organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(2-amino-6-methyl­pyridinium) 3-nitro­benzene-1,2-di­carboxyl­ate

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, cDepartment of Physics, Alagappa University, Karaikkudi 630 003, India, and dPost Graduate and Research Department of Physics, The American college, Madurai 625 002, India
*Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 26 July 2016; accepted 29 July 2016; online 5 August 2016)

In the title mol­ecular salt, 2C6H9N2+·C8H3NO62−, the cations are protonated at their pyridine N atoms. The cations and anion are linked by N—H⋯O and C—H⋯O hydrogen bonds and a ππ inter­action [centroid-to-centroid distance = 3.7299 (13) Å]. In the crystal, N—H⋯O hydrogen bonds link the anions and cations into an infinite two-dimensional network parallel to (10-1). N—H⋯O hydrogen bonds generate R12(4), R21(6), R24(18) and R22(11) ring motifs. The structure also features weak C—H⋯O and C—H⋯π inter­actions, which lead to the formation of a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine derivatives are known to exhibit pharmacological properties such as anti­proliferative, anti­tubolin (Magedov et al., 2008[Magedov, I. V., Manpadi, M., Ogasawara, M. A., Dhawan, A. S., Rogelj, S., Van Slambrouck, S., Steelant, W. F. A., Evdokimov, N. M., Uglinskii, P. Y., Elias, E. M., Knee, E. J., Tongwa, P., Antipin, M. Y. & Kornienko, A. (2008). J. Med. Chem. 51, 2561-2570.]) and anti­viral (Hamdouchi et al., 1999[Hamdouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. & Vance, L. (1999). J. Med. Chem. 42, 50-59.]) activities. We report herein the synthesis and the crystal structure of the title mol­ecular salt (Fig. 1[link]). The geometric parameters are in agreement with reported similar structures (Sivakumar et al., 2016a[Sivakumar, P., Sudhahar, S., Israel, S. & Chakkaravarthi, G. (2016a). IUCrData, 1, x160747.],b[Sivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016b). IUCrData, 1, x160817.]). The asymmetric unit contains two 2-amino-6-methyl­pyridinium cations and one 3-nitro­benzene-1,2-di­carboxyl­ate anion. The cations are protonated at its pyridine N (N2 and N4) atoms and the anion is deprotonated at hy­droxy O (O4 and O6) atoms. The cations and anion are linked by N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]) and a ππ inter­action [Cg2⋯Cg3 = 3.7299 (13) Å; Cg2 and Cg3 are the centroids of the rings (N2/C9–C13) and (N4/C15–C19), respectively].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5i 0.87 (2) 1.93 (2) 2.777 (2) 167 (2)
N2—H2A⋯O6i 0.87 (2) 2.69 (2) 3.364 (2) 136 (2)
N3—H3A⋯O6i 0.86 1.91 2.755 (2) 167
N3—H3B⋯O4 0.86 1.97 2.825 (2) 171
N4—H4A⋯O3ii 0.87 (2) 1.81 (2) 2.678 (2) 171 (2)
N5—H5A⋯O5ii 0.86 2.16 2.949 (2) 152
N5—H5B⋯O3i 0.86 2.17 2.993 (2) 161
C17—H17⋯O6 0.93 2.33 3.241 (3) 166
C18—H18⋯O4i 0.93 2.42 3.293 (2) 156
C14—H14CCg1iii 0.96 2.73 3.490 (2) 137
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with atom labelling and 30% probability displacement ellipsoids.

In the crystal, N4—H4A⋯O3ii and N5—H5A⋯O5ii hydrogen bonds (Table 1[link], Fig. 2[link]) generate an R22(11) ring-motif enclosing the atoms (N5/H5A/O5/C8/C3/C2/C7/O3/H4A/N4/C19). The N2—H2A⋯O5i and N3—H3A⋯O6i hydrogen bonds (Table 1[link], Fig. 2[link]) generate a bifurcated R12(4) ring-motif, constituted by the atoms (C8/O5/H2A/O6). The N2—H2A⋯O6i and N3—H3A⋯O6i (Table 1[link], Fig. 2[link]) hydrogen bonds generate a bifurcated R21(6) ring-motif, constituted by the atoms (C13/N2/H2A/O6/H3A/N3). A pair of N3—H3B⋯O4 and N3—H3A⋯O6i hydrogen bonds generate an R24(18) ring-motif (Table 1[link], Fig. 2[link]). The N—H⋯O hydrogen bonds link the components into an infinite two-dimensional network parallel to the (10[\overline{1}]) plane. A weak C—H⋯O hydrogen bond and a C—H⋯π inter­action (Table 1[link]) lead to the formation of a three dimensional network (Fig. 3[link]).

[Figure 2]
Figure 2
A partial view of the crystal packing of the title mol­ecular salt, showing the ring graph-set motifs. H atoms not involving in hydrogen bonds have been omitted for clarity.
[Figure 3]
Figure 3
The crystal packing of the title mol­ecular salt viewed along the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involving in hydrogen bonds have been omitted for clarity.

Synthesis and crystallization

The title mol­ecular salt was synthesized using the raw materials 3-nitro­phthalic acid (2.11 g) and 2-amino-6-methyl­pyridine (1.08 g) in an equimolar ratio. These reactants were dissolved in 20 ml of methanol and kept for slow evaporation at room temperature. After a span of 30 days, crystals suitable for X-ray diffraction were harvested.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2C6H9N2+·C8H3NO62−
Mr 427.42
Crystal system, space group Monoclinic, P21/n
Temperature (K) 295
a, b, c (Å) 13.5461 (15), 7.7453 (9), 19.625 (2)
β (°) 101.486 (4)
V3) 2017.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.24 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.975, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 28851, 3776, 2886
Rint 0.042
(sin θ/λ)max−1) 0.608
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.123, 1.03
No. of reflections 3776
No. of parameters 290
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Bis(2-amino-6-methylpyridinium) 3-nitrobenzene-1,2-dicarboxylate top
Crystal data top
2C6H9N2+·C8H3NO62F(000) = 896
Mr = 427.42Dx = 1.407 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9996 reflections
a = 13.5461 (15) Åθ = 2.8–25.2°
b = 7.7453 (9) ŵ = 0.11 mm1
c = 19.625 (2) ÅT = 295 K
β = 101.486 (4)°Block, colourless
V = 2017.8 (4) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3776 independent reflections
Radiation source: fine-focus sealed tube2886 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω and φ scanθmax = 25.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1616
Tmin = 0.975, Tmax = 0.981k = 99
28851 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.8038P]
where P = (Fo2 + 2Fc2)/3
3776 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.09358 (13)0.1082 (3)0.22870 (9)0.0375 (4)
C21.02798 (12)0.0628 (2)0.27184 (8)0.0295 (4)
C31.00168 (13)0.1935 (2)0.31418 (9)0.0328 (4)
C41.04193 (15)0.3587 (3)0.31251 (11)0.0431 (5)
H41.02470.44410.34140.052*
C51.10690 (16)0.3976 (3)0.26877 (12)0.0543 (6)
H51.13310.50840.26830.065*
C61.13264 (15)0.2732 (3)0.22620 (11)0.0509 (6)
H61.17560.29860.19610.061*
C70.98915 (13)0.1210 (2)0.27654 (8)0.0305 (4)
C80.93033 (14)0.1621 (2)0.36309 (9)0.0352 (4)
C91.33900 (14)0.0667 (3)0.57066 (10)0.0398 (4)
C101.39045 (17)0.1214 (3)0.52207 (12)0.0532 (6)
H101.45360.17210.53550.064*
C111.34777 (19)0.1009 (3)0.45176 (12)0.0602 (6)
H111.38270.13960.41840.072*
C121.25659 (18)0.0259 (3)0.43120 (11)0.0546 (6)
H121.22900.01330.38410.066*
C131.20386 (15)0.0330 (3)0.48160 (10)0.0409 (5)
C141.37628 (16)0.0794 (3)0.64726 (11)0.0502 (5)
H14A1.40150.03090.66510.075*
H14B1.32200.11380.66910.075*
H14C1.42930.16340.65690.075*
C151.30217 (14)0.5431 (2)0.55806 (10)0.0381 (4)
C161.22798 (16)0.4884 (3)0.50592 (10)0.0457 (5)
H161.23200.50880.45980.055*
C171.14507 (16)0.4010 (3)0.52183 (11)0.0481 (5)
H171.09380.36370.48600.058*
C181.13860 (14)0.3698 (3)0.58871 (10)0.0434 (5)
H181.08410.30890.59870.052*
C191.21448 (14)0.4300 (2)0.64267 (10)0.0365 (4)
C201.39675 (16)0.6288 (3)0.54851 (11)0.0506 (5)
H20A1.44910.54410.55130.076*
H20B1.41630.71380.58430.076*
H20C1.38580.68390.50380.076*
N11.12444 (13)0.0224 (3)0.18282 (9)0.0506 (5)
N21.24708 (11)0.0084 (2)0.54935 (8)0.0363 (4)
N31.11547 (13)0.1094 (3)0.46649 (9)0.0535 (5)
H3A1.08630.14280.49930.064*
H3B1.08690.12610.42380.064*
N41.29323 (11)0.5142 (2)0.62538 (8)0.0351 (4)
N51.21327 (13)0.4063 (2)0.70948 (8)0.0500 (5)
H5A1.26200.44430.74080.060*
H5B1.16370.35290.72140.060*
O11.14462 (17)0.0271 (3)0.12823 (10)0.0919 (7)
O21.12823 (14)0.1731 (2)0.20011 (9)0.0686 (5)
O30.92072 (9)0.17215 (17)0.22829 (6)0.0407 (3)
O41.02835 (10)0.20448 (17)0.32863 (6)0.0435 (3)
O50.85596 (10)0.0646 (2)0.34366 (7)0.0478 (4)
O60.94974 (12)0.2387 (2)0.41937 (8)0.0608 (4)
H2A1.2139 (14)0.042 (3)0.5804 (9)0.051 (6)*
H4A1.3394 (12)0.558 (2)0.6583 (8)0.040 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0335 (9)0.0455 (12)0.0344 (10)0.0022 (8)0.0091 (8)0.0049 (8)
C20.0290 (8)0.0322 (9)0.0268 (8)0.0004 (7)0.0045 (7)0.0027 (7)
C30.0322 (9)0.0325 (10)0.0322 (9)0.0023 (7)0.0032 (7)0.0001 (7)
C40.0443 (11)0.0329 (10)0.0501 (11)0.0038 (9)0.0042 (9)0.0015 (9)
C50.0528 (13)0.0401 (12)0.0675 (15)0.0170 (10)0.0057 (11)0.0095 (11)
C60.0429 (11)0.0609 (15)0.0504 (12)0.0138 (10)0.0128 (9)0.0143 (11)
C70.0356 (9)0.0317 (10)0.0258 (8)0.0019 (7)0.0099 (7)0.0020 (7)
C80.0389 (10)0.0353 (10)0.0321 (9)0.0036 (8)0.0091 (8)0.0033 (8)
C90.0400 (10)0.0340 (10)0.0464 (11)0.0029 (8)0.0108 (8)0.0027 (8)
C100.0491 (12)0.0514 (13)0.0623 (14)0.0040 (10)0.0189 (10)0.0130 (11)
C110.0681 (15)0.0644 (16)0.0561 (14)0.0038 (13)0.0315 (12)0.0158 (12)
C120.0674 (15)0.0641 (15)0.0352 (11)0.0118 (12)0.0173 (10)0.0067 (10)
C130.0446 (11)0.0427 (11)0.0352 (10)0.0091 (9)0.0076 (8)0.0007 (8)
C140.0468 (12)0.0522 (13)0.0484 (12)0.0062 (10)0.0021 (9)0.0003 (10)
C150.0446 (10)0.0344 (10)0.0382 (10)0.0049 (8)0.0154 (8)0.0004 (8)
C160.0551 (12)0.0496 (13)0.0334 (10)0.0020 (10)0.0113 (9)0.0010 (9)
C170.0480 (12)0.0503 (13)0.0435 (11)0.0025 (10)0.0030 (9)0.0076 (9)
C180.0396 (10)0.0422 (12)0.0497 (12)0.0069 (9)0.0119 (9)0.0049 (9)
C190.0394 (10)0.0327 (10)0.0398 (10)0.0017 (8)0.0133 (8)0.0012 (8)
C200.0509 (12)0.0539 (13)0.0531 (12)0.0025 (10)0.0245 (10)0.0013 (10)
N10.0440 (10)0.0715 (14)0.0413 (10)0.0031 (9)0.0202 (8)0.0031 (9)
N20.0375 (8)0.0402 (9)0.0328 (8)0.0024 (7)0.0110 (7)0.0012 (7)
N30.0526 (11)0.0705 (13)0.0353 (9)0.0023 (9)0.0033 (8)0.0034 (8)
N40.0357 (8)0.0357 (9)0.0349 (8)0.0020 (7)0.0094 (7)0.0019 (7)
N50.0504 (10)0.0634 (12)0.0387 (9)0.0143 (9)0.0148 (8)0.0005 (8)
O10.1245 (17)0.1093 (17)0.0595 (11)0.0101 (13)0.0608 (12)0.0005 (11)
O20.0831 (12)0.0595 (12)0.0740 (11)0.0119 (9)0.0418 (9)0.0062 (9)
O30.0436 (7)0.0376 (8)0.0384 (7)0.0055 (6)0.0020 (6)0.0036 (6)
O40.0609 (9)0.0361 (8)0.0319 (7)0.0006 (6)0.0056 (6)0.0037 (6)
O50.0398 (7)0.0659 (10)0.0404 (7)0.0131 (7)0.0146 (6)0.0116 (7)
O60.0758 (11)0.0668 (11)0.0441 (8)0.0194 (9)0.0221 (8)0.0228 (8)
Geometric parameters (Å, º) top
C1—C61.388 (3)C13—N21.355 (2)
C1—C21.389 (2)C14—H14A0.9600
C1—N11.470 (3)C14—H14B0.9600
C2—C31.400 (2)C14—H14C0.9600
C2—C71.526 (3)C15—C161.352 (3)
C3—C41.393 (3)C15—N41.369 (2)
C3—C81.511 (2)C15—C201.488 (3)
C4—C51.380 (3)C16—C171.399 (3)
C4—H40.9300C16—H160.9300
C5—C61.365 (3)C17—C181.354 (3)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—C191.401 (3)
C7—O41.237 (2)C18—H180.9300
C7—O31.250 (2)C19—N51.327 (2)
C8—O61.235 (2)C19—N41.350 (2)
C8—O51.256 (2)C20—H20A0.9600
C9—C101.356 (3)C20—H20B0.9600
C9—N21.363 (2)C20—H20C0.9600
C9—C141.491 (3)N1—O21.213 (3)
C10—C111.395 (3)N1—O11.219 (2)
C10—H100.9300N2—H2A0.867 (10)
C11—C121.352 (3)N3—H3A0.8600
C11—H110.9300N3—H3B0.8600
C12—C131.406 (3)N4—H4A0.874 (9)
C12—H120.9300N5—H5A0.8600
C13—N31.316 (3)N5—H5B0.8600
C6—C1—C2123.34 (19)H14A—C14—H14B109.5
C6—C1—N1117.10 (17)C9—C14—H14C109.5
C2—C1—N1119.57 (17)H14A—C14—H14C109.5
C1—C2—C3116.58 (17)H14B—C14—H14C109.5
C1—C2—C7122.89 (16)C16—C15—N4118.96 (18)
C3—C2—C7120.47 (15)C16—C15—C20125.00 (18)
C4—C3—C2120.20 (17)N4—C15—C20116.00 (17)
C4—C3—C8117.76 (17)C15—C16—C17119.44 (18)
C2—C3—C8122.04 (16)C15—C16—H16120.3
C5—C4—C3121.1 (2)C17—C16—H16120.3
C5—C4—H4119.5C18—C17—C16120.82 (19)
C3—C4—H4119.5C18—C17—H17119.6
C6—C5—C4119.9 (2)C16—C17—H17119.6
C6—C5—H5120.0C17—C18—C19119.61 (19)
C4—C5—H5120.0C17—C18—H18120.2
C5—C6—C1118.85 (19)C19—C18—H18120.2
C5—C6—H6120.6N5—C19—N4118.74 (17)
C1—C6—H6120.6N5—C19—C18123.33 (18)
O4—C7—O3126.30 (17)N4—C19—C18117.92 (17)
O4—C7—C2116.17 (15)C15—C20—H20A109.5
O3—C7—C2117.52 (15)C15—C20—H20B109.5
O6—C8—O5125.12 (17)H20A—C20—H20B109.5
O6—C8—C3116.18 (17)C15—C20—H20C109.5
O5—C8—C3118.68 (15)H20A—C20—H20C109.5
C10—C9—N2118.93 (19)H20B—C20—H20C109.5
C10—C9—C14124.77 (19)O2—N1—O1123.0 (2)
N2—C9—C14116.29 (17)O2—N1—C1119.49 (17)
C9—C10—C11119.4 (2)O1—N1—C1117.6 (2)
C9—C10—H10120.3C13—N2—C9123.43 (17)
C11—C10—H10120.3C13—N2—H2A117.6 (15)
C12—C11—C10121.2 (2)C9—N2—H2A119.0 (15)
C12—C11—H11119.4C13—N3—H3A120.0
C10—C11—H11119.4C13—N3—H3B120.0
C11—C12—C13119.4 (2)H3A—N3—H3B120.0
C11—C12—H12120.3C19—N4—C15123.21 (16)
C13—C12—H12120.3C19—N4—H4A119.1 (13)
N3—C13—N2118.70 (18)C15—N4—H4A117.6 (13)
N3—C13—C12123.66 (19)C19—N5—H5A120.0
N2—C13—C12117.64 (19)C19—N5—H5B120.0
C9—C14—H14A109.5H5A—N5—H5B120.0
C9—C14—H14B109.5
C6—C1—C2—C30.0 (3)C14—C9—C10—C11179.4 (2)
N1—C1—C2—C3179.99 (15)C9—C10—C11—C120.7 (4)
C6—C1—C2—C7177.19 (17)C10—C11—C12—C130.1 (4)
N1—C1—C2—C72.8 (3)C11—C12—C13—N3179.1 (2)
C1—C2—C3—C40.9 (2)C11—C12—C13—N21.1 (3)
C7—C2—C3—C4176.34 (16)N4—C15—C16—C171.2 (3)
C1—C2—C3—C8179.48 (15)C20—C15—C16—C17176.5 (2)
C7—C2—C3—C83.3 (2)C15—C16—C17—C180.3 (3)
C2—C3—C4—C50.9 (3)C16—C17—C18—C191.7 (3)
C8—C3—C4—C5179.45 (17)C17—C18—C19—N5179.3 (2)
C3—C4—C5—C60.0 (3)C17—C18—C19—N41.5 (3)
C4—C5—C6—C10.9 (3)C6—C1—N1—O2150.7 (2)
C2—C1—C6—C50.9 (3)C2—C1—N1—O229.3 (3)
N1—C1—C6—C5179.07 (18)C6—C1—N1—O129.7 (3)
C1—C2—C7—O4103.5 (2)C2—C1—N1—O1150.3 (2)
C3—C2—C7—O473.6 (2)N3—C13—N2—C9178.91 (18)
C1—C2—C7—O377.2 (2)C12—C13—N2—C91.3 (3)
C3—C2—C7—O3105.67 (19)C10—C9—N2—C130.4 (3)
C4—C3—C8—O636.3 (2)C14—C9—N2—C13178.47 (18)
C2—C3—C8—O6143.32 (19)N5—C19—N4—C15179.10 (18)
C4—C3—C8—O5142.41 (18)C18—C19—N4—C150.1 (3)
C2—C3—C8—O538.0 (3)C16—C15—N4—C191.5 (3)
N2—C9—C10—C110.6 (3)C20—C15—N4—C19176.50 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.87 (2)1.93 (2)2.777 (2)167 (2)
N2—H2A···O6i0.87 (2)2.69 (2)3.364 (2)136 (2)
N3—H3A···O6i0.861.912.755 (2)167
N3—H3B···O40.861.972.825 (2)171
N4—H4A···O3ii0.87 (2)1.81 (2)2.678 (2)171 (2)
N5—H5A···O5ii0.862.162.949 (2)152
N5—H5B···O3i0.862.172.993 (2)161
C17—H17···O60.932.333.241 (3)166
C18—H18···O4i0.932.423.293 (2)156
C14—H14C···Cg1iii0.962.733.490 (2)137
Symmetry codes: (i) x+2, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y1/2, z1/2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHamdouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. & Vance, L. (1999). J. Med. Chem. 42, 50–59.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMagedov, I. V., Manpadi, M., Ogasawara, M. A., Dhawan, A. S., Rogelj, S., Van Slambrouck, S., Steelant, W. F. A., Evdokimov, N. M., Uglinskii, P. Y., Elias, E. M., Knee, E. J., Tongwa, P., Antipin, M. Y. & Kornienko, A. (2008). J. Med. Chem. 51, 2561–2570.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016b). IUCrData, 1, x160817.  Google Scholar
First citationSivakumar, P., Sudhahar, S., Israel, S. & Chakkaravarthi, G. (2016a). IUCrData, 1, x160747.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds