organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-4-(Benzo[d]thiazol-2-yl)-N-(pyridin-3-ylmethyl­idene)aniline hemihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: 1532484496@qq.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 September 2016; accepted 11 October 2016; online 28 October 2016)

The title compound, C19H13N3S·0.5H2O, is a benzo­thia­zole derivative that crystallized as a hemihydrate, the water O atom being situated on a twofold rotation axis. The dihedral angles between the central benzene ring and the benzo­thia­zole (r.m.s. deviation = 0.012 Å) and pyridine rings are 3.57 (6) and 10.12 (8)°, respectively, indicating that the mol­ecule is nearly planar. The conformation about the N=C bond is E. In the crystal, mol­ecules are linked by Owater—H⋯Npyridine hydrogen bonds, forming dimers, which in turn are linked by C—H⋯O hydrogen bonds into layers parallel to the ab plane. The layers are linked by offset ππ inter­actions, forming a three-dimensional network [shortest inter­centroid distance = 3.721 (2) Å].

(E)-4-(benzothiazol-2-yl)-N-(pyridin-3-ylmethylene)aniline

What is it about?

Benzothiazole derivatives are considered important compounds because of their wide range of biological activities.

Why is it important?

Benzothiazole derivatives are considered important compounds because of their wide range of biological activities and also because of its high electron affinity and good planarity making it an appropriate buliding block in construction of optical material (Liu et al., 2013;). Herein, in this study, we report the crystal structure of the title compound.

Read more on Kudos…
The following have contributed to this page:
Li Hong
3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzo­thia­zole derivatives are considered to be important because of their wide range of biological activities (Bakthadoss & Selvakumar, 2016[Bakthadoss, M. & Selvakumar, R. (2016). J. Org. Chem. 81, 3391-3399.]), and also because of their high electron affinity and good planarity making them appropriate building blocks in the construction of optical materials (Liu et al., 2013[Liu, D., Ren, H., Deng, L. & Zhang, T. (2013). Appl. Mater. Interfaces, 5, 4937-4944.]). Herein, we report the synthesis and crystal structure of the title benzo­thia­zole derivative.

The mol­ecular structure is illustrated in Fig. 1[link]. The mol­ecule is relatively planar with dihedral angles between the central benzene ring (C8–C13) and the benzo­thia­zole (r.m.s. deviation = 0.012 Å) and pyridine rings being 3.57 (6) and 10.12 (8)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by Owater—H⋯Npyridine hydrogen bonds, forming dimers, which in turn are linked by C—H⋯Owater hydrogen bonds into layers parallel to the ab plane (Table 1[link] and Fig. 2[link]). The layers are linked by offset ππ inter­actions forming a three-dimensional network [shortest inter­centroid distance Cg2⋯Cg3i = 3.721 (2) Å; Cg2 and Cg3 are the centroids of rings C1–C6 and N3/C15–C19, respectively; symmetry code: (i) −x + [{3\over 2}], −y + [{1\over 2}], −z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3 0.88 (2) 2.03 (2) 2.894 (2) 170 (2)
C2—H2⋯O1i 0.93 2.51 3.245 (3) 136
Symmetry code: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and for clarity, only H atoms H1 and H2 have been included.

Synthesis and crystallization

3-Pyridine­carboxaldehyde (0.29 g, 2.7 mmol) was dissolved in 20 ml of ethanol and added dropwise into 20 ml of an ethanol solution of 4-(benzo­thia­zol-2-yl)aniline (0.61 g, 2.7 mmol). The mixture was stirred at room temperature, and a yellow solid precipitate gradually appeared after 30 min. On completion of the reaction, monitored by TLC, the solid was filtered and recrystallized from ethanol solution to produce block-like yellow crystals (yield 78.04%, 0.66 g).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H13N3S·0.5H2O
Mr 324.39
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 34.026 (5), 10.447 (5), 8.967 (5)
β (°) 97.601 (5)
V3) 3159 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.23 × 0.22 × 0.21
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.953, 0.957
No. of measured, independent and observed [I > 2σ(I)] reflections 11032, 2794, 2444
Rint 0.019
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.131, 1.09
No. of reflections 2794
No. of parameters 217
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.23
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-4-(Benzo[d]thiazol-2-yl)-N-(pyridin-3-ylmethylidene)aniline hemihydrate top
Crystal data top
C19H13N3S·0.5H2OF(000) = 1352
Mr = 324.39Dx = 1.364 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 5584 reflections
a = 34.026 (5) Åθ = 2.4–26.7°
b = 10.447 (5) ŵ = 0.21 mm1
c = 8.967 (5) ÅT = 296 K
β = 97.601 (5)°Block, yellow
V = 3159 (2) Å30.23 × 0.22 × 0.21 mm
Z = 8
Data collection top
Bruker SMART CCD area detector
diffractometer
2794 independent reflections
Radiation source: fine-focus sealed tube2444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
phi and ω scansθmax = 25.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 3740
Tmin = 0.953, Tmax = 0.957k = 1212
11032 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2794 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.640666 (11)0.04206 (4)0.17319 (4)0.0537 (2)
N10.66886 (3)0.21158 (11)0.37023 (13)0.0455 (3)
O11.00000.35524 (18)0.25000.0718 (5)
C60.63000 (4)0.18945 (13)0.39216 (15)0.0449 (3)
N20.83432 (4)0.14991 (12)0.10104 (14)0.0518 (3)
C10.60952 (4)0.09943 (13)0.29545 (16)0.0477 (4)
C70.67836 (4)0.14078 (12)0.26047 (15)0.0424 (3)
C110.79462 (4)0.14324 (13)0.13047 (16)0.0459 (4)
C160.89930 (5)0.06086 (14)0.16991 (18)0.0546 (4)
H160.88170.01510.23820.066*
C150.88592 (4)0.12279 (13)0.05054 (15)0.0455 (4)
C140.84443 (4)0.11634 (14)0.02344 (16)0.0475 (4)
H140.82530.08700.09930.057*
C80.71788 (4)0.14141 (12)0.21252 (15)0.0420 (3)
C50.61062 (5)0.24786 (15)0.50285 (18)0.0539 (4)
H50.62370.30790.56800.065*
C120.76579 (5)0.06122 (15)0.0601 (2)0.0570 (4)
H120.77200.00630.01500.068*
C130.72815 (5)0.06029 (15)0.10019 (18)0.0546 (4)
H130.70920.00480.05170.066*
C100.78445 (5)0.22285 (16)0.24345 (18)0.0564 (4)
H100.80350.27730.29320.068*
N30.95197 (4)0.19941 (15)0.02959 (16)0.0677 (4)
C40.57205 (5)0.21506 (17)0.51363 (19)0.0616 (4)
H40.55890.25390.58620.074*
C20.57032 (5)0.06641 (16)0.3070 (2)0.0598 (4)
H20.55680.00700.24200.072*
C90.74685 (4)0.22258 (15)0.28291 (18)0.0542 (4)
H90.74070.27760.35800.065*
C190.91367 (5)0.19251 (15)0.04519 (18)0.0562 (4)
H190.90490.23680.12450.067*
C170.93888 (5)0.06715 (17)0.1874 (2)0.0655 (5)
H170.94840.02550.26700.079*
C30.55236 (5)0.12481 (17)0.4178 (2)0.0653 (5)
H30.52640.10320.42880.078*
C180.96381 (5)0.13569 (17)0.0857 (2)0.0670 (5)
H180.99060.13820.09720.080*
H10.9871 (7)0.300 (2)0.188 (3)0.107 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0521 (3)0.0531 (3)0.0567 (3)0.00853 (15)0.0102 (2)0.01417 (16)
N10.0479 (7)0.0446 (6)0.0440 (7)0.0002 (5)0.0058 (5)0.0019 (5)
O10.0611 (11)0.0734 (12)0.0771 (13)0.0000.0049 (9)0.000
C60.0478 (8)0.0437 (7)0.0428 (8)0.0019 (6)0.0043 (6)0.0062 (6)
N20.0454 (7)0.0584 (8)0.0514 (8)0.0014 (5)0.0060 (6)0.0009 (6)
C10.0515 (9)0.0448 (7)0.0472 (8)0.0021 (6)0.0078 (6)0.0016 (6)
C70.0482 (8)0.0392 (7)0.0396 (7)0.0012 (5)0.0045 (6)0.0029 (6)
C110.0445 (8)0.0477 (8)0.0446 (8)0.0017 (6)0.0029 (6)0.0037 (6)
C160.0568 (10)0.0552 (8)0.0528 (9)0.0105 (7)0.0105 (7)0.0033 (7)
C150.0474 (8)0.0446 (7)0.0438 (8)0.0009 (6)0.0037 (6)0.0086 (6)
C140.0451 (8)0.0510 (8)0.0450 (8)0.0007 (6)0.0005 (6)0.0045 (6)
C80.0459 (8)0.0408 (7)0.0385 (7)0.0007 (5)0.0027 (6)0.0037 (5)
C50.0565 (9)0.0563 (9)0.0496 (9)0.0048 (7)0.0096 (7)0.0026 (7)
C120.0573 (10)0.0568 (8)0.0595 (9)0.0051 (7)0.0170 (7)0.0154 (7)
C130.0513 (9)0.0559 (8)0.0576 (9)0.0098 (6)0.0108 (7)0.0135 (7)
C100.0497 (9)0.0625 (9)0.0564 (9)0.0081 (7)0.0043 (7)0.0131 (7)
N30.0520 (8)0.0852 (10)0.0645 (9)0.0153 (7)0.0024 (7)0.0035 (8)
C40.0596 (10)0.0702 (10)0.0577 (10)0.0102 (8)0.0175 (8)0.0050 (8)
C20.0514 (9)0.0627 (9)0.0658 (10)0.0098 (7)0.0101 (8)0.0023 (8)
C90.0539 (9)0.0579 (9)0.0511 (9)0.0044 (7)0.0084 (7)0.0143 (7)
C190.0537 (9)0.0663 (9)0.0481 (9)0.0056 (7)0.0046 (7)0.0020 (7)
C170.0654 (11)0.0642 (10)0.0715 (12)0.0072 (8)0.0259 (9)0.0082 (8)
C30.0517 (9)0.0744 (11)0.0721 (11)0.0022 (8)0.0164 (8)0.0085 (9)
C180.0498 (9)0.0773 (11)0.0761 (12)0.0068 (8)0.0163 (9)0.0017 (9)
Geometric parameters (Å, º) top
S1—C11.7297 (16)C8—C131.396 (2)
S1—C71.7482 (14)C5—C41.372 (2)
N1—C71.3056 (18)C5—H50.9300
N1—C61.3818 (19)C12—C131.375 (2)
O1—H10.87 (2)C12—H120.9300
C6—C11.401 (2)C13—H130.9300
C6—C51.402 (2)C10—C91.372 (2)
N2—C141.261 (2)C10—H100.9300
N2—C111.4118 (18)N3—C191.331 (2)
C1—C21.394 (2)N3—C181.336 (2)
C7—C81.465 (2)C4—C31.387 (3)
C11—C101.389 (2)C4—H40.9300
C11—C121.389 (2)C2—C31.377 (2)
C16—C171.378 (2)C2—H20.9300
C16—C151.378 (2)C9—H90.9300
C16—H160.9300C19—H190.9300
C15—C191.394 (2)C17—C181.364 (2)
C15—C141.465 (2)C17—H170.9300
C14—H140.9300C3—H30.9300
C8—C91.387 (2)C18—H180.9300
C1—S1—C789.23 (7)C13—C12—H12119.6
C7—N1—C6110.47 (12)C11—C12—H12119.6
N1—C6—C1115.55 (12)C12—C13—C8120.99 (14)
N1—C6—C5125.20 (13)C12—C13—H13119.5
C1—C6—C5119.25 (13)C8—C13—H13119.5
C14—N2—C11122.13 (12)C9—C10—C11121.16 (14)
C2—C1—C6121.50 (14)C9—C10—H10119.4
C2—C1—S1129.30 (13)C11—C10—H10119.4
C6—C1—S1109.19 (11)C19—N3—C18117.01 (15)
N1—C7—C8123.18 (12)C5—C4—C3120.96 (15)
N1—C7—S1115.56 (11)C5—C4—H4119.5
C8—C7—S1121.26 (10)C3—C4—H4119.5
C10—C11—C12118.12 (14)C3—C2—C1117.67 (16)
C10—C11—N2116.32 (13)C3—C2—H2121.2
C12—C11—N2125.52 (13)C1—C2—H2121.2
C17—C16—C15119.62 (15)C10—C9—C8120.97 (14)
C17—C16—H16120.2C10—C9—H9119.5
C15—C16—H16120.2C8—C9—H9119.5
C16—C15—C19117.20 (14)N3—C19—C15123.79 (15)
C16—C15—C14122.10 (13)N3—C19—H19118.1
C19—C15—C14120.70 (13)C15—C19—H19118.1
N2—C14—C15121.06 (13)C18—C17—C16118.65 (16)
N2—C14—H14119.5C18—C17—H17120.7
C15—C14—H14119.5C16—C17—H17120.7
C9—C8—C13117.97 (14)C2—C3—C4121.61 (15)
C9—C8—C7119.58 (13)C2—C3—H3119.2
C13—C8—C7122.42 (12)C4—C3—H3119.2
C4—C5—C6119.01 (15)N3—C18—C17123.70 (16)
C4—C5—H5120.5N3—C18—H18118.2
C6—C5—H5120.5C17—C18—H18118.2
C13—C12—C11120.77 (14)
C7—N1—C6—C10.22 (17)N1—C6—C5—C4178.82 (13)
C7—N1—C6—C5178.72 (13)C1—C6—C5—C40.1 (2)
N1—C6—C1—C2178.88 (13)C10—C11—C12—C130.8 (2)
C5—C6—C1—C20.1 (2)N2—C11—C12—C13178.31 (14)
N1—C6—C1—S10.18 (16)C11—C12—C13—C80.1 (3)
C5—C6—C1—S1179.19 (11)C9—C8—C13—C120.3 (2)
C7—S1—C1—C2178.59 (16)C7—C8—C13—C12178.52 (14)
C7—S1—C1—C60.39 (11)C12—C11—C10—C91.2 (2)
C6—N1—C7—C8178.89 (11)N2—C11—C10—C9178.94 (13)
C6—N1—C7—S10.54 (15)C6—C5—C4—C30.5 (2)
C1—S1—C7—N10.56 (11)C6—C1—C2—C30.5 (2)
C1—S1—C7—C8178.88 (11)S1—C1—C2—C3178.41 (12)
C14—N2—C11—C10157.22 (14)C11—C10—C9—C80.9 (2)
C14—N2—C11—C1225.2 (2)C13—C8—C9—C100.1 (2)
C17—C16—C15—C191.7 (2)C7—C8—C9—C10178.17 (14)
C17—C16—C15—C14178.10 (14)C18—N3—C19—C150.4 (3)
C11—N2—C14—C15179.28 (12)C16—C15—C19—N31.8 (2)
C16—C15—C14—N2164.97 (15)C14—C15—C19—N3178.03 (14)
C19—C15—C14—N214.8 (2)C15—C16—C17—C180.4 (3)
N1—C7—C8—C91.6 (2)C1—C2—C3—C41.1 (3)
S1—C7—C8—C9178.97 (11)C5—C4—C3—C21.2 (3)
N1—C7—C8—C13176.59 (13)C19—N3—C18—C171.1 (3)
S1—C7—C8—C132.81 (19)C16—C17—C18—N31.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.88 (2)2.03 (2)2.894 (2)170 (2)
C2—H2···O1i0.932.513.245 (3)136
Symmetry code: (i) x1/2, y1/2, z.
 

Acknowledgements

This work was supported by the Graduate Students Innovative Program of Anhui University (J18515024, J18515019, 201310357155).

References

First citationBakthadoss, M. & Selvakumar, R. (2016). J. Org. Chem. 81, 3391–3399.  CrossRef CAS PubMed Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, D., Ren, H., Deng, L. & Zhang, T. (2013). Appl. Mater. Interfaces, 5, 4937–4944.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds