15)C11—C12—H11109.00
N1—C1—H1109.00C11—C12—H12109.00
N1—C1—H14109.00C11—C12—H2109.00
H1—C1—H14109.00H2—C12—H12110.00
H1—C1—H15109.00H11—C12—H12109.00
H14—C1—H15109.00H2—C12—H11109.00
C1—N1—C3—C49.6 (2)C4—C3—C8—C70.6 (2)
C1—N1—C3—C8171.26 (15)C3—C4—C5—C60.4 (2)
C2—N1—C3—C4175.19 (14)C4—C5—C6—C70.0 (2)
C2—N1—C3—C85.7 (2)C4—C5—C6—C9179.55 (15)
C9—N2—N3—C10175.73 (14)C5—C6—C7—C80.0 (2)
N3—N2—C9—C6179.26 (13)C9—C6—C7—C8179.60 (15)
N2—N3—C10—O11.4 (2)C5—C6—C9—N23.8 (2)
N2—N3—C10—C11176.70 (13)C7—C6—C9—N2175.81 (15)
N1—C3—C4—C5178.48 (15)C6—C7—C8—C30.3 (2)
C8—C3—C4—C50.7 (2)O1—C10—C11—C1277.2 (2)
N1—C3—C8—C7178.52 (15)N3—C10—C11—C12100.88 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
N3—H8···O20.861.982.8330 (18)175
O2—H18···O1i0.83 (2)2.21 (2)2.9272 (18)144 (2)
O2—H18···N2i0.83 (2)2.45 (2)3.1684 (18)145 (2)
O2—H19···O1ii0.82 (3)1.97 (2)2.7845 (18)172 (2)
C1—H14···Cg1iii0.962.833.567 (2)135
C2—H16···Cg1iv0.962.913.701 (2)140
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+2, z+1.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility. Authors also thank Alva's Education Foundation, Moodbidri, for the research facilities.

References

First citationAydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationDharmaraj, N., Viswanalhamurthi, P. & Natarajan, K. (2001). Transition Met. Chem. 26, 105–109.  CrossRef CAS Google Scholar
First citationEl-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds