organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[(Di­methyl­amino)­meth­yl]di­methyl­aza­nium bis­­(tri­fluoro­methane­sulfon­yl)amide

CROSSMARK_Color_square_no_text.svg

aAalto University, Department of Forest Products Technology, PO Box 16300, 00076 Aalto, Finland, bUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, and cUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 October 2016; accepted 17 October 2016; online 21 October 2016)

The title mol­ecular salt, C5H15N2+·C2F6NO4S2, was obtained by a proton transfer reaction between bis­(tri­fluoro­methane­sulfon­yl)amine and bis­(di­methyl­amino)­methane. In the crystal, the ions are linked by N—H⋯O=S hydrogen bonds, and these units are linked by C—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. The crystal was refined as a non-merohedral twin with a BASF factor of 0.316 (1).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The bis­(di­methyl­amino)­methane mol­ecule is protonated resulting in a mono-cation. Bis(tri­fluoro­methane­sulfon­yl)amides [also called `bis­(triflimides)'] are known to exist as either syn or anti conformers in the solid state (Bentivoglio et al., 2009[Bentivoglio, G., Schwärzler, A., Wurst, K., Kahlenberg, V., Nauer, G., Bonn, G., Schottenberger, H. & Laus, G. (2009). J. Chem. Crystallogr. 39, 662-668.]; Laus et al., 2011[Laus, G., Hummel, M., Többens, D. M., Gelbrich, T., Kahlenberg, V., Wurst, K., Griesser, U. J. & Schottenberger, H. (2011). CrystEngComm, 13, 5439-5446.]). Here, the anion adopts an anti conformation with a C6—S1⋯S2—C7 torsion angle of 169.4 (1)°. The negative charge of the anion is effectively delocalized, thus bestowing only weak coordinating properties.

[Figure 1]
Figure 1
The mol­ecular structure of the ion pair of the title mol­ecular salt, with atom labelling and 50% probability displacement ellipsoids.

In the crystal, N—H⋯O=S hydrogen bonds link the ions and one strong and two weaker C—H⋯O=S hydrogen bonds link these units, forming sheets parallel to the bc plane (Figs. 2[link] and 3[link], Table 1[link]). No direct contacts to the triflimide nitro­gen N3 atom were detected.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.87 (2) 2.08 (2) 2.868 (3) 150 (2)
N2—H2⋯O2i 0.87 (2) 2.46 (2) 3.115 (2) 133 (2)
C5—H5A⋯O3ii 0.98 2.38 3.299 (3) 156
C4—H4C⋯O3ii 0.98 2.59 3.444 (3) 145
C5—H5B⋯O1iii 0.98 2.57 3.423 (3) 145
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title mol­ecular salt. Hydrogen atoms have been omitted for clarity, except those engaged in N—H⋯O hydrogen bonding (see Table 1[link]).
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title mol­ecular salt. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and, for clarity, only the H atoms involved in these inter­actions have been included.

This compound is another example of a low-melting, protic organic bis­(triflimide) salt. Properties and applications of these protic Ionic Liquids (PILs) have been reviewed (Greaves & Drummond, 2008[Greaves, T. L. & Drummond, C. J. (2008). Chem. Rev. 108, 206-237.]). The related structure of an organic liquid salt formed by a proton-transfer reaction between bis­(tri­fluoro­methane­sulfon­yl)amine and di­methyl­formamide has been reported (Cardenas & O'Hagan, 2016[Cardenas, A. J. P. & O'Hagan, M. (2016). Acta Cryst. E72, 1290-1292.]).

Synthesis and crystallization

Bis(di­methyl­amino)­methane (1.20 g, 11.7 mmol) was added dropwise to bis­((tri­fluoro­methane)­sulfon­yl)amine (3.30 g, 11.7 mmol). The mixture was stirred at room temperature to yield a viscous, colourless liquid. Suitable crystals were obtained by slow cooling (m.p. 280–283 K). 1H NMR (300 MHz, DMSO-d6): δ 2.45 (s, 12H), 3.63 (s, 2H), 6.9 (br, 1H) p.p.m. 13C NMR (75 MHz, DMSO-d6): δ 41.7, 80.7 (4 C), 119.5 (q, J = 322 Hz, 2C) p.p.m. IR (neat): ν 3172 (w), 2807 (w), 1345 (m), 1325 (m), 1179 (s), 1130 (s), 1052 (s), 790 (w), 741 (w), 612 (m), 570 (m), 510 (m) cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal was refined as a non-merohedral twin [180° rotation about a*] with a BASF factor of 0.316 (1).

Table 2
Experimental details

Crystal data
Chemical formula C5H15N2+·C2F6NO4S2
Mr 383.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.5071 (3), 20.9755 (8), 8.9099 (4)
β (°) 90.173 (3)
V3) 1589.88 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.24 × 0.20 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Gemini-R Ultra
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.907, 0.922
No. of measured, independent and observed [I > 2σ(I)] reflections 9624, 2874, 2739
Rint 0.028
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.068, 1.06
No. of reflections 2874
No. of parameters 207
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.29
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).

[(Dimethylamino)methyl]dimethylazanium bis(trifluoromethanesulfonyl)amide top
Crystal data top
C5H15N2+·C2F6NO4S2F(000) = 784
Mr = 383.36Dx = 1.602 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6860 reflections
a = 8.5071 (3) Åθ = 3.0–28.3°
b = 20.9755 (8) ŵ = 0.42 mm1
c = 8.9099 (4) ÅT = 100 K
β = 90.173 (3)°Block, colourless
V = 1589.88 (11) Å30.24 × 0.20 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-R Ultra
diffractometer
2874 independent reflections
Graphite monochromator2739 reflections with I > 2σ(I)
Detector resolution: 10.3822 pixels mm-1Rint = 0.028
ω (1° width) scansθmax = 25.3°, θmin = 3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 108
Tmin = 0.907, Tmax = 0.922k = 2523
9624 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.4067P]
where P = (Fo2 + 2Fc2)/3
2874 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57434 (6)0.14606 (2)0.75790 (7)0.01443 (13)
S20.72783 (7)0.03241 (2)0.83172 (7)0.01478 (13)
F40.95493 (16)0.11210 (6)0.77018 (17)0.0269 (3)
F50.94238 (18)0.03106 (7)0.62282 (16)0.0310 (4)
F30.33176 (17)0.09974 (8)0.89895 (19)0.0346 (4)
F61.03258 (17)0.01977 (8)0.84722 (18)0.0357 (4)
F10.29633 (17)0.11073 (8)0.66095 (18)0.0385 (4)
F20.29664 (19)0.19311 (8)0.8058 (2)0.0440 (5)
O40.73015 (19)0.05025 (7)0.98655 (18)0.0195 (4)
O30.7037 (2)0.03286 (7)0.79420 (19)0.0248 (4)
O10.5888 (2)0.18332 (7)0.62404 (18)0.0221 (4)
O20.6286 (2)0.17340 (7)0.89653 (19)0.0209 (4)
N30.6242 (2)0.07529 (9)0.7246 (2)0.0174 (4)
C70.9264 (3)0.04976 (11)0.7639 (3)0.0202 (5)
C60.3619 (3)0.13647 (12)0.7819 (3)0.0243 (6)
N20.6602 (2)0.13384 (9)0.2322 (2)0.0166 (4)
H20.673 (3)0.1214 (12)0.140 (2)0.02*
N10.9399 (2)0.15256 (9)0.2565 (2)0.0219 (4)
C21.0467 (3)0.15839 (14)0.3829 (3)0.0329 (7)
H2A1.08380.20250.39030.049*
H2B1.13660.12990.36830.049*
H2C0.99180.14670.47540.049*
C40.6675 (3)0.07490 (11)0.3251 (3)0.0206 (5)
H4A0.64920.08580.43060.031*
H4B0.77150.05530.31490.031*
H4C0.58670.04490.29110.031*
C31.0159 (3)0.16873 (17)0.1164 (3)0.0367 (7)
H3A0.94040.16450.03370.055*
H3B1.10470.13990.09960.055*
H3C1.0540.21280.1210.055*
C50.5036 (3)0.16500 (11)0.2400 (3)0.0208 (5)
H5A0.42190.13410.21280.031*
H5B0.50030.20110.17010.031*
H5C0.48540.18040.34240.031*
C10.7886 (3)0.18053 (11)0.2756 (3)0.0218 (5)
H1A0.78020.21920.21240.026*
H1B0.77510.19340.38160.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0148 (3)0.0143 (3)0.0142 (3)0.0019 (2)0.0018 (3)0.0008 (2)
S20.0148 (3)0.0135 (3)0.0160 (3)0.0019 (2)0.0006 (2)0.0001 (2)
F40.0225 (7)0.0283 (8)0.0300 (8)0.0057 (6)0.0071 (6)0.0016 (7)
F50.0340 (8)0.0377 (9)0.0214 (8)0.0056 (7)0.0094 (6)0.0062 (6)
F30.0291 (8)0.0415 (10)0.0334 (9)0.0058 (7)0.0131 (7)0.0096 (8)
F60.0195 (7)0.0522 (10)0.0354 (9)0.0134 (7)0.0000 (7)0.0087 (8)
F10.0197 (8)0.0589 (11)0.0371 (9)0.0018 (7)0.0073 (7)0.0010 (9)
F20.0282 (9)0.0378 (9)0.0661 (13)0.0166 (7)0.0141 (8)0.0004 (8)
O40.0220 (9)0.0202 (9)0.0164 (8)0.0048 (7)0.0021 (7)0.0015 (7)
O30.0300 (9)0.0152 (8)0.0293 (10)0.0008 (7)0.0009 (8)0.0003 (7)
O10.0281 (10)0.0203 (9)0.0180 (9)0.0019 (7)0.0051 (7)0.0026 (7)
O20.0270 (9)0.0178 (9)0.0180 (9)0.0019 (7)0.0004 (7)0.0028 (7)
N30.0182 (9)0.0174 (10)0.0166 (10)0.0030 (8)0.0027 (8)0.0041 (8)
C70.0160 (11)0.0263 (13)0.0183 (13)0.0043 (10)0.0025 (11)0.0012 (11)
C60.0187 (12)0.0254 (14)0.0288 (16)0.0052 (10)0.0018 (11)0.0024 (11)
N20.0193 (10)0.0178 (10)0.0128 (11)0.0000 (7)0.0025 (9)0.0026 (8)
N10.0168 (10)0.0270 (11)0.0218 (10)0.0001 (8)0.0021 (10)0.0036 (10)
C20.0278 (15)0.0428 (17)0.0281 (15)0.0009 (13)0.0014 (12)0.0035 (13)
C40.0227 (13)0.0173 (12)0.0220 (13)0.0001 (9)0.0021 (11)0.0022 (11)
C30.0265 (15)0.063 (2)0.0212 (15)0.0016 (14)0.0039 (12)0.0037 (14)
C50.0192 (12)0.0198 (12)0.0232 (13)0.0001 (9)0.0002 (11)0.0009 (12)
C10.0212 (12)0.0188 (12)0.0255 (14)0.0020 (10)0.0019 (11)0.0047 (10)
Geometric parameters (Å, º) top
S1—O11.4315 (17)N1—C11.425 (3)
S1—O21.4368 (18)N1—C31.448 (3)
S1—N31.5722 (19)N1—C21.450 (3)
S1—C61.832 (3)C2—H2A0.98
S2—O31.4240 (16)C2—H2B0.98
S2—O41.4294 (17)C2—H2C0.98
S2—N31.578 (2)C4—H4A0.98
S2—C71.832 (2)C4—H4B0.98
F4—C71.331 (3)C4—H4C0.98
F5—C71.324 (3)C3—H3A0.98
F3—C61.322 (3)C3—H3B0.98
F6—C71.326 (3)C3—H3C0.98
F1—C61.327 (3)C5—H5A0.98
F2—C61.329 (3)C5—H5B0.98
N2—C51.486 (3)C5—H5C0.98
N2—C41.489 (3)C1—H1A0.99
N2—C11.516 (3)C1—H1B0.99
N2—H20.869 (17)
O1—S1—O2118.04 (10)C1—N1—C2115.9 (2)
O1—S1—N3109.54 (10)C3—N1—C2111.67 (19)
O2—S1—N3116.91 (10)N1—C2—H2A109.5
O1—S1—C6104.14 (11)N1—C2—H2B109.5
O2—S1—C6104.96 (11)H2A—C2—H2B109.5
N3—S1—C6100.69 (11)N1—C2—H2C109.5
O3—S2—O4118.68 (10)H2A—C2—H2C109.5
O3—S2—N3109.04 (10)H2B—C2—H2C109.5
O4—S2—N3116.12 (10)N2—C4—H4A109.5
O3—S2—C7104.23 (11)N2—C4—H4B109.5
O4—S2—C7104.85 (11)H4A—C4—H4B109.5
N3—S2—C7101.60 (11)N2—C4—H4C109.5
S1—N3—S2125.08 (13)H4A—C4—H4C109.5
F5—C7—F6108.61 (19)H4B—C4—H4C109.5
F5—C7—F4108.18 (19)N1—C3—H3A109.5
F6—C7—F4108.59 (19)N1—C3—H3B109.5
F5—C7—S2110.58 (16)H3A—C3—H3B109.5
F6—C7—S2110.36 (16)N1—C3—H3C109.5
F4—C7—S2110.45 (15)H3A—C3—H3C109.5
F3—C6—F1108.8 (2)H3B—C3—H3C109.5
F3—C6—F2108.2 (2)N2—C5—H5A109.5
F1—C6—F2108.6 (2)N2—C5—H5B109.5
F3—C6—S1110.45 (17)H5A—C5—H5B109.5
F1—C6—S1111.24 (17)N2—C5—H5C109.5
F2—C6—S1109.46 (18)H5A—C5—H5C109.5
C5—N2—C4112.00 (19)H5B—C5—H5C109.5
C5—N2—C1110.43 (18)N1—C1—N2110.71 (18)
C4—N2—C1111.44 (19)N1—C1—H1A109.5
C5—N2—H2107.0 (17)N2—C1—H1A109.5
C4—N2—H2105.7 (17)N1—C1—H1B109.5
C1—N2—H2110.0 (17)N2—C1—H1B109.5
C1—N1—C3114.3 (2)H1A—C1—H1B108.1
O1—S1—N3—S2138.03 (15)N3—S2—C7—F456.75 (17)
O2—S1—N3—S20.3 (2)O1—S1—C6—F3176.83 (16)
C6—S1—N3—S2112.65 (16)O2—S1—C6—F358.5 (2)
O3—S2—N3—S1159.72 (14)N3—S1—C6—F363.3 (2)
O4—S2—N3—S122.45 (19)O1—S1—C6—F155.95 (19)
C7—S2—N3—S190.63 (16)O2—S1—C6—F1179.36 (16)
O3—S2—C7—F550.34 (18)N3—S1—C6—F157.55 (19)
O4—S2—C7—F5175.75 (15)O1—S1—C6—F264.1 (2)
N3—S2—C7—F562.96 (18)O2—S1—C6—F260.59 (19)
O3—S2—C7—F669.86 (18)N3—S1—C6—F2177.60 (18)
O4—S2—C7—F655.55 (19)C3—N1—C1—N297.3 (2)
N3—S2—C7—F6176.83 (17)C2—N1—C1—N2130.6 (2)
O3—S2—C7—F4170.06 (16)C5—N2—C1—N1175.3 (2)
O4—S2—C7—F464.54 (18)C4—N2—C1—N159.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.87 (2)2.08 (2)2.868 (3)150 (2)
N2—H2···O2i0.87 (2)2.46 (2)3.115 (2)133 (2)
C5—H5A···O3ii0.982.383.299 (3)156
C4—H4C···O3ii0.982.593.444 (3)145
C5—H5B···O1iii0.982.573.423 (3)145
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2.
 

References

First citationBentivoglio, G., Schwärzler, A., Wurst, K., Kahlenberg, V., Nauer, G., Bonn, G., Schottenberger, H. & Laus, G. (2009). J. Chem. Crystallogr. 39, 662–668.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCardenas, A. J. P. & O'Hagan, M. (2016). Acta Cryst. E72, 1290–1292.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreaves, T. L. & Drummond, C. J. (2008). Chem. Rev. 108, 206–237.  CrossRef PubMed CAS Google Scholar
First citationLaus, G., Hummel, M., Többens, D. M., Gelbrich, T., Kahlenberg, V., Wurst, K., Griesser, U. J. & Schottenberger, H. (2011). CrystEngComm, 13, 5439–5446.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds