organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146
RETRACTED ARTICLE
This article has been retracted. To view the retraction notice, click here.

Retracted: 4-[(4-Hy­dr­oxy­meth­yl-2H-1,2,3-triazol-2-yl)methyl]-6,8-di­methyl-2H-chromen-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, India
*Correspondence e-mail: mahendra@physics.uni-mysore.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 October 2016; accepted 15 October 2016; online 21 October 2016)

In the title compound, C15H15N3O3, the dihedral angle between the triazole ring and coumarin ring system [r.m.s. deviation = 0.040 Å] is 77.40 (6)°. The O atom of the hy­droxy­methyl group deviates from the triazole ring plane by 1.345 (1) Å. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(22) loops; C—H⋯O and C—H⋯N inter­actions link the dimers into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coumarin derivatives represent an important class of natural and synthetic heterocycles that are often linked to a broad array of biological activities (Gaspar et al., 2015[Gaspar, A., Milhazes, N., Santana, L., Uriarte, E., Borges, F. & Matos, M. J. (2015). Curr. Top. Med. Chem. 15, 432-445.]). As part of our ongoing studies of coumarin–triazole derivatives (El-Khatatneh et al., 2016[El-Khatatneh, N., Chandra Shamala, D., Shivashankarb, K. & Mahendra, M. (2016). IUCrData, 1, x161618.]), the title compound (Fig. 1[link]) was synthesized and its crystal structure is now reported.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with 50% probability displacement ellipsoids.

The dihedral angle between the triazole ring and coumarin ring system [r.m.s. deviation = 0.040 Å] is 77.40 (6)°. Key inter-ring torsion angles include 97.34 (15)° for N19—N15—C14—C13) and −173.30 (13)° for C6—C13—C14—N15. The O atom of the hy­droxy­methyl group is displaced from the triazole ring plane by 1.345 (1) Å.

In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds (Table 1[link]) generate R22(22) loops. The dimers are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, generating a three-dimensional network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O21—H21⋯O11i 0.82 2.10 2.9155 (19) 176
C14—H14A⋯N19ii 0.97 2.55 3.486 (2) 162
C14—H14B⋯N18iii 0.97 2.41 3.344 (2) 162
C16—H16⋯O21iii 0.93 2.47 3.284 (2) 146
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+2; (iii) x+1, y, z.
[Figure 2]
Figure 2
The packing viewed along [100] with hydrogen bonds indicated by dashed lines.

Synthesis and crystallization

A mixture of propargyl alcohol (1.9 mmol), sodium azide (0.14 g, 2.0 mmol), copper(I) iodide (10 mol%) and tri­ethyl­amine (0.19 g, 1.9 mmol) in 20 ml of acetone was taken in a round-bottom flask and stirred for 1 h. To this mixture, 4-bromo­methyl­coumarin (1.9 mmol) was added and the stirring continued for 8 h (the reaction was monitored by TLC). After the completion of the reaction, the copper catalyst was filtered through celite and the product was extracted with diethyl ether (3.10 ml). The solvent was removed under vacuum. The crude product was dried and recrystallized from ethyl acetate solution to give colourless blocks.

Yield 92%; colourless solid; m.p. 210–212 °C; IR (KBr, cm−1): 1742 cm−1 (lactone C=O), 3311 cm−1 (OH); 1H NMR (400 MHz, CDCl3): δ 1.70 (s, 1H, OH), 2.37 (s, 3H, C6—CH3) 2.42 (s, 3H, C8—CH3) 4.83 (s, 2H, –CH2O–), 5.43 (s, 1H, C3—H), 5.70 (s, 2H, –CH2N–), 7.21-7.24 (m, 1H, C7—H), 7.60 (s, 1H, C5—H), 7.75 (s, 1H, Tr—H) p.p.m. 13C NMR (100 MHz, DMSO-d6): δ 15.0, 20.3, 49.0, 55.0, 113.0, 116.5, 122.0, 123.8, 125.3, 133.1, 134.5, 148.6, 149.5, 150.6, 159.5 p.p.m. Analysis C15H15N3O3. Calculated for: C, 63.15; H, 5.30; N, 14.73%. Found: C, 63.08; H, 5.26; N, 14.68%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H15N3O3
Mr 285.30
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.0265 (16), 11.062 (3), 11.848 (3)
α, β, γ (°) 108.812 (7), 103.950 (8), 100.848 (8)
V3) 694.5 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.80
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker X8 Proteum
No. of measured, independent and observed [I > 2σ(I)] reflections 8218, 2217, 2142
Rint 0.030
(sin θ/λ)max−1) 0.587
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.04
No. of reflections 2217
No. of parameters 194
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.14
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/4 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2016/4 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016/4 (Sheldrick, 2015) and PLATON (Spek, 2009).

4-[(4-Hydroxymethyl-2H-1,2,3-triazol-2-yl)methyl]-6,8-dimethyl-2H-chromen-2-one top
Crystal data top
C15H15N3O3Z = 2
Mr = 285.30F(000) = 300
Triclinic, P1Dx = 1.364 Mg m3
a = 6.0265 (16) ÅCu Kα radiation, λ = 1.54178 Å
b = 11.062 (3) ÅCell parameters from 2217 reflections
c = 11.848 (3) Åθ = 7.2–64.7°
α = 108.812 (7)°µ = 0.80 mm1
β = 103.950 (8)°T = 293 K
γ = 100.848 (8)°Block, colourless
V = 694.5 (3) Å30.30 × 0.20 × 0.10 mm
Data collection top
Bruker X8 Proteum
diffractometer
2142 reflections with I > 2σ(I)
Radiation source: Bruker MicroStar microfocus rotating anodeRint = 0.030
Helios multilayer optics monochromatorθmax = 64.7°, θmin = 7.2°
Detector resolution: 18.4 pixels mm-1h = 67
φ and ω scansk = 1212
8218 measured reflectionsl = 1313
2217 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.126P]
where P = (Fo2 + 2Fc2)/3
2217 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.14 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O90.37402 (19)0.76949 (10)0.45209 (9)0.0574 (3)
O210.04447 (19)1.36437 (12)0.82987 (11)0.0658 (3)
H210.0550311.3053210.7639280.099*
O110.0867 (2)0.85556 (13)0.39863 (11)0.0757 (4)
C60.6271 (2)0.84311 (13)0.66749 (13)0.0452 (3)
N190.2818 (2)1.08969 (13)0.92565 (13)0.0596 (4)
N150.44456 (19)1.12365 (11)0.87345 (10)0.0450 (3)
C130.5024 (2)0.94266 (13)0.70280 (13)0.0458 (3)
C50.5580 (3)0.75918 (14)0.54097 (13)0.0485 (3)
N180.1788 (2)1.18550 (14)0.94803 (13)0.0598 (4)
C10.8117 (3)0.82578 (14)0.75347 (14)0.0500 (4)
H10.8601250.8804750.8385050.060*
C120.3208 (3)0.94819 (14)0.61462 (14)0.0523 (4)
H120.2402451.0110610.6382650.063*
C40.6663 (3)0.66137 (15)0.49641 (14)0.0560 (4)
C20.9229 (3)0.72895 (15)0.71413 (15)0.0542 (4)
C170.2756 (2)1.28047 (13)0.91088 (12)0.0454 (3)
C200.1846 (3)1.39858 (15)0.91808 (14)0.0556 (4)
H20A0.1782281.4408121.0023590.067*
H20B0.2954131.4627940.9032030.067*
C140.5903 (3)1.03629 (14)0.83948 (13)0.0517 (4)
H14A0.5977590.9837790.8911840.062*
H14B0.7514441.0908280.8592030.062*
C100.2480 (3)0.85893 (15)0.48426 (14)0.0552 (4)
C30.8477 (3)0.64959 (16)0.58574 (16)0.0614 (4)
H30.9236010.5852430.5586730.074*
C160.4471 (2)1.24121 (13)0.86378 (13)0.0477 (3)
H160.5451381.2865130.8316820.057*
C71.1162 (3)0.70920 (19)0.80743 (18)0.0718 (5)
H7A1.1688040.6362560.7642470.108*0.31 (2)
H7B1.0550760.6897180.8692940.108*0.31 (2)
H7C1.2482940.7890240.8483660.108*0.31 (2)
H7D1.1459790.7737420.8903570.108*0.69 (2)
H7E1.2597070.7202810.7853110.108*0.69 (2)
H7F1.0664880.6209750.8062390.108*0.69 (2)
C80.5915 (4)0.57393 (19)0.35871 (16)0.0760 (5)
H8A0.6901440.6130720.3195540.114*
H8B0.4275230.5657340.3188150.114*
H8C0.6091210.4872130.3498910.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O90.0673 (7)0.0594 (6)0.0445 (5)0.0320 (5)0.0145 (5)0.0135 (4)
O210.0540 (6)0.0732 (7)0.0627 (7)0.0362 (5)0.0113 (5)0.0124 (5)
O110.0765 (8)0.0868 (8)0.0507 (6)0.0440 (7)0.0024 (6)0.0120 (6)
C60.0468 (7)0.0422 (7)0.0487 (7)0.0192 (6)0.0170 (6)0.0156 (6)
N190.0560 (7)0.0609 (7)0.0744 (9)0.0269 (6)0.0276 (6)0.0316 (6)
N150.0420 (6)0.0456 (6)0.0436 (6)0.0198 (5)0.0113 (5)0.0105 (5)
C130.0457 (7)0.0434 (7)0.0477 (7)0.0186 (6)0.0143 (6)0.0143 (6)
C50.0549 (8)0.0481 (7)0.0481 (8)0.0228 (6)0.0189 (6)0.0197 (6)
N180.0546 (7)0.0692 (8)0.0696 (8)0.0322 (6)0.0297 (6)0.0294 (7)
C10.0504 (8)0.0486 (7)0.0508 (8)0.0237 (6)0.0155 (6)0.0144 (6)
C120.0518 (8)0.0524 (8)0.0514 (8)0.0272 (6)0.0136 (6)0.0136 (6)
C40.0723 (10)0.0526 (8)0.0518 (8)0.0309 (7)0.0283 (7)0.0180 (7)
C20.0564 (8)0.0527 (8)0.0607 (9)0.0290 (7)0.0213 (7)0.0218 (7)
C170.0420 (7)0.0472 (7)0.0401 (7)0.0183 (6)0.0094 (5)0.0082 (5)
C200.0553 (8)0.0534 (8)0.0509 (8)0.0274 (6)0.0126 (6)0.0080 (6)
C140.0488 (8)0.0502 (8)0.0502 (8)0.0271 (6)0.0099 (6)0.0093 (6)
C100.0560 (8)0.0583 (8)0.0493 (8)0.0268 (7)0.0117 (7)0.0163 (7)
C30.0766 (11)0.0591 (9)0.0647 (9)0.0434 (8)0.0329 (8)0.0237 (7)
C160.0467 (7)0.0452 (7)0.0535 (8)0.0203 (6)0.0196 (6)0.0156 (6)
C70.0739 (11)0.0756 (11)0.0714 (11)0.0479 (9)0.0187 (9)0.0242 (9)
C80.1070 (15)0.0748 (11)0.0542 (10)0.0497 (11)0.0331 (10)0.0167 (8)
Geometric parameters (Å, º) top
O9—C101.3712 (18)C4—C81.505 (2)
O9—C51.3833 (18)C2—C31.395 (2)
O21—C201.4118 (18)C2—C71.503 (2)
O21—H210.8200C17—C161.3635 (19)
O11—C101.2089 (19)C17—C201.4952 (19)
C6—C51.392 (2)C20—H20A0.9700
C6—C11.404 (2)C20—H20B0.9700
C6—C131.4554 (18)C14—H14A0.9700
N19—N181.3135 (18)C14—H14B0.9700
N19—N151.3375 (17)C3—H30.9300
N15—C161.3395 (18)C16—H160.9300
N15—C141.4513 (16)C7—H7A0.9600
C13—C121.345 (2)C7—H7B0.9600
C13—C141.5080 (19)C7—H7C0.9600
C5—C41.392 (2)C7—H7D0.9600
N18—C171.352 (2)C7—H7E0.9600
C1—C21.3829 (19)C7—H7F0.9600
C1—H10.9300C8—H8A0.9600
C12—C101.442 (2)C8—H8B0.9600
C12—H120.9300C8—H8C0.9600
C4—C31.384 (2)
C10—O9—C5122.09 (11)N15—C14—H14B108.6
C20—O21—H21109.5C13—C14—H14B108.6
C5—C6—C1117.93 (12)H14A—C14—H14B107.6
C5—C6—C13118.08 (12)O11—C10—O9115.82 (13)
C1—C6—C13123.98 (12)O11—C10—C12126.45 (14)
N18—N19—N15106.63 (11)O9—C10—C12117.73 (13)
N19—N15—C16110.78 (11)C4—C3—C2123.61 (13)
N19—N15—C14119.15 (12)C4—C3—H3118.2
C16—N15—C14130.04 (12)C2—C3—H3118.2
C12—C13—C6119.78 (12)N15—C16—C17105.51 (12)
C12—C13—C14123.64 (12)N15—C16—H16127.2
C6—C13—C14116.58 (11)C17—C16—H16127.2
O9—C5—C6120.68 (12)C2—C7—H7A109.5
O9—C5—C4116.33 (13)C2—C7—H7B109.5
C6—C5—C4122.99 (13)H7A—C7—H7B109.5
N19—N18—C17109.68 (12)C2—C7—H7C109.5
C2—C1—C6121.27 (14)H7A—C7—H7C109.5
C2—C1—H1119.4H7B—C7—H7C109.5
C6—C1—H1119.4C2—C7—H7D109.5
C13—C12—C10121.56 (13)H7A—C7—H7D141.1
C13—C12—H12119.2H7B—C7—H7D56.3
C10—C12—H12119.2H7C—C7—H7D56.3
C3—C4—C5116.29 (14)C2—C7—H7E109.5
C3—C4—C8121.84 (14)H7A—C7—H7E56.3
C5—C4—C8121.87 (14)H7B—C7—H7E141.1
C1—C2—C3117.89 (14)H7C—C7—H7E56.3
C1—C2—C7120.78 (14)H7D—C7—H7E109.5
C3—C2—C7121.33 (13)C2—C7—H7F109.5
N18—C17—C16107.39 (12)H7A—C7—H7F56.3
N18—C17—C20121.83 (13)H7B—C7—H7F56.3
C16—C17—C20130.68 (14)H7C—C7—H7F141.1
O21—C20—C17112.70 (12)H7D—C7—H7F109.5
O21—C20—H20A109.1H7E—C7—H7F109.5
C17—C20—H20A109.1C4—C8—H8A109.5
O21—C20—H20B109.1C4—C8—H8B109.5
C17—C20—H20B109.1H8A—C8—H8B109.5
H20A—C20—H20B107.8C4—C8—H8C109.5
N15—C14—C13114.71 (11)H8A—C8—H8C109.5
N15—C14—H14A108.6H8B—C8—H8C109.5
C13—C14—H14A108.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21···O11i0.822.102.9155 (19)176
C14—H14A···N19ii0.972.553.486 (2)162
C14—H14B···N18iii0.972.413.344 (2)162
C16—H16···O21iii0.932.473.284 (2)146
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+2; (iii) x+1, y, z.
 

Acknowledgements

MM thanks UGC, New Delhi, Government of India, for awarding a project under the title F. No. 41–920/2012(SR) dated: 25–07–2012. SD is grateful to the Council of Scientific and Industrial Research, New Delhi, India, for financial assistance [Grant No. 02 (0172)/13/EMR-II].

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.  Google Scholar
First citationEl-Khatatneh, N., Chandra Shamala, D., Shivashankarb, K. & Mahendra, M. (2016). IUCrData, 1, x161618.  Google Scholar
First citationGaspar, A., Milhazes, N., Santana, L., Uriarte, E., Borges, F. & Matos, M. J. (2015). Curr. Top. Med. Chem. 15, 432–445.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds