organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4E)-1-Phenyl-4-{[(pyridin-2-yl)amino]­methyl­­idene}pyrazolidine-3,5-dione

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, and, Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dChemistry Department, Faculty of Science, Sohagt University, Sohag, Egypt, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 27 May 2016; accepted 6 June 2016; online 10 June 2016)

The title compound, C15H12N4O2, contains two independent mol­ecules in the asymmetric unit. These differ in terms of dihedral angles that the phenyl and 2-pyridyl rings subtend with the central five-membered ring; 15.2 (2) and 2.9 (2)°, respectively, in one mol­ecule, 8.9 (2) and 5.1 (2)°for the second. In the crystal, the independent mol­ecules each self-associate to form layers through N—H⋯O and C—H⋯O hydrogen bonding. The layers associate through ππ inter­actions between the phenyl rings and isolated carbon–carbon double bonds [shortest midpoint–centroid distance = 3.347 (4) Å]. The crystal studied was refined as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazolone scaffold compounds have been shown to possess diverse biological properties such as tranquilizing, muscle-relaxant, psycho-analeptic, anti-convulsant, anti-hypertensive, anti-depressant, anti-pyretic and analgesic activities (Turan-Zitouni et al., 2000[Turan-Zitouni, G., Chevallet, P., Kiliç, F. S. & Erol, K. (2000). Eur. J. Med. Chem. 35, 635-641.]; Rajendra Prasad et al., 2005[Rajendra Prasad, Y., Lakshmana Rao, A., Prasoona, K., Murali, K. & Ravi Kumar, P. (2005). Bioorg. Med. Chem. Lett. 15, 5030-5034.]). Some pyrazolone derivatives are used as anti-inflammatory (Bekhit et al., 2009a[Bekhit, A. A., Hayam, M. A., Bekhit, A. E., Abdel-Rahman, H. & Bekhit, S. A. (2009a). Med. Chem. 24, 296-309.],b[Bekhit, A. A., Ashour, H. M. A., Bekhit, A. El-Din A., & Bekhit, S. A. (2009b). Med. Chem. 5, 103-117.]), anti-cancer (Nitulescu et al., 2010[Nitulescu, G. M., Draghici, C. & Missir, A. V. (2010). Eur. J. Med. Chem. 45, 4914-4919.]) and enzyme inhibitory (Li et al., 2004[Li, J., DeMello, K. M. L., Cheng, H., Sakya, S. M., Bronk, B. S., Rafka, R. J., Jaynes, B. H., Ziegler, C. B., Kilroy, C., Mann, D. W., Nimz, E. L., Lynch, M. P., Haven, M. L., Kolosko, N. L., Minich, M. L., Li, C., Dutra, J. K., Rast, B., Crosson, R. M., Morton, B. J., Kirk, G. W., Callaghan, K. M., Koss, D. A., Shavnya, A., Lund, L. A., Seibel, S. B., Petras, C. F. & Silvia, A. (2004). Bioorg. Med. Chem. Lett. 14, 95-98.]) agents. In this context, we report here the crystal structure of the title compound.

The asymmetric unit contains two independent mol­ecules which differ modestly in their conformations, Fig. 1[link]. Thus in mol­ecule 1, the the phenyl and 2-pyridyl rings are inclined by 15.2 (2) and 2.9 (2)°, respectively, to the central five-membered ring while in mol­ecule 2, the corresponding angles are 8.9 (2) and 5.1 (2)°. Through N—H⋯O and C—H⋯O hydrogen bonding, each independent mol­ecule forms layers with its symmetry-related counterparts (Table 1[link] and Fig. 2[link]). These layers are inclined at approximately 81° to one another. Successive layers containing mol­ecule 1 associate via ππ inter­actions between the C1–C6 phenyl ring and the C8=C10 π-bond in the mol­ecule at 1 − x, 2 − y, 1 − z with a midpoint–centroid distance of 3.347 (4) Å. An analogous inter­action occurs between the layers comprising mol­ecule 2 (C16–C21 ring and C23=C25 double bond) with a midpoint–centroid distance of 3.447 (4) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.91 (5) 1.97 (5) 2.869 (3) 168 (4)
N3—H3A⋯O2 0.96 (5) 2.10 (5) 2.812 (4) 130 (4)
C2—H2⋯O1 0.94 2.33 2.920 (4) 121
C6—H6⋯O1i 0.94 2.57 3.401 (4) 147
C10—H10⋯O2ii 0.94 2.29 3.222 (4) 170
C12—H12⋯O2ii 0.94 2.24 3.175 (4) 170
N5—H5A⋯O3ii 0.86 (4) 2.02 (4) 2.866 (4) 171 (4)
N7—H7A⋯O4 0.94 (4) 2.03 (4) 2.794 (3) 138 (3)
C17—H17⋯O3 0.94 2.27 2.895 (4) 124
C21—H21⋯O3ii 0.94 2.53 3.392 (4) 153
C25—H25⋯O4i 0.94 2.30 3.230 (4) 172
C27—H27⋯O4i 0.94 2.29 3.222 (4) 173
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.
[Figure 1]
Figure 1
The asymmetric unit with atom labelling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
Packing showing the inter­molecular N—H⋯O and C—H⋯O hydrogen bonds as, respectively, blue and purple dotted lines.

Synthesis and crystallization

The title compound was prepared according to our reported method (Ahmed, 2015[Ahmed, E. A. (2015). J. Mex. Chem. Soc. 59(3), 181-190.]). Pale-yellow crystals suitable for X-ray analysis were grown from pyridine (m.p. 541–543 K, yield 91%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal studied was refined as a two-component twin. Several reflections, i.e. (0 2 6), ([\overline{2}] [\overline{9}] 5), ([\overline{1}] [\overline{9}] 5), (0 [\overline{9}] 5), ([\overline{1}] 9 [\overline{5}]) and (1 [\overline{9}] 5) were omitted from the final cycles of refinement owing to poor agreement.

Table 2
Experimental details

Crystal data
Chemical formula C15H12N4O2
Mr 280.29
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 220
a, b, c (Å) 6.2175 (2), 10.2646 (4), 20.7094 (8)
α, β, γ (°) 102.511 (2), 94.343 (2), 95.263 (2)
V3) 1278.63 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.83
Crystal size (mm) 0.21 × 0.07 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS, University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.81, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 24529, 12138, 10472
Rint 0.054
(sin θ/λ)max−1) 0.620
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.171, 1.11
No. of reflections 12138
No. of parameters 396
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(4E)-1-Phenyl-4-{[(pyridin-2-yl)amino]methylidene}pyrazolidine-3,5-dione top
Crystal data top
C15H12N4O2Z = 4
Mr = 280.29F(000) = 584
Triclinic, P1Dx = 1.456 Mg m3
a = 6.2175 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.2646 (4) ÅCell parameters from 9905 reflections
c = 20.7094 (8) Åθ = 4.4–72.9°
α = 102.511 (2)°µ = 0.83 mm1
β = 94.343 (2)°T = 220 K
γ = 95.263 (2)°Column, yellow
V = 1278.63 (8) Å30.21 × 0.07 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
12138 independent reflections
Radiation source: INCOATEC IµS micro–focus source10472 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.054
Detector resolution: 10.4167 pixels mm-1θmax = 72.8°, θmin = 4.4°
ω scansh = 77
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1212
Tmin = 0.81, Tmax = 0.98l = 2525
24529 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: mixed
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.7168P]
where P = (Fo2 + 2Fc2)/3
12138 reflections(Δ/σ)max = 0.001
396 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Experimental. Analysis of 1259 reflections having I/σ(I) > 13 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to be twinned by a 180° rotation about the c* axis. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2523 (4)0.9078 (2)0.56147 (13)0.0414 (6)
O20.7975 (4)0.6606 (3)0.46405 (12)0.0408 (6)
N10.7883 (4)0.8648 (3)0.53604 (14)0.0335 (6)
H1A0.932 (8)0.888 (4)0.549 (2)0.056 (12)*
N20.6284 (4)0.9343 (3)0.56886 (13)0.0327 (6)
N30.3715 (5)0.5366 (3)0.42450 (14)0.0356 (6)
H3A0.522 (8)0.529 (5)0.419 (2)0.061 (13)*
N40.3472 (5)0.3343 (3)0.35087 (14)0.0378 (6)
C10.6862 (5)1.0608 (3)0.61282 (15)0.0315 (7)
C20.5388 (6)1.1181 (4)0.65468 (17)0.0400 (8)
H20.39951.07310.65370.048*
C30.5980 (6)1.2413 (4)0.69752 (18)0.0451 (8)
H30.49691.28040.72510.054*
C40.8024 (6)1.3081 (4)0.70074 (17)0.0428 (8)
H40.84171.39140.73060.051*
C50.9486 (6)1.2506 (4)0.65940 (18)0.0411 (8)
H51.08841.29550.66110.049*
C60.8923 (5)1.1277 (3)0.61545 (16)0.0360 (7)
H60.99321.08960.58750.043*
C70.4242 (5)0.8666 (3)0.54520 (15)0.0305 (6)
C80.4648 (5)0.7457 (3)0.49929 (15)0.0309 (6)
C90.6952 (5)0.7474 (3)0.49606 (15)0.0311 (6)
C100.3128 (5)0.6440 (3)0.46519 (15)0.0325 (7)
H100.16500.65020.47060.039*
C110.2378 (5)0.4245 (3)0.38691 (15)0.0328 (7)
C120.0137 (5)0.4102 (3)0.38836 (16)0.0356 (7)
H120.05660.47750.41410.043*
C130.1015 (6)0.2943 (4)0.35084 (17)0.0401 (8)
H130.25310.28080.35080.048*
C140.0074 (6)0.1972 (4)0.31298 (17)0.0420 (8)
H140.06780.11690.28720.050*
C150.2289 (6)0.2228 (4)0.31449 (17)0.0411 (8)
H150.30250.15790.28830.049*
O30.2981 (4)0.1607 (3)0.06003 (12)0.0408 (6)
O40.3107 (4)0.3200 (3)0.03639 (12)0.0377 (5)
N50.2559 (4)0.1755 (3)0.03312 (14)0.0332 (6)
H5A0.386 (7)0.164 (4)0.0435 (18)0.038 (10)*
N60.0752 (4)0.1344 (3)0.06515 (13)0.0314 (6)
N70.0864 (4)0.4084 (3)0.07590 (13)0.0308 (5)
H7A0.065 (7)0.406 (4)0.0776 (17)0.036 (10)*
N80.0571 (4)0.5406 (3)0.15078 (13)0.0360 (6)
C160.1045 (5)0.0432 (3)0.10675 (14)0.0286 (6)
C170.0727 (5)0.0106 (4)0.14271 (16)0.0359 (7)
H170.21380.04840.13940.043*
C180.0385 (6)0.0785 (4)0.18350 (17)0.0389 (7)
H180.15830.10110.20760.047*
C190.1664 (6)0.1346 (3)0.18949 (17)0.0380 (7)
H190.18670.19390.21790.046*
C200.3419 (6)0.1028 (4)0.15342 (19)0.0418 (8)
H200.48240.14110.15710.050*
C210.3126 (5)0.0150 (4)0.11177 (17)0.0366 (7)
H210.43280.00540.08690.044*
C220.1142 (5)0.1857 (3)0.04333 (15)0.0312 (6)
C230.0459 (5)0.2672 (3)0.00137 (14)0.0284 (6)
C240.1876 (5)0.2606 (3)0.00493 (15)0.0293 (6)
C250.1733 (5)0.3375 (3)0.03593 (14)0.0295 (6)
H250.32460.33580.03140.035*
C260.1927 (5)0.4805 (3)0.11675 (14)0.0298 (6)
C270.4153 (5)0.4882 (4)0.12135 (17)0.0373 (7)
H270.50540.44440.09650.045*
C280.4998 (6)0.5628 (4)0.16385 (18)0.0435 (8)
H280.64950.57060.16820.052*
C290.3636 (6)0.6253 (4)0.19946 (19)0.0483 (9)
H290.41730.67580.22880.058*
C300.1447 (6)0.6116 (4)0.19100 (18)0.0441 (8)
H300.05180.65520.21510.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0212 (11)0.0423 (14)0.0570 (14)0.0073 (10)0.0067 (10)0.0002 (11)
O20.0268 (12)0.0421 (14)0.0498 (13)0.0088 (10)0.0078 (10)0.0013 (10)
N10.0182 (13)0.0360 (15)0.0447 (14)0.0067 (11)0.0059 (10)0.0028 (12)
N20.0191 (12)0.0351 (15)0.0432 (14)0.0061 (11)0.0051 (10)0.0058 (11)
N30.0278 (14)0.0388 (15)0.0391 (13)0.0062 (11)0.0040 (11)0.0051 (11)
N40.0313 (15)0.0400 (16)0.0424 (14)0.0099 (12)0.0081 (12)0.0060 (12)
C10.0291 (15)0.0334 (16)0.0333 (14)0.0069 (13)0.0023 (12)0.0089 (12)
C20.0312 (17)0.0424 (19)0.0455 (17)0.0038 (15)0.0079 (14)0.0066 (15)
C30.042 (2)0.044 (2)0.0460 (18)0.0065 (16)0.0089 (15)0.0023 (15)
C40.048 (2)0.0339 (18)0.0428 (17)0.0052 (16)0.0029 (15)0.0029 (14)
C50.0360 (19)0.0374 (19)0.0488 (18)0.0034 (15)0.0025 (14)0.0124 (15)
C60.0290 (16)0.0388 (18)0.0415 (16)0.0063 (13)0.0046 (13)0.0104 (14)
C70.0202 (14)0.0348 (17)0.0370 (15)0.0049 (12)0.0046 (11)0.0079 (12)
C80.0241 (15)0.0350 (17)0.0354 (15)0.0069 (12)0.0048 (11)0.0097 (12)
C90.0238 (15)0.0365 (17)0.0334 (14)0.0077 (12)0.0040 (11)0.0066 (12)
C100.0276 (16)0.0347 (17)0.0362 (15)0.0053 (13)0.0045 (12)0.0087 (13)
C110.0296 (16)0.0344 (17)0.0349 (15)0.0065 (13)0.0034 (12)0.0078 (12)
C120.0303 (16)0.0360 (17)0.0417 (16)0.0116 (13)0.0078 (13)0.0065 (13)
C130.0348 (18)0.0432 (19)0.0418 (17)0.0043 (15)0.0038 (14)0.0086 (14)
C140.043 (2)0.0381 (19)0.0410 (17)0.0019 (15)0.0035 (14)0.0030 (14)
C150.044 (2)0.0365 (18)0.0418 (17)0.0107 (15)0.0070 (15)0.0029 (14)
O30.0229 (11)0.0524 (15)0.0549 (14)0.0105 (10)0.0052 (10)0.0261 (12)
O40.0228 (11)0.0484 (14)0.0474 (12)0.0089 (10)0.0013 (9)0.0218 (11)
N50.0172 (13)0.0410 (16)0.0466 (14)0.0076 (11)0.0040 (11)0.0190 (12)
N60.0211 (13)0.0354 (14)0.0417 (13)0.0080 (11)0.0025 (10)0.0158 (11)
N70.0222 (13)0.0358 (14)0.0374 (13)0.0072 (10)0.0041 (10)0.0125 (11)
N80.0287 (14)0.0420 (16)0.0406 (14)0.0074 (12)0.0017 (11)0.0158 (12)
C160.0278 (15)0.0265 (15)0.0320 (13)0.0056 (12)0.0052 (11)0.0057 (11)
C170.0277 (16)0.0405 (18)0.0428 (16)0.0045 (14)0.0047 (13)0.0158 (14)
C180.0344 (17)0.0436 (19)0.0416 (17)0.0100 (15)0.0010 (13)0.0145 (14)
C190.0393 (18)0.0355 (18)0.0427 (17)0.0065 (14)0.0071 (14)0.0143 (14)
C200.0290 (17)0.0409 (19)0.059 (2)0.0014 (14)0.0101 (15)0.0172 (16)
C210.0236 (15)0.0413 (19)0.0486 (17)0.0061 (13)0.0055 (13)0.0163 (14)
C220.0257 (15)0.0344 (17)0.0348 (14)0.0044 (12)0.0042 (12)0.0097 (12)
C230.0220 (14)0.0318 (16)0.0329 (14)0.0065 (12)0.0036 (11)0.0086 (12)
C240.0244 (15)0.0311 (16)0.0344 (14)0.0073 (12)0.0035 (11)0.0094 (12)
C250.0226 (14)0.0342 (16)0.0329 (14)0.0052 (12)0.0041 (11)0.0092 (12)
C260.0286 (15)0.0298 (16)0.0315 (14)0.0066 (12)0.0022 (11)0.0067 (12)
C270.0257 (16)0.0446 (19)0.0466 (17)0.0090 (14)0.0061 (13)0.0184 (15)
C280.0269 (17)0.054 (2)0.054 (2)0.0039 (15)0.0116 (14)0.0197 (17)
C290.044 (2)0.057 (2)0.0507 (19)0.0005 (18)0.0082 (16)0.0290 (18)
C300.0353 (18)0.057 (2)0.0472 (18)0.0104 (16)0.0016 (14)0.0258 (17)
Geometric parameters (Å, º) top
O1—C71.229 (4)O3—C221.235 (4)
O2—C91.245 (4)O4—C241.251 (4)
N1—C91.356 (4)N5—C241.358 (4)
N1—N21.408 (4)N5—N61.406 (3)
N1—H1A0.91 (5)N5—H5A0.86 (4)
N2—C71.390 (4)N6—C221.392 (4)
N2—C11.413 (4)N6—C161.412 (4)
N3—C101.333 (4)N7—C251.331 (4)
N3—C111.400 (4)N7—C261.402 (4)
N3—H3A0.96 (5)N7—H7A0.94 (4)
N4—C111.330 (4)N8—C301.334 (4)
N4—C151.345 (4)N8—C261.335 (4)
C1—C61.389 (5)C16—C171.390 (4)
C1—C21.391 (5)C16—C211.395 (4)
C2—C31.378 (5)C17—C181.386 (5)
C2—H20.9400C17—H170.9400
C3—C41.377 (6)C18—C191.375 (5)
C3—H30.9400C18—H180.9400
C4—C51.380 (5)C19—C201.379 (5)
C4—H40.9400C19—H190.9400
C5—C61.384 (5)C20—C211.386 (5)
C5—H50.9400C20—H200.9400
C6—H60.9400C21—H210.9400
C7—C81.445 (4)C22—C231.441 (4)
C8—C101.371 (4)C23—C251.366 (4)
C8—C91.438 (4)C23—C241.442 (4)
C10—H100.9400C25—H250.9400
C11—C121.391 (5)C26—C271.391 (4)
C12—C131.375 (5)C27—C281.388 (5)
C12—H120.9400C27—H270.9400
C13—C141.390 (5)C28—C291.372 (5)
C13—H130.9400C28—H280.9400
C14—C151.375 (5)C29—C301.383 (5)
C14—H140.9400C29—H290.9400
C15—H150.9400C30—H300.9400
C9—N1—N2109.8 (2)C24—N5—N6109.6 (2)
C9—N1—H1A126 (3)C24—N5—H5A125 (3)
N2—N1—H1A122 (3)N6—N5—H5A124 (3)
C7—N2—N1109.7 (2)C22—N6—N5109.5 (2)
C7—N2—C1129.7 (3)C22—N6—C16129.9 (3)
N1—N2—C1120.2 (2)N5—N6—C16120.2 (2)
C10—N3—C11128.0 (3)C25—N7—C26127.9 (3)
C10—N3—H3A120 (3)C25—N7—H7A115 (2)
C11—N3—H3A112 (3)C26—N7—H7A117 (2)
C11—N4—C15116.3 (3)C30—N8—C26116.8 (3)
C6—C1—C2119.5 (3)C17—C16—C21119.7 (3)
C6—C1—N2120.1 (3)C17—C16—N6120.4 (3)
C2—C1—N2120.4 (3)C21—C16—N6119.9 (3)
C3—C2—C1119.7 (3)C18—C17—C16119.1 (3)
C3—C2—H2120.2C18—C17—H17120.4
C1—C2—H2120.2C16—C17—H17120.4
C4—C3—C2121.3 (3)C19—C18—C17121.6 (3)
C4—C3—H3119.4C19—C18—H18119.2
C2—C3—H3119.4C17—C18—H18119.2
C3—C4—C5118.9 (3)C18—C19—C20119.2 (3)
C3—C4—H4120.6C18—C19—H19120.4
C5—C4—H4120.6C20—C19—H19120.4
C4—C5—C6120.9 (3)C19—C20—C21120.5 (3)
C4—C5—H5119.5C19—C20—H20119.7
C6—C5—H5119.5C21—C20—H20119.7
C5—C6—C1119.8 (3)C20—C21—C16119.9 (3)
C5—C6—H6120.1C20—C21—H21120.0
C1—C6—H6120.1C16—C21—H21120.0
O1—C7—N2124.5 (3)O3—C22—N6124.4 (3)
O1—C7—C8130.4 (3)O3—C22—C23129.9 (3)
N2—C7—C8105.1 (3)N6—C22—C23105.8 (3)
C10—C8—C9124.9 (3)C25—C23—C22127.7 (3)
C10—C8—C7126.7 (3)C25—C23—C24124.6 (3)
C9—C8—C7108.4 (3)C22—C23—C24107.7 (3)
O2—C9—N1124.4 (3)O4—C24—N5124.4 (3)
O2—C9—C8128.8 (3)O4—C24—C23128.3 (3)
N1—C9—C8106.8 (3)N5—C24—C23107.3 (3)
N3—C10—C8121.0 (3)N7—C25—C23120.9 (3)
N3—C10—H10119.5N7—C25—H25119.5
C8—C10—H10119.5C23—C25—H25119.5
N4—C11—C12124.3 (3)N8—C26—C27123.7 (3)
N4—C11—N3113.2 (3)N8—C26—N7112.7 (3)
C12—C11—N3122.5 (3)C27—C26—N7123.5 (3)
C13—C12—C11117.7 (3)C28—C27—C26117.7 (3)
C13—C12—H12121.1C28—C27—H27121.1
C11—C12—H12121.1C26—C27—H27121.1
C12—C13—C14119.7 (3)C29—C28—C27119.6 (3)
C12—C13—H13120.2C29—C28—H28120.2
C14—C13—H13120.2C27—C28—H28120.2
C15—C14—C13117.7 (3)C28—C29—C30118.0 (3)
C15—C14—H14121.2C28—C29—H29121.0
C13—C14—H14121.2C30—C29—H29121.0
N4—C15—C14124.4 (3)N8—C30—C29124.2 (3)
N4—C15—H15117.8N8—C30—H30117.9
C14—C15—H15117.8C29—C30—H30117.9
C9—N1—N2—C75.5 (4)C24—N5—N6—C224.7 (3)
C9—N1—N2—C1179.2 (3)C24—N5—N6—C16178.8 (3)
C7—N2—C1—C6161.3 (3)C22—N6—C16—C1712.5 (5)
N1—N2—C1—C611.0 (4)N5—N6—C16—C17174.8 (3)
C7—N2—C1—C219.9 (5)C22—N6—C16—C21167.4 (3)
N1—N2—C1—C2167.8 (3)N5—N6—C16—C215.3 (4)
C6—C1—C2—C30.9 (5)C21—C16—C17—C180.6 (5)
N2—C1—C2—C3179.7 (3)N6—C16—C17—C18179.5 (3)
C1—C2—C3—C41.2 (6)C16—C17—C18—C190.4 (5)
C2—C3—C4—C50.9 (6)C17—C18—C19—C200.9 (5)
C3—C4—C5—C60.2 (5)C18—C19—C20—C210.3 (5)
C4—C5—C6—C10.1 (5)C19—C20—C21—C160.7 (5)
C2—C1—C6—C50.2 (5)C17—C16—C21—C201.2 (5)
N2—C1—C6—C5179.0 (3)N6—C16—C21—C20179.0 (3)
N1—N2—C7—O1175.1 (3)N5—N6—C22—O3176.0 (3)
C1—N2—C7—O12.2 (5)C16—N6—C22—O32.6 (5)
N1—N2—C7—C84.0 (3)N5—N6—C22—C233.0 (3)
C1—N2—C7—C8177.0 (3)C16—N6—C22—C23176.3 (3)
O1—C7—C8—C103.6 (6)O3—C22—C23—C250.4 (6)
N2—C7—C8—C10177.3 (3)N6—C22—C23—C25179.3 (3)
O1—C7—C8—C9177.7 (3)O3—C22—C23—C24178.5 (3)
N2—C7—C8—C91.4 (3)N6—C22—C23—C240.3 (3)
N2—N1—C9—O2175.1 (3)N6—N5—C24—O4175.7 (3)
N2—N1—C9—C84.4 (4)N6—N5—C24—C234.3 (3)
C10—C8—C9—O21.1 (6)C25—C23—C24—O43.5 (5)
C7—C8—C9—O2177.7 (3)C22—C23—C24—O4177.5 (3)
C10—C8—C9—N1179.4 (3)C25—C23—C24—N5176.5 (3)
C7—C8—C9—N11.9 (4)C22—C23—C24—N52.5 (3)
C11—N3—C10—C8179.3 (3)C26—N7—C25—C23176.9 (3)
C9—C8—C10—N30.9 (5)C22—C23—C25—N7179.7 (3)
C7—C8—C10—N3179.4 (3)C24—C23—C25—N70.9 (5)
C15—N4—C11—C120.6 (5)C30—N8—C26—C270.1 (5)
C15—N4—C11—N3178.8 (3)C30—N8—C26—N7180.0 (3)
C10—N3—C11—N4179.6 (3)C25—N7—C26—N8179.9 (3)
C10—N3—C11—C121.0 (5)C25—N7—C26—C270.0 (5)
N4—C11—C12—C131.1 (5)N8—C26—C27—C280.0 (5)
N3—C11—C12—C13178.2 (3)N7—C26—C27—C28179.8 (3)
C11—C12—C13—C140.5 (5)C26—C27—C28—C290.2 (6)
C12—C13—C14—C150.5 (5)C27—C28—C29—C300.4 (6)
C11—N4—C15—C140.5 (5)C26—N8—C30—C290.4 (6)
C13—C14—C15—N41.1 (6)C28—C29—C30—N80.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.91 (5)1.97 (5)2.869 (3)168 (4)
N3—H3A···O20.96 (5)2.10 (5)2.812 (4)130 (4)
C2—H2···O10.942.332.920 (4)121
C6—H6···O1i0.942.573.401 (4)147
C10—H10···O2ii0.942.293.222 (4)170
C12—H12···O2ii0.942.243.175 (4)170
N5—H5A···O3ii0.86 (4)2.02 (4)2.866 (4)171 (4)
N7—H7A···O40.94 (4)2.03 (4)2.794 (3)138 (3)
C17—H17···O30.942.272.895 (4)124
C21—H21···O3ii0.942.533.392 (4)153
C25—H25···O4i0.942.303.230 (4)172
C27—H27···O4i0.942.293.222 (4)173
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAhmed, E. A. (2015). J. Mex. Chem. Soc. 59(3), 181–190.  Google Scholar
First citationBekhit, A. A., Ashour, H. M. A., Bekhit, A. El-Din A., & Bekhit, S. A. (2009b). Med. Chem. 5, 103–117.  Google Scholar
First citationBekhit, A. A., Hayam, M. A., Bekhit, A. E., Abdel-Rahman, H. & Bekhit, S. A. (2009a). Med. Chem. 24, 296–309.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationLi, J., DeMello, K. M. L., Cheng, H., Sakya, S. M., Bronk, B. S., Rafka, R. J., Jaynes, B. H., Ziegler, C. B., Kilroy, C., Mann, D. W., Nimz, E. L., Lynch, M. P., Haven, M. L., Kolosko, N. L., Minich, M. L., Li, C., Dutra, J. K., Rast, B., Crosson, R. M., Morton, B. J., Kirk, G. W., Callaghan, K. M., Koss, D. A., Shavnya, A., Lund, L. A., Seibel, S. B., Petras, C. F. & Silvia, A. (2004). Bioorg. Med. Chem. Lett. 14, 95–98.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNitulescu, G. M., Draghici, C. & Missir, A. V. (2010). Eur. J. Med. Chem. 45, 4914–4919.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRajendra Prasad, Y., Lakshmana Rao, A., Prasoona, K., Murali, K. & Ravi Kumar, P. (2005). Bioorg. Med. Chem. Lett. 15, 5030–5034.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS, University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTuran-Zitouni, G., Chevallet, P., Kiliç, F. S. & Erol, K. (2000). Eur. J. Med. Chem. 35, 635–641.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds