organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(3-Benzoyl­thio­ureido)-3-phenyl­propanoic acid

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, and cFuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: mb_kassim@ukm.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 June 2016; accepted 6 July 2016; online 7 July 2016)

In the title compound, C17H16N2O3S, the phenyl­propanoic acid and the benzoyl moieties adopt a cistrans conformation, respectively, with respect to the thiono S atom across the C—N bonds. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. The crystal structure features carb­oxy­lic acid inversion dimers and pairwise N—H⋯S hydrogen bonds, which together generate [20-1] chains. Weak C—H⋯O hydrogen bonds are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) adopts a cis–trans conformation with respect to the positions of the phenyl­propanoic acid and benzoyl groups, relative to the S atom across the C8—N2 and C8—N1 bonds, respectively. The C8—S1, C7—O1, N1—C7, N1—C8 and N2—C8 bond lengths are similar to the corresponding bond lengths in related structures (Hassan et al., 2008[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o2083.], 2009[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.]). The plane through the central thio­urea unit (S1/N1/N2/C8/C9) forms dihedral angles of 14.90 (6) and 50.41 (6)°, with respect to the phenyl rings of the phenyl­propanoic acid (C11–C16) and benzoyl (C1–C6) groups, respectively. The latter angle is larger than that previously reported for methyl 2-(3-benzoyl­thio­ureido)acetate (Hassan et al., 2009[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.]). The phenyl rings of the phenyl­propanoic acid and benzoyl groups subtend a dihedral angle of 36.06 (8)°. An intra­molecular hydrogen bond, N2—H2A⋯O1, generates an S(6) ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The intra­molecular hydrogen bond is shown as a dashed line.

The crystal structure (Fig. 2[link]) features carb­oxy­lic-acid inversion dimers linked by pairs of O3—H3a⋯O2 hydrogen bonds (Table 1[link]). The dimers are linked by pairwise N1—H1A⋯S1 hydrogen bonds, generating [20[\overline{1}]] chains. Weak C16—H11⋯O1 hydrogen bonds are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 (2) 1.98 (2) 2.6480 (16) 134.1 (16)
N1—H1A⋯S1i 0.790 (19) 2.571 (19) 3.3496 (13) 168.9 (18)
O3—H3A⋯O2ii 0.87 (2) 1.81 (2) 2.6696 (14) 175 (2)
C16—H16⋯O1iii 0.93 2.54 3.4026 (18) 155
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Partial packing view of 2-(3-benzoyl­thio­ureido)-3-phenyl­propanoic acid, showing the zigzag chain formed by N—H⋯S, C—H⋯O and O—H⋯O hydrogen bonds which are shown as dashed lines [Symmetry codes: (i) −x, −y + 1, −z + 2; (ii) −x + 2, −y + 1, −z + 1; (iii) −x + 1, −y + 1, −z + 1.]

Synthesis and crystallization

The title compound was synthesized according to a previously reported method (Ngah et al., 2005[Ngah, N., Shah, N. M., Kassim, M. B. & Yamin, B. M. (2005). Acta Cryst. E61, o1910-o1912.]) with modification. Instead of 2-amino­propionic acid, 2-amino-3-phenyl­propanoic acid was used for this reaction. Colourless plates were obtained by recrystallization from ethanol solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H16N2O3S
Mr 328.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 5.8750 (2), 25.9891 (12), 10.3089 (4)
β (°) 90.761 (4)
V3) 1573.89 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.97
Crystal size (mm) 0.25 × 0.09 × 0.05
 
Data collection
Diffractometer Area
Absorption correction Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.638, 0.908
No. of measured, independent and observed [I > 2σ(I)] reflections 10980, 3045, 2824
Rint 0.026
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.04
No. of reflections 3045
No. of parameters 220
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.23
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

2-(3-Benzoylthioureido)-3-phenylpropanoic acid top
Crystal data top
C17H16N2O3SF(000) = 688
Mr = 328.38Dx = 1.386 Mg m3
Monoclinic, P21/cMelting point: 423 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 5.8750 (2) ÅCell parameters from 5690 reflections
b = 25.9891 (12) Åθ = 3–71°
c = 10.3089 (4) ŵ = 1.97 mm1
β = 90.761 (4)°T = 100 K
V = 1573.89 (11) Å3Plate, colourless
Z = 40.25 × 0.09 × 0.05 mm
Data collection top
Area
diffractometer
3045 independent reflections
Radiation source: fine-focus sealed tube2824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω/2θ scansθmax = 71.4°, θmin = 3.4°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 77
Tmin = 0.638, Tmax = 0.908k = 2931
10980 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.745P]
where P = (Fo2 + 2Fc2)/3
3045 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27806 (6)0.545305 (13)0.95051 (3)0.01781 (13)
O10.22425 (17)0.42118 (4)0.64014 (9)0.0181 (2)
O20.75216 (16)0.48331 (4)0.56133 (10)0.0160 (2)
O30.97354 (17)0.54898 (4)0.62633 (10)0.0161 (2)
N10.1462 (2)0.45848 (5)0.83583 (12)0.0153 (3)
N20.4436 (2)0.50147 (5)0.73866 (12)0.0145 (3)
C10.1982 (3)0.36410 (6)0.67098 (15)0.0203 (3)
H10.18540.37810.58830.024*
C20.3611 (3)0.32678 (6)0.69518 (17)0.0254 (4)
H20.46070.31650.62930.031*
C30.3758 (3)0.30477 (6)0.81781 (18)0.0250 (3)
H30.48490.27970.83370.030*
C40.2279 (3)0.32014 (6)0.91634 (16)0.0220 (3)
H40.23600.30490.99770.026*
C50.0675 (3)0.35843 (5)0.89373 (15)0.0179 (3)
H50.02990.36910.96030.022*
C60.0534 (2)0.38063 (5)0.77145 (14)0.0157 (3)
C70.1188 (2)0.42121 (5)0.74175 (14)0.0145 (3)
C80.2955 (2)0.50034 (5)0.83430 (13)0.0147 (3)
C90.6127 (2)0.54169 (5)0.72320 (13)0.0139 (3)
H90.68630.54890.80710.017*
C100.5081 (2)0.59226 (5)0.66649 (14)0.0155 (3)
H10A0.49800.58930.57280.019*
H10B0.35470.59620.69870.019*
C110.6439 (2)0.63986 (5)0.70080 (14)0.0156 (3)
C120.6241 (3)0.66130 (6)0.82414 (15)0.0205 (3)
H120.52860.64600.88420.025*
C130.7457 (3)0.70522 (6)0.85818 (15)0.0231 (3)
H130.72920.71950.94020.028*
C140.8916 (3)0.72781 (6)0.77023 (16)0.0233 (3)
H140.97390.75710.79320.028*
C150.9138 (3)0.70643 (6)0.64755 (16)0.0221 (3)
H151.01220.72130.58840.027*
C160.7893 (3)0.66287 (6)0.61291 (14)0.0191 (3)
H160.80360.64900.53020.023*
C170.7876 (2)0.52116 (5)0.62938 (13)0.0136 (3)
H1A0.060 (3)0.4587 (7)0.894 (2)0.018 (5)*
H2A0.440 (3)0.4775 (8)0.6817 (19)0.022 (5)*
H3A1.055 (4)0.5387 (9)0.562 (2)0.036 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0200 (2)0.0174 (2)0.0163 (2)0.00387 (12)0.00715 (14)0.00508 (12)
O10.0211 (5)0.0186 (5)0.0147 (5)0.0030 (4)0.0044 (4)0.0023 (4)
O20.0157 (5)0.0152 (5)0.0173 (5)0.0006 (4)0.0040 (4)0.0022 (4)
O30.0128 (5)0.0187 (5)0.0170 (5)0.0017 (4)0.0035 (4)0.0022 (4)
N10.0167 (6)0.0157 (6)0.0137 (6)0.0026 (4)0.0062 (5)0.0014 (4)
N20.0158 (6)0.0137 (6)0.0140 (6)0.0015 (5)0.0028 (4)0.0031 (5)
C10.0209 (7)0.0172 (7)0.0227 (8)0.0006 (6)0.0022 (6)0.0008 (6)
C20.0194 (7)0.0199 (8)0.0368 (9)0.0012 (6)0.0058 (7)0.0010 (7)
C30.0189 (8)0.0156 (7)0.0406 (9)0.0027 (6)0.0081 (7)0.0012 (7)
C40.0261 (8)0.0152 (7)0.0251 (8)0.0023 (6)0.0109 (6)0.0012 (6)
C50.0199 (7)0.0142 (7)0.0198 (7)0.0021 (5)0.0047 (6)0.0024 (5)
C60.0144 (7)0.0129 (7)0.0198 (7)0.0023 (5)0.0035 (5)0.0015 (5)
C70.0143 (7)0.0138 (7)0.0155 (7)0.0020 (5)0.0002 (5)0.0007 (5)
C80.0151 (7)0.0143 (7)0.0149 (7)0.0016 (5)0.0010 (5)0.0001 (5)
C90.0134 (7)0.0154 (7)0.0129 (6)0.0013 (5)0.0015 (5)0.0014 (5)
C100.0137 (6)0.0164 (7)0.0164 (7)0.0007 (5)0.0016 (5)0.0013 (5)
C110.0139 (6)0.0144 (7)0.0185 (7)0.0021 (5)0.0006 (5)0.0005 (5)
C120.0234 (8)0.0186 (7)0.0196 (7)0.0017 (6)0.0045 (6)0.0004 (6)
C130.0302 (8)0.0199 (8)0.0193 (8)0.0008 (6)0.0003 (6)0.0052 (6)
C140.0254 (8)0.0164 (8)0.0279 (8)0.0040 (6)0.0037 (6)0.0010 (6)
C150.0223 (8)0.0193 (8)0.0248 (8)0.0037 (6)0.0042 (6)0.0037 (6)
C160.0223 (7)0.0172 (7)0.0177 (7)0.0011 (6)0.0010 (6)0.0006 (6)
C170.0135 (7)0.0145 (7)0.0127 (6)0.0012 (5)0.0006 (5)0.0020 (5)
Geometric parameters (Å, º) top
S1—C81.6778 (14)C5—C61.390 (2)
O1—C71.2242 (18)C5—H50.9300
O2—C171.2245 (18)C6—C71.4956 (19)
O3—C171.3108 (17)C9—C171.5172 (19)
O3—H3A0.87 (2)C9—C101.5612 (19)
N1—C71.3787 (19)C9—H90.9800
N1—C81.3977 (18)C10—C111.5114 (19)
N1—H1A0.79 (2)C10—H10A0.9700
N2—C81.3240 (19)C10—H10B0.9700
N2—C91.4522 (18)C11—C161.389 (2)
N2—H2A0.85 (2)C11—C121.395 (2)
C1—C21.388 (2)C12—C131.389 (2)
C1—C61.399 (2)C12—H120.9300
C1—H10.9300C13—C141.386 (2)
C2—C31.391 (2)C13—H130.9300
C2—H20.9300C14—C151.389 (2)
C3—C41.386 (2)C14—H140.9300
C3—H30.9300C15—C161.392 (2)
C4—C51.392 (2)C15—H150.9300
C4—H40.9300C16—H160.9300
C17—O3—H3A108.5 (15)N2—C9—C10112.38 (11)
C7—N1—C8127.33 (13)C17—C9—C10108.90 (11)
C7—N1—H1A117.9 (13)N2—C9—H9109.6
C8—N1—H1A114.4 (13)C17—C9—H9109.6
C8—N2—C9123.71 (12)C10—C9—H9109.6
C8—N2—H2A118.9 (13)C11—C10—C9113.41 (11)
C9—N2—H2A117.4 (13)C11—C10—H10A108.9
C2—C1—C6119.71 (15)C9—C10—H10A108.9
C2—C1—H1120.1C11—C10—H10B108.9
C6—C1—H1120.1C9—C10—H10B108.9
C1—C2—C3120.12 (15)H10A—C10—H10B107.7
C1—C2—H2119.9C16—C11—C12118.83 (14)
C3—C2—H2119.9C16—C11—C10121.81 (13)
C4—C3—C2120.10 (14)C12—C11—C10119.36 (13)
C4—C3—H3120.0C13—C12—C11120.65 (14)
C2—C3—H3120.0C13—C12—H12119.7
C3—C4—C5120.15 (15)C11—C12—H12119.7
C3—C4—H4119.9C14—C13—C12120.21 (15)
C5—C4—H4119.9C14—C13—H13119.9
C6—C5—C4119.81 (14)C12—C13—H13119.9
C6—C5—H5120.1C13—C14—C15119.51 (14)
C4—C5—H5120.1C13—C14—H14120.2
C5—C6—C1120.05 (14)C15—C14—H14120.2
C5—C6—C7121.81 (13)C14—C15—C16120.23 (15)
C1—C6—C7118.11 (13)C14—C15—H15119.9
O1—C7—N1123.14 (13)C16—C15—H15119.9
O1—C7—C6121.74 (13)C11—C16—C15120.57 (14)
N1—C7—C6115.12 (12)C11—C16—H16119.7
N2—C8—N1116.39 (12)C15—C16—H16119.7
N2—C8—S1124.28 (11)O2—C17—O3124.38 (13)
N1—C8—S1119.32 (11)O2—C17—C9122.44 (12)
N2—C9—C17106.66 (11)O3—C17—C9113.15 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.86 (2)1.98 (2)2.6480 (16)134.1 (16)
N1—H1A···S1i0.790 (19)2.571 (19)3.3496 (13)168.9 (18)
O3—H3A···O2ii0.87 (2)1.81 (2)2.6696 (14)175 (2)
C16—H16···O1iii0.932.543.4026 (18)155
Symmetry codes: (i) x, y+1, z+2; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for research grants (OUP-2012–073 and UKM-PTS-016–2010), the Ministry of Higher Education for the UKM-ST-06-FRGS0111–2009 grant and MyMaster funding for CYY.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o2083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNgah, N., Shah, N. M., Kassim, M. B. & Yamin, B. M. (2005). Acta Cryst. E61, o1910–o1912.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds