organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,6-Bis(pyridin-2-yl)-2,3-di­hydro­pyrazine

aInstitute of Chemistry, University of Neuchâtel, Av de Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 6 September 2016; accepted 16 September 2016; online 23 September 2016)

The title compound, C14H12N4, has approximate twofold rotational symmetry. The pseudo-twofold axis bis­ects the C—C bonds of the di­hydro­pyrazine ring, which has a screw–boat conformation. The two pyridine rings are inclined to the mean plane of the di­hydro­pyrazine ring by 30.78 (11) and 39.37 (9)°, and to one another by 62.53 (10)°. The pyridine N atoms are cis to one another, with an N⋯N nonbonded distance of 3.101 (2) Å. In the crystal, mol­ecules are linked via a pair of N—H⋯N hydrogen bonds, forming inversion dimers with an R22(6) ring motif. These units are linked by further N—H⋯H hydrogen bonds, forming layers parallel to (302). The layers are linked by C—H⋯π inter­actions, forming a three-dimensional framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) has approximate twofold rotation symmetry. The pseudo-twofold axis bis­ects the C—C bonds of the di­hydro­pyrazine ring, which has a screw-boat conformation. The two pyridine rings (N3/C5–C6 and N4/C10–C14) are inclined to the mean plane of the di­hydro­pyrazine ring (N1/N2/C1–C4) by 30.78 (11) and 39.37 (9)°, respectively, and to one another by 62.53 (10)°. The pyridine N atoms are cis to one another, with an N⋯N nonbonded distance of 3.101 (2) Å.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked via a pair of N—H⋯N hydrogen bonds (Table 1[link]), forming inversion dimers with an R22(6) ring motif, which is clearly visible in Fig. 2[link]. These units are linked by further N—H⋯H hydrogen bonds, forming layers parallel to (302) (see Table 1[link] and Fig. 2[link]). The layers are linked by C—H⋯π inter­actions, forming a three-dimensional framework (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of ring N4/C10–C14.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N3i 0.997 (19) 2.552 (19) 3.382 (3) 140.5 (15)
C13—H13⋯N1ii 0.959 (19) 2.557 (19) 3.432 (3) 151.8 (14)
C14—H14⋯N4iii 0.962 (18) 2.518 (19) 3.375 (3) 148.4 (15)
C3—H3ACg3iv 1.00 (2) 2.78 (2) 3.645 (3) 144.7 (15)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x, -y+1, -z+1; (iv) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The C—H⋯N hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, only the H atoms involved in the inter­molecular inter­actions have been included.

The title compound was prepared as a precursor for the synthesis of 2,3-bis­(pyridin-2-yl)pyrazine. In this pyrazine analogue, whose structure has been reported (Huang et al., 1991[Huang, N.-T., Pennington, W. T. & Petersen, J. D. (1991). Acta Cryst. C47, 2011-2012.]; Robertson et al., 1998[Robertson, K. N., Bakshi, P. K., Lantos, S. D., Cameron, T. S. & Knop, O. (1998). Can. J. Chem. 76, 583-611.]; Posel & Stoeckli-Evans, 2016[Posel, M. & Stoeckli-Evans, H. (2016). Private communication (deposition number 1502689). CCDC, Cambridge, England.]), the whole mol­ecule is generated by twofold rotational symmetry; the twofold axis bis­ects the Car—Car bonds of the pyrazine ring. The pyridine rings are inclined to the pyrazine ring by 42.00 (12)° and to one another by 53.92 (12)° (Posel & Stoeckli-Evans, 2016[Posel, M. & Stoeckli-Evans, H. (2016). Private communication (deposition number 1502689). CCDC, Cambridge, England.]). The pyridine N atoms are cis to one another, with an N⋯N nonbonded distance of 2.967 (3) Å.

Synthesis and crystallization

The title compound was prepared by a condensation reaction following the method of Goodwin & Lions (1959[Goodwin, H. A. & Lions, F. (1959). J. Am. Chem. Soc. 81, 6415-6422.]). A round-bottomed flask, fitted with a reflux condenser and a dropping funnel, was charged with a solution of 4.25 g (0.02 mol) of 1,2-di(pyridin-2-yl)ethane-1,2-dione in 20 ml of dry ethanol. A solution of 1.2 g (0.021 mol) of ethyl­enedi­amine was then added dropwise and the mixture refluxed for 2 h. After cooling, the mixture was filtered to give a brown product which was washed many times with ethanol, giving a beige solid. On recrystallization from ethanol solution, colourless block-like crystals were obtained (yield 2.8 g, 59%; m.p. 461 K). The IR (KBr disk, cm−1) spectrum is shown in Fig. 3[link].

[Figure 3]
Figure 3
The IR spectrum of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the H atoms were located in difference Fourier maps and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C14H12N4
Mr 236.28
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 7.3989 (16), 9.6247 (10), 17.483 (2)
β (°) 91.112 (13)
V3) 1244.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.76 × 0.57 × 0.46
 
Data collection
Diffractometer Stoe–Siemens AED2 four-circle
No. of measured, independent and observed [I > 2σ(I)] reflections 2191, 2191, 1458
Rint 0.0
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 0.98
No. of reflections 2191
No. of parameters 212
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.12, −0.12
Computer programs: STADI4 and X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: STADI4 Software (Stoe & Cie, 1997); cell refinement: STADI4 Software (Stoe & Cie, 1997); data reduction: X-RED Software (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

5,6-Bis(pyridin-2-yl)-2,3-dihydropyrazine top
Crystal data top
C14H12N4F(000) = 496
Mr = 236.28Dx = 1.261 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 7.3989 (16) ÅCell parameters from 21 reflections
b = 9.6247 (10) Åθ = 14.0–19.5°
c = 17.483 (2) ŵ = 0.08 mm1
β = 91.112 (13)°T = 293 K
V = 1244.8 (3) Å3Block, colourless
Z = 40.76 × 0.57 × 0.46 mm
Data collection top
Stoe–Siemens AED2 four-circle
diffractometer
Rint = 0.0
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.3°
Plane graphite monochromatorh = 88
ω/2θ scansk = 011
2191 measured reflectionsl = 020
2191 independent reflections1 standard reflections every 60 min
1458 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.12 e Å3
2191 reflectionsΔρmin = 0.12 e Å3
212 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.038 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0009 (2)0.06093 (16)0.36192 (10)0.0601 (5)
N20.0463 (2)0.25389 (16)0.23810 (9)0.0522 (4)
N30.3603 (2)0.29146 (17)0.38948 (9)0.0571 (5)
N40.0087 (2)0.46622 (15)0.39540 (8)0.0514 (4)
C10.0793 (2)0.17892 (18)0.36041 (10)0.0434 (5)
C20.0252 (2)0.28713 (18)0.30252 (10)0.0416 (4)
C30.0819 (3)0.1046 (2)0.22844 (14)0.0619 (6)
H3A0.177 (3)0.0990 (19)0.1872 (10)0.061 (5)*
H3B0.030 (3)0.056 (2)0.2118 (11)0.072 (7)*
C40.1407 (3)0.0426 (3)0.30222 (15)0.0682 (7)
H4A0.170 (3)0.055 (2)0.2994 (11)0.072 (6)*
H4B0.257 (3)0.094 (2)0.3209 (12)0.084 (7)*
C50.2338 (2)0.20503 (18)0.41447 (10)0.0436 (5)
C60.2448 (3)0.1405 (2)0.48488 (12)0.0612 (6)
H60.152 (3)0.080 (2)0.4998 (11)0.072 (7)*
C70.3902 (4)0.1693 (3)0.53272 (14)0.0807 (8)
H70.398 (4)0.119 (3)0.5830 (16)0.130 (10)*
C80.5193 (4)0.2576 (3)0.50801 (16)0.0894 (9)
H80.618 (4)0.280 (3)0.5401 (15)0.123 (10)*
C90.5026 (3)0.3147 (3)0.43628 (15)0.0772 (7)
H90.590 (4)0.381 (3)0.4150 (14)0.111 (9)*
C100.0418 (2)0.43602 (18)0.32216 (9)0.0407 (4)
C110.0780 (2)0.5372 (2)0.26831 (11)0.0463 (5)
H110.102 (2)0.5066 (19)0.2143 (10)0.060 (6)*
C120.0824 (3)0.6743 (2)0.29078 (12)0.0525 (5)
H120.104 (3)0.751 (2)0.2537 (11)0.069 (6)*
C130.0502 (3)0.7064 (2)0.36572 (12)0.0549 (5)
H130.059 (2)0.801 (2)0.3820 (10)0.059 (6)*
C140.0137 (3)0.6004 (2)0.41552 (12)0.0575 (6)
H140.009 (2)0.6193 (19)0.4685 (11)0.063 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0611 (11)0.0446 (10)0.0739 (12)0.0043 (8)0.0209 (9)0.0015 (8)
N20.0511 (10)0.0552 (10)0.0500 (9)0.0033 (8)0.0108 (8)0.0091 (8)
N30.0518 (10)0.0652 (11)0.0537 (10)0.0077 (9)0.0117 (8)0.0022 (8)
N40.0715 (11)0.0417 (9)0.0409 (9)0.0055 (8)0.0014 (8)0.0007 (7)
C10.0437 (10)0.0397 (11)0.0465 (10)0.0035 (9)0.0059 (8)0.0055 (8)
C20.0375 (9)0.0444 (11)0.0427 (10)0.0020 (8)0.0047 (8)0.0033 (8)
C30.0565 (14)0.0585 (14)0.0698 (15)0.0046 (11)0.0250 (12)0.0186 (12)
C40.0669 (16)0.0477 (14)0.0888 (18)0.0108 (12)0.0287 (13)0.0013 (12)
C50.0464 (11)0.0395 (10)0.0446 (11)0.0054 (9)0.0075 (8)0.0058 (8)
C60.0641 (14)0.0639 (14)0.0552 (13)0.0012 (12)0.0108 (11)0.0080 (11)
C70.091 (2)0.0889 (19)0.0607 (15)0.0032 (16)0.0269 (14)0.0100 (14)
C80.0767 (18)0.109 (2)0.0806 (18)0.0105 (16)0.0418 (15)0.0021 (16)
C90.0614 (15)0.0933 (19)0.0761 (16)0.0177 (14)0.0210 (13)0.0041 (14)
C100.0391 (10)0.0441 (10)0.0386 (10)0.0033 (8)0.0045 (8)0.0023 (8)
C110.0428 (11)0.0535 (13)0.0424 (11)0.0010 (9)0.0013 (8)0.0044 (9)
C120.0500 (12)0.0498 (12)0.0577 (13)0.0048 (10)0.0018 (9)0.0137 (11)
C130.0673 (14)0.0387 (12)0.0582 (13)0.0018 (10)0.0110 (10)0.0018 (10)
C140.0855 (16)0.0435 (12)0.0434 (12)0.0093 (10)0.0005 (11)0.0025 (10)
Geometric parameters (Å, º) top
N1—C11.276 (2)C5—C61.380 (3)
N1—C41.475 (2)C6—C71.378 (3)
N2—C21.276 (2)C6—H60.94 (2)
N2—C31.470 (2)C7—C81.355 (4)
N3—C51.333 (2)C7—H71.01 (3)
N3—C91.339 (3)C8—C91.373 (4)
N4—C141.339 (2)C8—H80.94 (3)
N4—C101.340 (2)C9—H90.98 (3)
C1—C51.490 (2)C10—C111.384 (2)
C1—C21.501 (2)C11—C121.377 (3)
C2—C101.478 (2)C11—H111.007 (18)
C3—C41.494 (3)C12—C131.372 (3)
C3—H3A1.00 (2)C12—H121.00 (2)
C3—H3B1.00 (2)C13—C141.372 (3)
C4—H4A0.96 (2)C13—H130.959 (19)
C4—H4B1.05 (2)C14—H140.962 (18)
C1—N1—C4114.15 (17)C7—C6—H6121.4 (13)
C2—N2—C3114.63 (16)C5—C6—H6119.6 (13)
C5—N3—C9116.93 (19)C8—C7—C6118.6 (2)
C14—N4—C10117.10 (16)C8—C7—H7123.5 (16)
N1—C1—C5118.72 (16)C6—C7—H7117.7 (16)
N1—C1—C2121.07 (16)C7—C8—C9119.4 (2)
C5—C1—C2120.12 (16)C7—C8—H8119.8 (17)
N2—C2—C10118.64 (16)C9—C8—H8120.8 (17)
N2—C2—C1121.45 (16)N3—C9—C8123.1 (3)
C10—C2—C1119.75 (15)N3—C9—H9113.0 (15)
N2—C3—C4110.23 (18)C8—C9—H9123.8 (15)
N2—C3—H3A104.9 (11)N4—C10—C11122.58 (17)
C4—C3—H3A112.8 (11)N4—C10—C2114.60 (15)
N2—C3—H3B109.9 (12)C11—C10—C2122.71 (16)
C4—C3—H3B108.9 (12)C12—C11—C10118.94 (18)
H3A—C3—H3B110.0 (16)C12—C11—H11123.0 (11)
N1—C4—C3110.40 (19)C10—C11—H11118.1 (11)
N1—C4—H4A108.2 (12)C13—C12—C11119.02 (19)
C3—C4—H4A114.4 (12)C13—C12—H12119.0 (11)
N1—C4—H4B107.3 (12)C11—C12—H12122.0 (11)
C3—C4—H4B109.6 (12)C12—C13—C14118.60 (19)
H4A—C4—H4B106.6 (17)C12—C13—H13119.1 (11)
N3—C5—C6122.92 (17)C14—C13—H13122.2 (11)
N3—C5—C1115.63 (16)N4—C14—C13123.75 (19)
C6—C5—C1121.44 (18)N4—C14—H14115.5 (11)
C7—C6—C5118.9 (2)C13—C14—H14120.7 (11)
C4—N1—C1—C5175.57 (18)C1—C5—C6—C7179.59 (19)
C4—N1—C1—C20.9 (3)C5—C6—C7—C81.6 (4)
C3—N2—C2—C10171.25 (17)C6—C7—C8—C90.5 (4)
C3—N2—C2—C14.1 (3)C5—N3—C9—C82.0 (4)
N1—C1—C2—N226.3 (3)C7—C8—C9—N32.3 (5)
C5—C1—C2—N2150.18 (17)C14—N4—C10—C110.7 (3)
N1—C1—C2—C10149.06 (18)C14—N4—C10—C2177.04 (17)
C5—C1—C2—C1034.5 (2)N2—C2—C10—N4140.74 (17)
C2—N2—C3—C436.7 (2)C1—C2—C10—N434.7 (2)
C1—N1—C4—C339.9 (3)N2—C2—C10—C1135.6 (3)
N2—C3—C4—N159.8 (3)C1—C2—C10—C11148.93 (17)
C9—N3—C5—C60.2 (3)N4—C10—C11—C120.8 (3)
C9—N3—C5—C1178.73 (18)C2—C10—C11—C12176.81 (17)
N1—C1—C5—N3148.95 (18)C10—C11—C12—C130.2 (3)
C2—C1—C5—N327.6 (2)C11—C12—C13—C140.4 (3)
N1—C1—C5—C629.6 (3)C10—N4—C14—C130.1 (3)
C2—C1—C5—C6153.85 (18)C12—C13—C14—N40.5 (3)
N3—C5—C6—C72.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of ring N4/C10-C14.
D—H···AD—HH···AD···AD—H···A
C12—H12···N3i0.997 (19)2.552 (19)3.382 (3)140.5 (15)
C13—H13···N1ii0.959 (19)2.557 (19)3.432 (3)151.8 (14)
C14—H14···N4iii0.962 (18)2.518 (19)3.375 (3)148.4 (15)
C3—H3A···Cg3iv1.00 (2)2.78 (2)3.645 (3)144.7 (15)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x1/2, y1/2, z+1/2.
 

Acknowledgements

We are grateful to the Swiss National Science Foundation and the University of Neuchâtel for financial support.

References

First citationGoodwin, H. A. & Lions, F. (1959). J. Am. Chem. Soc. 81, 6415–6422.  CrossRef CAS Web of Science Google Scholar
First citationHuang, N.-T., Pennington, W. T. & Petersen, J. D. (1991). Acta Cryst. C47, 2011–2012.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPosel, M. & Stoeckli-Evans, H. (2016). Private communication (deposition number 1502689). CCDC, Cambridge, England.  Google Scholar
First citationRobertson, K. N., Bakshi, P. K., Lantos, S. D., Cameron, T. S. & Knop, O. (1998). Can. J. Chem. 76, 583–611.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds