organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(12-Bromo­dodec­yl)-5-chloro­indoline-2,3-dione

aLaboratoire de Chimie Organique Appliquée-Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, and dDépartement de Chimie, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, 80000 Agadir, Morocco
*Correspondence e-mail: haoudi_amal@yahoo.fr

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 26 May 2016; accepted 15 June 2016; online 21 June 2016)

In the structure of the title compound, C20H27BrClNO2, the 5-chloro­indoline-2,3-dione ring system is approximately planar, the largest deviation from the mean plane being 0.0237 (10) Å. The mean plane through the fused-ring system makes a dihedral angle of 61.00 (18)° with the mean plane passing through the 1-dodecyl chain. All C atoms of the dodecyl group adopt the planar zigzag arrangement normally observed in n-alkane compounds. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains parallel to the b axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

5-Chloro­isatin is a versatile chemical, able to participate in a wide variety of synthetic reactions and form a large number of heterocyclic mol­ecules (Abele et al., 2003[Abele, E., Abele, R., Dzenitis, O. & Lukevics, E. (2003). Chem. Heterocycl. Compd. 39, 3-35.]) and has an indoline ring structure (Adibi et al.,2010[Adibi, H., Khodaei, M. M., Pakravan, P. & Abiri, R. (2010). Pharm. Chem. J. 44, 219-227.]). 5-Chloro­isatin derivatives possess a wide range of biological activities (Bhrigu et al., 2010[Bhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug. Res. 2, 229-235.]; Cerchiaro et al., 2006[Cerchiaro, G. & Ferreira, A. M. da C. (2006). J. Braz. Chem. Soc. 17, 1473-1485.]; Chaluvaraju et al., 2011[Chaluvaraju, K. C. (2011). Res. J. Pharm. Biol. Chem. Sci. 2, 541-546.]; Chen et al., 2011[Chen, G., Wang, Y., Hao, X., Mu, S. & Sun, Q. (2011). Chem. Cent. J. 5: 37, doi: 10.1186/1752-153X-5-37.]; Chibale et al., 2005[Chibale, K. (2005). Pure Appl. Chem. 77, 1957-1964.]). The title compound (Fig. 1[link]) was obtained by the reaction of 1,12-dibromododecane with 5-chloroisatin under phase-transfer catalysis conditions.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

The 5-chloro­indoline-2,3-dione ring system is approximately planar, the largest deviation from the mean plane being 0.0237 (10) A°. The mean plane through the fused-ring system makes a dihedral angle of 61.00 (18)° with the mean plane passing through the 1-dodecyl chain. All C atoms of the dodecyl group adopt the planar zigzag arrangement normally observed in n-alkane compounds. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]), forming chains parallel to the b axis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.55 3.406 (3) 153
Symmetry code: (i) x, y-1, z.
[Figure 2]
Figure 2
The crystal structure of the title compound, viewed along the a axis, showing chains parallel to the b axis linked by C— H⋯O hydrogen bonds (dashed lines).

Synthesis and crystallization

To a solution of 5-chloro-1H-indole-2,3-dione (0.4 g, 2.20 mmol) in N,N-di­methyl­formamide (25 ml) was added potassium carbonate (0.5 g, 3.3 mmol), n-butyl­ammoium bromide (0.1 g, 0.3 mmol) and 1,12-di­bromo­dodecane (0.79 g, 2.42 mmol). The reaction mixture was stirred at 25°C for 48 h. The reaction was monitored by TLC and the resulting mixture was filtered. The title compound was recrystallized from ethanol to afford orange crystals (m.p. 348 K, yield 83%)

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H27BrClNO2
Mr 428.78
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.0353 (4), 8.3496 (5), 17.1096 (11)
α, β, γ (°) 84.491 (3), 78.086 (3), 65.126 (2)
V3) 1018.94 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.16
Crystal size (mm) 0.43 × 0.42 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.616, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 27898, 4137, 3048
Rint 0.038
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.04
No. of reflections 4137
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.80, −0.75
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

1-(12-Bromododecyl)-5-chloroindoline-2,3-dione top
Crystal data top
C20H27BrClNO2Z = 2
Mr = 428.78F(000) = 444
Triclinic, P1Dx = 1.398 Mg m3
a = 8.0353 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3496 (5) ÅCell parameters from 8944 reflections
c = 17.1096 (11) Åθ = 2.4–26.1°
α = 84.491 (3)°µ = 2.16 mm1
β = 78.086 (3)°T = 296 K
γ = 65.126 (2)°Plate, orange
V = 1018.94 (10) Å30.43 × 0.42 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
3048 reflections with I > 2σ(I)
φ and ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 26.4°, θmin = 2.4°
Tmin = 0.616, Tmax = 0.745h = 109
27898 measured reflectionsk = 1010
4137 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.8854P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4137 reflectionsΔρmax = 0.80 e Å3
226 parametersΔρmin = 0.75 e Å3
0 restraints
Special details top

Experimental. SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0808 before and 0.0473 after correction. The Ratio of minimum to maximum transmission is 0.8269. The λ/2 correction factor is 0.00150.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24071 (6)0.15532 (6)0.28981 (3)0.08347 (19)
Cl10.46586 (13)0.04747 (11)1.16822 (5)0.0638 (2)
O10.6524 (3)0.6434 (3)1.07775 (13)0.0531 (5)
O20.9025 (3)0.6153 (3)0.92241 (14)0.0551 (5)
N10.8799 (3)0.3488 (3)0.92033 (13)0.0392 (5)
C10.7886 (3)0.2574 (3)0.97305 (15)0.0337 (6)
C60.6863 (3)0.3557 (3)1.04153 (15)0.0335 (6)
C70.7132 (4)0.5205 (3)1.03357 (17)0.0374 (6)
C20.7910 (4)0.0933 (3)0.96406 (16)0.0377 (6)
H20.85830.02660.91860.045*
C80.8440 (4)0.5069 (4)0.95180 (17)0.0411 (6)
C50.5856 (4)0.2953 (3)1.10186 (16)0.0377 (6)
H50.51790.36171.14740.045*
C30.6898 (4)0.0324 (3)1.02514 (18)0.0432 (7)
H30.69000.07791.02070.052*
C40.5887 (4)0.1309 (4)1.09226 (17)0.0399 (6)
C110.7731 (4)0.2822 (4)0.76445 (17)0.0452 (7)
H11A0.67010.32240.80940.054*
H11B0.82990.15420.76620.054*
C91.0082 (4)0.2821 (4)0.84536 (18)0.0486 (7)
H9A1.05930.15410.84640.058*
H9B1.11100.31680.84050.058*
C120.6981 (5)0.3432 (4)0.68750 (18)0.0525 (7)
H12A0.63940.47120.68680.063*
H12B0.80240.30620.64300.063*
C100.9151 (4)0.3500 (4)0.77284 (18)0.0512 (7)
H10A0.85440.47780.77500.061*
H10B1.01140.31870.72520.061*
C130.5587 (5)0.2750 (4)0.67480 (18)0.0530 (8)
H13A0.44760.32360.71550.064*
H13B0.61170.14760.68160.064*
C140.5031 (5)0.3204 (5)0.59322 (18)0.0543 (8)
H14A0.44820.44780.58700.065*
H14B0.61490.27400.55260.065*
C160.3166 (5)0.2901 (5)0.49670 (19)0.0567 (8)
H16A0.26390.41700.48860.068*
H16B0.43010.24020.45730.068*
C150.3668 (5)0.2501 (5)0.57882 (19)0.0575 (8)
H15A0.41990.12310.58690.069*
H15B0.25330.29980.61830.069*
C170.1805 (5)0.2208 (5)0.4821 (2)0.0601 (8)
H17A0.06740.26960.52180.072*
H17B0.23370.09360.48940.072*
C180.1295 (5)0.2636 (5)0.3997 (2)0.0609 (9)
H18A0.07800.39070.39190.073*
H18B0.24220.21300.35990.073*
C190.0096 (5)0.1958 (5)0.3862 (2)0.0625 (9)
H19A0.04360.06820.39170.075*
H19B0.12090.24290.42710.075*
C200.0632 (6)0.2455 (5)0.3059 (2)0.0700 (10)
H20A0.04790.19910.26490.084*
H20B0.11770.37310.30050.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0751 (3)0.0929 (3)0.0933 (3)0.0366 (2)0.0263 (2)0.0176 (2)
Cl10.0758 (6)0.0589 (5)0.0656 (5)0.0440 (4)0.0036 (4)0.0151 (4)
O10.0619 (13)0.0357 (11)0.0673 (14)0.0256 (10)0.0081 (11)0.0090 (10)
O20.0585 (13)0.0484 (12)0.0700 (15)0.0354 (11)0.0134 (11)0.0139 (10)
N10.0433 (13)0.0407 (13)0.0392 (13)0.0229 (10)0.0080 (10)0.0020 (10)
C10.0341 (13)0.0316 (13)0.0392 (15)0.0144 (11)0.0154 (11)0.0056 (11)
C60.0374 (13)0.0272 (13)0.0409 (15)0.0152 (11)0.0142 (11)0.0012 (11)
C70.0382 (14)0.0310 (14)0.0489 (16)0.0170 (11)0.0158 (12)0.0022 (12)
C20.0430 (15)0.0310 (14)0.0421 (15)0.0154 (12)0.0124 (12)0.0034 (11)
C80.0418 (15)0.0376 (15)0.0513 (17)0.0209 (12)0.0177 (13)0.0079 (12)
C50.0411 (14)0.0346 (14)0.0388 (15)0.0164 (11)0.0096 (11)0.0025 (11)
C30.0506 (16)0.0286 (14)0.0595 (18)0.0209 (12)0.0218 (14)0.0046 (12)
C40.0445 (15)0.0361 (15)0.0457 (16)0.0226 (12)0.0142 (12)0.0104 (12)
C110.0473 (16)0.0474 (17)0.0399 (16)0.0205 (13)0.0051 (12)0.0023 (13)
C90.0397 (15)0.0605 (19)0.0482 (17)0.0255 (14)0.0020 (13)0.0023 (14)
C120.0617 (19)0.060 (2)0.0405 (17)0.0309 (16)0.0104 (14)0.0073 (14)
C100.0535 (18)0.062 (2)0.0417 (17)0.0306 (16)0.0037 (14)0.0031 (14)
C130.0595 (19)0.061 (2)0.0427 (17)0.0304 (16)0.0110 (14)0.0101 (14)
C140.065 (2)0.066 (2)0.0404 (17)0.0354 (17)0.0099 (14)0.0066 (15)
C160.067 (2)0.067 (2)0.0449 (18)0.0368 (18)0.0095 (15)0.0025 (15)
C150.062 (2)0.071 (2)0.0458 (18)0.0358 (18)0.0109 (15)0.0077 (16)
C170.063 (2)0.069 (2)0.055 (2)0.0340 (18)0.0134 (16)0.0025 (16)
C180.070 (2)0.068 (2)0.053 (2)0.0356 (18)0.0121 (16)0.0028 (16)
C190.064 (2)0.064 (2)0.065 (2)0.0295 (18)0.0144 (17)0.0034 (17)
C200.076 (2)0.078 (3)0.069 (2)0.042 (2)0.0148 (19)0.0072 (19)
Geometric parameters (Å, º) top
Br1—C201.945 (4)C12—C131.512 (4)
Cl1—C41.738 (3)C10—H10A0.9700
O1—C71.199 (3)C10—H10B0.9700
O2—C81.210 (3)C13—H13A0.9700
N1—C11.415 (3)C13—H13B0.9700
N1—C81.367 (4)C13—C141.518 (4)
N1—C91.458 (4)C14—H14A0.9700
C1—C61.394 (4)C14—H14B0.9700
C1—C21.385 (3)C14—C151.512 (4)
C6—C71.470 (3)C16—H16A0.9700
C6—C51.369 (4)C16—H16B0.9700
C7—C81.549 (4)C16—C151.510 (4)
C2—H20.9300C16—C171.505 (5)
C2—C31.381 (4)C15—H15A0.9700
C5—H50.9300C15—H15B0.9700
C5—C41.388 (4)C17—H17A0.9700
C3—H30.9300C17—H17B0.9700
C3—C41.375 (4)C17—C181.517 (5)
C11—H11A0.9700C18—H18A0.9700
C11—H11B0.9700C18—H18B0.9700
C11—C121.515 (4)C18—C191.512 (5)
C11—C101.507 (4)C19—H19A0.9700
C9—H9A0.9700C19—H19B0.9700
C9—H9B0.9700C19—C201.494 (5)
C9—C101.520 (4)C20—H20A0.9700
C12—H12A0.9700C20—H20B0.9700
C12—H12B0.9700
C1—N1—C9126.1 (2)H10A—C10—H10B107.4
C8—N1—C1110.8 (2)C12—C13—H13A108.8
C8—N1—C9123.0 (2)C12—C13—H13B108.8
C6—C1—N1110.7 (2)C12—C13—C14113.8 (3)
C2—C1—N1128.9 (2)H13A—C13—H13B107.7
C2—C1—C6120.4 (2)C14—C13—H13A108.8
C1—C6—C7107.4 (2)C14—C13—H13B108.8
C5—C6—C1121.9 (2)C13—C14—H14A108.6
C5—C6—C7130.7 (2)C13—C14—H14B108.6
O1—C7—C6130.6 (3)H14A—C14—H14B107.6
O1—C7—C8124.5 (2)C15—C14—C13114.6 (3)
C6—C7—C8104.9 (2)C15—C14—H14A108.6
C1—C2—H2121.2C15—C14—H14B108.6
C3—C2—C1117.6 (3)H16A—C16—H16B107.5
C3—C2—H2121.2C15—C16—H16A108.6
O2—C8—N1127.4 (3)C15—C16—H16B108.6
O2—C8—C7126.4 (3)C17—C16—H16A108.6
N1—C8—C7106.2 (2)C17—C16—H16B108.6
C6—C5—H5121.4C17—C16—C15114.8 (3)
C6—C5—C4117.3 (3)C14—C15—H15A108.6
C4—C5—H5121.4C14—C15—H15B108.6
C2—C3—H3119.2C16—C15—C14114.5 (3)
C4—C3—C2121.5 (2)C16—C15—H15A108.6
C4—C3—H3119.2C16—C15—H15B108.6
C5—C4—Cl1118.8 (2)H15A—C15—H15B107.6
C3—C4—Cl1119.9 (2)C16—C17—H17A108.7
C3—C4—C5121.3 (3)C16—C17—H17B108.7
H11A—C11—H11B107.8C16—C17—C18114.3 (3)
C12—C11—H11A109.1H17A—C17—H17B107.6
C12—C11—H11B109.1C18—C17—H17A108.7
C10—C11—H11A109.1C18—C17—H17B108.7
C10—C11—H11B109.1C17—C18—H18A108.8
C10—C11—C12112.7 (2)C17—C18—H18B108.8
N1—C9—H9A109.0H18A—C18—H18B107.7
N1—C9—H9B109.0C19—C18—C17113.7 (3)
N1—C9—C10112.7 (2)C19—C18—H18A108.8
H9A—C9—H9B107.8C19—C18—H18B108.8
C10—C9—H9A109.0C18—C19—H19A109.0
C10—C9—H9B109.0C18—C19—H19B109.0
C11—C12—H12A108.5H19A—C19—H19B107.8
C11—C12—H12B108.5C20—C19—C18112.7 (3)
H12A—C12—H12B107.5C20—C19—H19A109.0
C13—C12—C11115.0 (2)C20—C19—H19B109.0
C13—C12—H12A108.5Br1—C20—H20A109.2
C13—C12—H12B108.5Br1—C20—H20B109.2
C11—C10—C9115.6 (2)C19—C20—Br1111.9 (3)
C11—C10—H10A108.4C19—C20—H20A109.2
C11—C10—H10B108.4C19—C20—H20B109.2
C9—C10—H10A108.4H20A—C20—H20B107.9
C9—C10—H10B108.4
O1—C7—C8—O20.6 (4)C2—C3—C4—Cl1179.1 (2)
O1—C7—C8—N1179.6 (3)C2—C3—C4—C50.7 (4)
N1—C1—C6—C70.4 (3)C8—N1—C1—C60.7 (3)
N1—C1—C6—C5179.9 (2)C8—N1—C1—C2179.1 (3)
N1—C1—C2—C3179.6 (2)C8—N1—C9—C1086.0 (3)
N1—C9—C10—C1168.4 (4)C5—C6—C7—O10.6 (5)
C1—N1—C8—O2179.1 (3)C5—C6—C7—C8179.4 (3)
C1—N1—C8—C70.7 (3)C11—C12—C13—C14173.3 (3)
C1—N1—C9—C1099.3 (3)C9—N1—C1—C6175.9 (2)
C1—C6—C7—O1179.9 (3)C9—N1—C1—C23.9 (4)
C1—C6—C7—C80.0 (3)C9—N1—C8—O23.7 (4)
C1—C6—C5—C40.1 (4)C9—N1—C8—C7176.1 (2)
C1—C2—C3—C40.5 (4)C12—C11—C10—C9175.2 (3)
C6—C1—C2—C30.2 (4)C12—C13—C14—C15178.8 (3)
C6—C7—C8—O2179.3 (3)C10—C11—C12—C13178.4 (3)
C6—C7—C8—N10.4 (3)C13—C14—C15—C16178.0 (3)
C6—C5—C4—Cl1178.9 (2)C16—C17—C18—C19179.1 (3)
C6—C5—C4—C30.4 (4)C15—C16—C17—C18179.3 (3)
C7—C6—C5—C4179.4 (3)C17—C16—C15—C14179.9 (3)
C2—C1—C6—C7179.4 (2)C17—C18—C19—C20177.8 (3)
C2—C1—C6—C50.0 (4)C18—C19—C20—Br1179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.553.406 (3)153
Symmetry code: (i) x, y1, z.
 

References

First citationAbele, E., Abele, R., Dzenitis, O. & Lukevics, E. (2003). Chem. Heterocycl. Compd. 39, 3–35.  CrossRef CAS Google Scholar
First citationAdibi, H., Khodaei, M. M., Pakravan, P. & Abiri, R. (2010). Pharm. Chem. J. 44, 219–227.  CrossRef CAS Google Scholar
First citationBhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug. Res. 2, 229–235.  CAS Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCerchiaro, G. & Ferreira, A. M. da C. (2006). J. Braz. Chem. Soc. 17, 1473–1485.  Web of Science CrossRef CAS Google Scholar
First citationChaluvaraju, K. C. (2011). Res. J. Pharm. Biol. Chem. Sci. 2, 541–546.  CAS Google Scholar
First citationChibale, K. (2005). Pure Appl. Chem. 77, 1957–1964.  CrossRef CAS Google Scholar
First citationChen, G., Wang, Y., Hao, X., Mu, S. & Sun, Q. (2011). Chem. Cent. J. 5: 37, doi: 10.1186/1752-153X-5-37.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds