organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Benzo[4,5]imidazo[2,1-b]thia­zole-2-carbaldehyde

aDepartment of Chemistry, M. S. Ramaiah Institute of Technology, Bangalore 560 054, Karnataka, India, bVisvesvaraya Technological University, Belagavi 590 018, India, and cSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: muralikp21@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 April 2016; accepted 11 May 2016; online 17 May 2016)

The title compound, C10H6N2OS, is planar, with an r.m.s. deviation of 0.021 Å for the non-H atoms. In the crystal, mol­ecules are linked via a pair of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(6) ring motif. The mol­ecules stack up the c axis and are linked by offset ππ inter­actions [shortest inter-centroid distance = 3.647 (2) Å], forming undulating layers parallel to (100).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Substituted and unsubstituted benzimidazole derivatives occupy an important position among medications due to their vast range of biological activities, such as immunomodulator (Fenichel et al., 1980[Fenichel, R. L., Alburn, H. E., Schreck, P. A., Bloom, R. & Gregory, F. J. (1980). J. Immunopharmacol. 2, 491-508.]; Dillman et al., 1992[Dillman, R. O., Ryan, K. P., Dillman, J. B., Shawler, D. L. & Maguire, R. (1992). Mol. Biother. 4, 10-14.]) anti-­ulcer, anti­cancer (Abdel-Aziz et al., 2010[Abdel-Aziz, H. A., Saleh, T. S. & El-Zahabi, H. S. A. (2010). Arch. Pharm. 343, 24-30.]), anti­fungal (Pattanaik et al., 1998[Pattanaik, J. M., Pattanaik, M. & Bhatta, D. (1998). Indian J. Heterocycl. Chem. 8, 75-76.]), anti­bacterial (Oh et al., 1995[Oh, C., Ham, Y., Hong, S. & Cho, J. (1995). Arch. Pharm. Pharm. Med. Chem. 328, 289-291.]), anti­diabetic (El-Shorbagi et al., 2001[El-Shorbagi, A. A., Hayallah, A. A., Omar, N. M. & Ahmed, A. N. (2001). Chem. Abstr. 136, 151102.]) and fungicidal (Chaudhary et al., 1970[Chaudhary, H. S., Parda, C. S. & Pujari, H. K. (1970). Indian J. Chem. 8, 10.]). Benzimidazole derivatives are also used as building blocks for the synthesis of nonpeptide antagonists of angiotensin II receptor (Abdel-Aziz et al., 2010[Abdel-Aziz, H. A., Saleh, T. S. & El-Zahabi, H. S. A. (2010). Arch. Pharm. 343, 24-30.]; Chaudhary et al., 1970[Chaudhary, H. S., Parda, C. S. & Pujari, H. K. (1970). Indian J. Chem. 8, 10.]). In view of the current inter­est in designing new benzimidazole derivatives, we have synthesized benzo[4,5]imidazo[2,1-b]thia­zole-2-carbaldehyde and report herein its crystal structure.

The title compound (Fig. 1[link]) is planar, with an r.m.s. deviation of 0.021 Å for all the non-H atoms [maximum deviation = 0.032 (4) Å for atom C3]. The bond lengths and angles are close to those observed for the similar compound 1-(6-bromo-3-methyl-1,3-thia­zolo[3,2-a]benzimidazol-2-yl)ethanone (Abdel-Aziz et al., 2011[Abdel-Aziz, H. A., Hamdy, N. N., Gamal-Eldeen, A. M. & Fakhr, I. M. (2011). Z. Naturforsch. Teil C, 66, 7-16.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal of the title compound, mol­ecules are linked by a pair of C—H⋯O hydrogen bonds, forming inversion dimers with an [R_{2}^{2}](6) ring motif (Table 1[link] and Fig. 2[link]). The mol­ecules stack up the c axis and are linked by slipped parallel ππ inter­actions, involving inversion-related mol­ecules, forming undulating layers parallel to the bc plane (Fig. 2[link]). The shortest inter­action is Cg1⋯Cg2ii of 3.647 (2) Å, with an inter­planar distance of 3.417 (1) Å and a slippage of 1.239 Å [Cg1 and Cg2 are the centroids of the S1/N2/C2/C3/C10 and N1/N2/C4/C9/C10 rings, respectively; symmetry code: (ii) −x, −y, −z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.55 3.248 (4) 132
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, only the H atom (grey ball) involved in this inter­action has been included.

Synthesis and crystallization

To synthesize the title compound, a number of attempts were made with different bases, like K2CO3, NaOH, KOH, tri­ethyl­amine and ACONa, for the nucleophilic reaction in different solvents, like EtOH, MeOH, CH3CN and di­methyl­formamide (DMF). Success was achieved with the following procedure. To a stirred solution of 2-mercaptobenzimidazole (250 mg, 0.0016 mol) in dry acetone, an acetone solution of 2-bromo­malonaldehyde (252 mg, 0.0016 mol) was added dropwise with stirring over a period of 60 min. After evaporating the solvent, ice-cold water was added and the mixture neutralized with ammonium hydroxide. The reaction was monitored by thin-layer-chromatography (TLC). The pale-coloured solid which was produced was collected by filtration, washed several times with ice-cold water and petroleum ether, and finally dried in vacuo. Colourless block-shaped crystals were obtained by slow evaporation of a solution in water/DMF (1:9 v/v).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H6N2OS
Mr 202.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 5.6514 (16), 21.220 (7), 7.381 (2)
β (°) 96.473 (17)
V3) 879.5 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.24 × 0.23 × 0.22
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.584, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15536, 2357, 935
Rint 0.129
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.150, 0.91
No. of reflections 2357
No. of parameters 131
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.35
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Experimental top

To synthesize the title compound, a number of attempts were made with different bases, like K2CO3, NaOH, KOH, triethylamine and ACONa, for the nucleophilic reaction in different solvents, like EtOH, MeOH, CH3CN and dimethylformamide (DMF). Success was achieved with the following procedure. To a stirred solution of 2-mercaptobenzimidazole (250 mg, 0.0016 mol) in dry acetone, an acetone solution of 2-bromomalonaldehyde (252 mg, 0.0016 mol) was added dropwise with stirring over a period of 60 min. After evaporating the solvent, ice-cold water was added and the mixture neutralized with ammonium hydroxide. The reaction was monitored by thin-layer-chromatography (TLC). The pale-coloured solid which was produced was collected by filtration, washed several times with ice-cold water and petroleum ether, and finally dried in vacuo. Colourless block-shaped crystals were obtained by slow evaporation of a solution in water/DMF (1:9 v/v).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Substituted and unsubstituted benzimidazole derivatives occupy an important position among medications due to their vast range of biological activities, such as immunomodulator (Fenichel et al., 1980; Dillman et al., 1992) antiulcer, anticancer (Abdel-Aziz et al., 2010), antifungal (Pattanaik et al., 1998), antibacterial (Oh et al., 1995), antidiabetic (El-Shorbagi et al., 2001) and fungicidal (Chaudhary et al., 1970). Benzimidazole derivatives are also used as building blocks for the synthesis of nonpeptide antagonists of angiotensin II receptor (Abdel-Aziz et al., 2010; Chaudhary et al., 1970). In view of the current interest in designing new benzimidazole derivatives, we have synthesized the title compound benzo[4,5]imidazo[2,1-b]thiazole-2-carbaldehyde and report herein on its crystal structure.

The title compound (Fig. 1) is planar, with an r.m.s. deviation of 0.021 Å for all the non-H atoms [maximum deviation = 0.032 (4) Å for atom C3]. The bond lengths and angles are close to those observed for the similar compound, 1-(6-bromo-3-methyl-1,3-thiazolo[3,2-a]benzimidazol-2-yl)ethanone (Abdel-Aziz et al., 2011).

In the crystal of the title compound, molecules are linked by a pair of C—H···O hydrogen bonds, forming inversion dimers with an R22(6) ring motif (Table 1 and Fig. 2). The molecules stack up the c axis and are linked by slipped parallel ππ interactions, involving inversion-related molecules, forming undulating layers parallel to the bc plane (Fig 2). The shortest interaction is Cg1···Cg2ii = 3.647 (2) Å, interplanar distance = 3.417 (1) Å and slippage 1.239 Å; Cg1 and Cg2 are the centroids of the S1/N2/C2/C3/C10 and N1/N2/C4/C9/C10 rings [symmetry code: (ii) -x, -y, -z].

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1) and, for clarity, only the H atom (grey ball) involved in this interaction has been included.
Benzo[4,5]imidazo[2,1-b]thiazole-2-carbaldehyde top
Crystal data top
C10H6N2OSF(000) = 416
Mr = 202.23Dx = 1.527 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.6514 (16) ÅCell parameters from 563 reflections
b = 21.220 (7) Åθ = 5–25.0°
c = 7.381 (2) ŵ = 0.33 mm1
β = 96.473 (17)°T = 298 K
V = 879.5 (5) Å3Block, colourless
Z = 40.24 × 0.23 × 0.22 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2357 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs935 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.129
Detector resolution: 7.9 pixels mm-1θmax = 30.1°, θmin = 1.9°
ω and φ scansh = 67
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 2929
Tmin = 0.584, Tmax = 0.746l = 1010
15536 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: mixed
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 0.91 w = 1/[σ2(Fo2) + (0.0593P)2]
where P = (Fo2 + 2Fc2)/3
2357 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C10H6N2OSV = 879.5 (5) Å3
Mr = 202.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6514 (16) ŵ = 0.33 mm1
b = 21.220 (7) ÅT = 298 K
c = 7.381 (2) Å0.24 × 0.23 × 0.22 mm
β = 96.473 (17)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2357 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
935 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 0.746Rint = 0.129
15536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.23 e Å3
2357 reflectionsΔρmin = 0.35 e Å3
131 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00346 (15)0.35868 (4)0.24538 (14)0.0456 (3)
O10.2732 (5)0.47879 (12)0.3388 (4)0.0712 (9)
N10.0906 (5)0.22884 (13)0.2066 (4)0.0405 (7)
N20.2655 (4)0.26299 (12)0.3445 (4)0.0344 (7)
C10.3851 (6)0.43192 (18)0.3864 (5)0.0524 (10)
H10.53780.43670.44650.063*
C20.2933 (6)0.36898 (16)0.3546 (5)0.0386 (8)
C30.4060 (6)0.31408 (16)0.3987 (5)0.0394 (9)
H30.55960.31110.45830.047*
C40.2798 (5)0.19764 (15)0.3477 (5)0.0354 (8)
C50.4609 (6)0.15669 (16)0.4114 (5)0.0437 (9)
H50.60830.17110.46400.052*
C60.4101 (6)0.09323 (17)0.3922 (5)0.0513 (10)
H60.52600.06390.43390.062*
C70.1898 (7)0.0720 (2)0.3120 (5)0.0519 (10)
H70.147 (6)0.0268 (17)0.294 (5)0.066 (12)*
C80.0123 (6)0.11321 (17)0.2454 (5)0.0468 (9)
H80.13350.09840.19090.056*
C90.0572 (5)0.17760 (16)0.2619 (4)0.0370 (8)
C100.0414 (5)0.27784 (16)0.2589 (5)0.0402 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0405 (5)0.0460 (6)0.0480 (6)0.0017 (4)0.0050 (4)0.0016 (5)
O10.080 (2)0.0409 (17)0.087 (2)0.0059 (14)0.0140 (16)0.0041 (15)
N10.0381 (15)0.0419 (19)0.0404 (18)0.0038 (14)0.0014 (13)0.0023 (14)
N20.0296 (14)0.0401 (18)0.0326 (17)0.0034 (13)0.0003 (12)0.0016 (14)
C10.049 (2)0.050 (3)0.055 (3)0.007 (2)0.0069 (19)0.007 (2)
C20.0372 (18)0.042 (2)0.035 (2)0.0044 (16)0.0012 (15)0.0009 (17)
C30.0356 (18)0.045 (2)0.037 (2)0.0053 (17)0.0011 (15)0.0020 (17)
C40.0340 (18)0.040 (2)0.032 (2)0.0024 (16)0.0007 (14)0.0039 (17)
C50.0357 (18)0.049 (2)0.046 (2)0.0009 (16)0.0013 (16)0.0043 (18)
C60.055 (2)0.042 (2)0.057 (3)0.0080 (18)0.0087 (19)0.0030 (19)
C70.057 (3)0.044 (3)0.055 (3)0.005 (2)0.009 (2)0.006 (2)
C80.044 (2)0.053 (2)0.044 (2)0.011 (2)0.0066 (16)0.006 (2)
C90.0359 (19)0.046 (2)0.029 (2)0.0055 (16)0.0025 (16)0.0020 (17)
C100.0321 (19)0.050 (2)0.037 (2)0.0026 (16)0.0013 (16)0.0002 (18)
Geometric parameters (Å, º) top
S1—C101.730 (3)C3—H30.9300
S1—C21.756 (3)C4—C51.384 (4)
O1—C11.210 (4)C4—C91.409 (4)
N1—C101.312 (4)C5—C61.381 (5)
N1—C91.403 (4)C5—H50.9300
N2—C31.376 (4)C6—C71.392 (5)
N2—C101.386 (4)C6—H60.9300
N2—C41.389 (4)C7—C81.379 (5)
C1—C21.442 (5)C7—H70.99 (3)
C1—H10.9300C8—C91.393 (4)
C2—C31.350 (4)C8—H80.9300
C10—S1—C289.64 (16)C6—C5—H5121.9
C10—N1—C9103.2 (3)C4—C5—H5121.9
C3—N2—C10114.9 (3)C5—C6—C7121.7 (3)
C3—N2—C4138.6 (3)C5—C6—H6119.2
C10—N2—C4106.5 (2)C7—C6—H6119.2
O1—C1—C2123.2 (3)C8—C7—C6121.7 (4)
O1—C1—H1118.4C8—C7—H7114 (2)
C2—C1—H1118.4C6—C7—H7124 (2)
C3—C2—C1127.5 (3)C7—C8—C9118.2 (3)
C3—C2—S1113.2 (3)C7—C8—H8120.9
C1—C2—S1119.3 (3)C9—C8—H8120.9
C2—C3—N2111.6 (3)C8—C9—N1129.6 (3)
C2—C3—H3124.2C8—C9—C4118.7 (3)
N2—C3—H3124.2N1—C9—C4111.6 (3)
C5—C4—N2132.2 (3)N1—C10—N2114.4 (3)
C5—C4—C9123.5 (3)N1—C10—S1134.9 (3)
N2—C4—C9104.3 (3)N2—C10—S1110.7 (2)
C6—C5—C4116.1 (3)
O1—C1—C2—C3178.4 (4)C7—C8—C9—N1179.9 (3)
O1—C1—C2—S11.2 (5)C7—C8—C9—C40.8 (5)
C10—S1—C2—C30.7 (3)C10—N1—C9—C8179.0 (3)
C10—S1—C2—C1179.0 (3)C10—N1—C9—C40.1 (3)
C1—C2—C3—N2178.8 (3)C5—C4—C9—C82.4 (5)
S1—C2—C3—N20.8 (4)N2—C4—C9—C8179.1 (3)
C10—N2—C3—C20.5 (4)C5—C4—C9—N1178.4 (3)
C4—N2—C3—C2178.8 (3)N2—C4—C9—N10.2 (3)
C3—N2—C4—C51.1 (6)C9—N1—C10—N20.1 (4)
C10—N2—C4—C5178.3 (3)C9—N1—C10—S1179.6 (3)
C3—N2—C4—C9179.4 (3)C3—N2—C10—N1179.5 (3)
C10—N2—C4—C90.1 (3)C4—N2—C10—N10.0 (4)
N2—C4—C5—C6179.7 (3)C3—N2—C10—S10.1 (3)
C9—C4—C5—C62.1 (5)C4—N2—C10—S1179.6 (2)
C4—C5—C6—C70.5 (5)C2—S1—C10—N1179.1 (4)
C5—C6—C7—C80.9 (5)C2—S1—C10—N20.4 (2)
C6—C7—C8—C90.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.553.248 (4)132
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.553.248 (4)132
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H6N2OS
Mr202.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.6514 (16), 21.220 (7), 7.381 (2)
β (°) 96.473 (17)
V3)879.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.24 × 0.23 × 0.22
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.584, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15536, 2357, 935
Rint0.129
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.150, 0.91
No. of reflections2357
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.35

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), olex2.solve (Bourhis et al., 2015), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for data collection at the CCD facility and Professor Kandikere Ramaiah Prabhu, Department of Organic Chemistry, Indian Institute of Science, Bangalore, for kind technical support.

References

First citationAbdel-Aziz, H. A., Hamdy, N. N., Gamal-Eldeen, A. M. & Fakhr, I. M. (2011). Z. Naturforsch. Teil C, 66, 7–16.  CAS Google Scholar
First citationAbdel-Aziz, H. A., Saleh, T. S. & El-Zahabi, H. S. A. (2010). Arch. Pharm. 343, 24–30.  CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhary, H. S., Parda, C. S. & Pujari, H. K. (1970). Indian J. Chem. 8, 10.  Google Scholar
First citationDillman, R. O., Ryan, K. P., Dillman, J. B., Shawler, D. L. & Maguire, R. (1992). Mol. Biother. 4, 10–14.  PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl-Shorbagi, A. A., Hayallah, A. A., Omar, N. M. & Ahmed, A. N. (2001). Chem. Abstr. 136, 151102.  Google Scholar
First citationFenichel, R. L., Alburn, H. E., Schreck, P. A., Bloom, R. & Gregory, F. J. (1980). J. Immunopharmacol. 2, 491–508.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOh, C., Ham, Y., Hong, S. & Cho, J. (1995). Arch. Pharm. Pharm. Med. Chem. 328, 289–291.  CrossRef CAS Google Scholar
First citationPattanaik, J. M., Pattanaik, M. & Bhatta, D. (1998). Indian J. Heterocycl. Chem. 8, 75–76.  CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds