organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(5-Chloro-2-hy­dr­oxy­phen­yl)-N′-(3-hy­dr­oxy­prop­yl)oxalamide

aKey Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
*Correspondence e-mail: wuzy@ouc.edu.cn

Edited by J. Simpson, University of Otago, New Zealand (Received 25 April 2016; accepted 3 May 2016; online 6 May 2016)

In the structure of the title N,N′-bis­(substituted)oxamide compound, C11H13ClN2O4, the chloro­hydroxy­phenyl ring plane subtends an angle of 15.06 (13)° to the plane of the oxalamide unit. This in turn is inclined to the hy­droxy­propyl substituent by 78.03 (14)°. In the crystal, classical O—H⋯O and N—H⋯O hydrogen bonds give rise to a three-dimensional supra­molecular structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Oxamide complexes are of considerable current inter­est due to their DNA-binding properties and cytotoxic activity (Martínez-Martínez et al., 1998[Martínez-Martínez, F. J., Padilla-Martínez, I. I., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuextl, M. & Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401-406.]; Li et al., 2012[Li, X.-W., Tao, L., Li, Y.-T., Wu, Z.-Y. & Yan, C.-W. (2012). Eur. J. Med. Chem. 54, 697-708.]; Yue et al., 2012[Yue, X.-T., Li, X.-W. & Wu, Z.-Y. (2012). Acta Cryst. E68, o8.] and Zheng et al., 2012[Zheng, Y.-J., Zheng, K., Wu, Z.-Y. & Li, Y. (2012). Acta Cryst. E68, o895.]). The title oxamide compound, N-(5-chloro-2-hy­droxy­phen­yl)-N′-(3-hy­droxy­prop­yl)oxalamide (H3chhpox), adopts a transoid conformation as expected (Fig. 1[link]). The benzene ring substituent is almost coplanar with the oxamide group with a C7—N1—C1—C6 torsion angle of 11.8 (4)° while the other hy­droxy­phenyl substituent arm is almost orthogonal to this plane with a C8—N2—C9—C10 torsion angle of 92.4 (3)°.

[Figure 1]
Figure 1
The mol­ecular structure with displacement ellipsoids drawn at the 30% probability level.

In the crystal, layers are formed parallel to the ac plane through O—H⋯O hydrogen bonds (Fig. 2[link], Table 1[link]). Inversion-related N—H⋯O hydrogen bonds between the oxamide groups connect the parallel layers into a three-dimensional supra­molecular structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4i 0.81 (2) 1.88 (2) 2.690 (2) 173 (3)
O4—H4A⋯O3ii 0.81 (2) 1.98 (2) 2.794 (2) 178 (3)
N2—H2⋯O2iii 0.88 (2) 2.12 (3) 2.916 (2) 150 (2)
Symmetry codes: (i) [x-{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+2, -y+1, -z.
[Figure 2]
Figure 2
The two-dimensional hydrogen-bonding network parallel to (010), constructed by classical O—H⋯O inter­actions. [Symmetry codes: (i) x − [{3\over 2}], [{3\over 2}] − y, z + [{1\over 2}]; (ii) x + 1, y, z; (iii) x + [{3\over 2}], [{3\over 2}] − y, z − [{1\over 2}]; (iv) x − 1, y, z.]

Synthesis and crystallization

The synthesis of the title compound (H3chhpox) was achieved in two steps. The first was the preparation of N-(5-chloro-2-hy­droxy­phen­yl)oxalamide (H3chox) according to a reported method (Marmur, 1961[Marmur, J. (1961). J. Mol. Biol. 3, 208-218.]). Next, H3chox (5 mmol, 1.22 g) in 20 mL absolute ethanol was added dropwise to 20 mL of an absolute ethanol solution containing 3-amino-1-propanol (6 mmol, 0.76 mL) at 273 K. The resulting solution was stirred for 2 h, and H3chhpox was precipitated as a white powder. It was then recrystallized from ethanol at 273 K and dried under vacuum. Well-shaped colorless single crystals were obtained by slow evaporation of an ethanol solution of the recrystallized product. Yield: 83%. Analysis calculated for C11H13N2O4Cl: C, 48.45; H, 4.81; N, 10.27%. Found: C, 48.96; H, 4.77; N, 10.65%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H13ClN2O4
Mr 272.68
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 6.1422 (14), 18.117 (4), 11.061 (2)
β (°) 98.896 (8)
V3) 1216.0 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.32
Crystal size (mm) 0.49 × 0.16 × 0.03
 
Data collection
Diffractometer Bruker APEX area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.697, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10616, 2779, 1672
Rint 0.054
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.107, 1.00
No. of reflections 2779
No. of parameters 215
No. of restraints 2
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.25, −0.20
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Synthesis and crystallization top

The synthesis of the title compound (H3chhpox) was achieved in two steps. The first was the preparation of N-(5-chloro-2-hy­droxy­phenyl)­oxalamide (H3chox) according to a reported method (Marmur, 1961). Next, H3chox (5mmol, 1.22g) in 20mL absolute ethanol was added dropwise to 20mL of an absolute ethanol solution containing (6mmol, 0.76mL) 3-amino-1-propanol at 273K. The resulting solution was stirred for 2h, and H3chhpox was precipitated as a white powder. It was then recrystallized from ethanol at 273K and dried under vacuum. Well-shaped colorless single crystals were obtained by slow evaporation of an ethanol solution of the recrystallized product. Yield: 83%. Anal. Calcd for C11H13N2O4Cl: C, 48.45; H, 4.81; N, 10.27%. Found: C, 48.96; H, 4.77; N, 10.65%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1

Experimental top

The synthesis of the title compound (H3chhpox) was achieved in two steps. The first was the preparation of N-(5-chloro-2-hydroxyphenyl)oxalamide (H3chox) according to a reported method (Marmur, 1961). Next, H3chox (5 mmol, 1.22 g) in 20 mL absolute ethanol was added dropwise to 20 mL of an absolute ethanol solution containing 3-amino-1-propanol (6 mmol, 0.76 mL) at 273 K. The resulting solution was stirred for 2 h, and H3chhpox was precipitated as a white powder. It was then recrystallized from ethanol at 273 K and dried under vacuum. Well-shaped colorless single crystals were obtained by slow evaporation of an ethanol solution of the recrystallized product. Yield: 83%. Anal. Calcd for C11H13N2O4Cl: C, 48.45; H, 4.81; N, 10.27%. Found: C, 48.96; H, 4.77; N, 10.65%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Oxamide complexes are of considerable current interest due to their DNA-binding properties and cytotoxic activity (Martínez-Martínez et al., 1998; Li et al., 2012; Yue et al., 2012 and Zheng et al., 2012). The title oxamide compound, N-(5-chloro-2-hydroxyphenyl)-N'-(3-hydroxypropyl)oxalamide (H3chhpox), adopts a transoid conformation as expected (Fig. 1). The benzene ring substituent is almost coplanar with the oxamide group with a C7—N1—C1—C6 torsion angle of 11.8 (4)° while the other hydroxyphenyl substituent arm is almost orthogonal to this plane with a C8—N2—C9—C10 torsion angle of 92.4 (3)°.

In the crystal, layers are formed parallel to the ac plane through O—H···O hydrogen bonds (Fig. 2, Table 1). Inversion-related N—H···O hydrogen bonds between the oxamide groups connect the parallel layers into a three-dimensional supramolecular structure.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A two-dimensional hydrogen-bonding network parallel to (010), constructed by classical O—H···O interactions. [Symmetry codes: (i) x - 3/2, 3/2 - y, z + 1/2; (ii) x + 1, y, z; (iii) x + 3/2, 3/2 - y, z - 1/2; (iv) x - 1, y, z.]
N-(5-Chloro-2-hydroxyphenyl)-N'-(3-hydroxypropyl)ethanediamide top
Crystal data top
C11H13ClN2O4F(000) = 568
Mr = 272.68Dx = 1.490 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.1422 (14) ÅCell parameters from 2400 reflections
b = 18.117 (4) Åθ = 3.5–25.0°
c = 11.061 (2) ŵ = 0.32 mm1
β = 98.896 (8)°T = 296 K
V = 1216.0 (5) Å3Prism, colorless
Z = 40.49 × 0.16 × 0.03 mm
Data collection top
Bruker APEX area-detector
diffractometer
1672 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
φ and ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 77
Tmin = 0.697, Tmax = 0.746k = 2323
10616 measured reflectionsl = 1314
2779 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.107All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.2977P]
where P = (Fo2 + 2Fc2)/3
2779 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.25 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H13ClN2O4V = 1216.0 (5) Å3
Mr = 272.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.1422 (14) ŵ = 0.32 mm1
b = 18.117 (4) ÅT = 296 K
c = 11.061 (2) Å0.49 × 0.16 × 0.03 mm
β = 98.896 (8)°
Data collection top
Bruker APEX area-detector
diffractometer
2779 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1672 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.746Rint = 0.054
10616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.107All H-atom parameters refined
S = 1.00Δρmax = 0.25 e Å3
2779 reflectionsΔρmin = 0.20 e Å3
215 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.54932 (13)0.33941 (3)0.39890 (7)0.0621 (3)
O10.2065 (3)0.63169 (9)0.24549 (16)0.0484 (5)
O20.7936 (3)0.50435 (8)0.08106 (16)0.0485 (5)
O30.6905 (2)0.69246 (8)0.03286 (14)0.0400 (4)
O41.4561 (3)0.80399 (10)0.10518 (19)0.0523 (5)
N10.5547 (3)0.58139 (10)0.15803 (17)0.0334 (5)
N20.8959 (3)0.61585 (10)0.06633 (18)0.0356 (5)
C10.4604 (3)0.53575 (11)0.23849 (19)0.0312 (5)
C20.2779 (4)0.56333 (12)0.2848 (2)0.0356 (5)
C30.1802 (4)0.52106 (14)0.3647 (2)0.0449 (6)
C40.2617 (4)0.45182 (13)0.4005 (2)0.0450 (6)
C50.4420 (4)0.42605 (12)0.3552 (2)0.0390 (6)
C60.5429 (4)0.46656 (12)0.2747 (2)0.0345 (5)
C70.7077 (3)0.56439 (11)0.0884 (2)0.0310 (5)
C80.7663 (3)0.63118 (11)0.0148 (2)0.0308 (5)
C90.9727 (4)0.67265 (14)0.1426 (2)0.0385 (6)
C101.1919 (4)0.70438 (13)0.0862 (2)0.0363 (6)
C111.2472 (4)0.77284 (13)0.1527 (2)0.0398 (6)
H10.507 (4)0.6260 (14)0.150 (2)0.049 (7)*
H1A0.122 (4)0.6487 (14)0.288 (2)0.061 (9)*
H20.946 (4)0.5705 (14)0.068 (2)0.052 (8)*
H30.060 (4)0.5401 (13)0.394 (2)0.048 (7)*
H40.191 (4)0.4237 (12)0.453 (2)0.044 (7)*
H4A1.527 (5)0.7724 (14)0.065 (3)0.086 (12)*
H60.663 (4)0.4498 (12)0.2439 (19)0.038 (6)*
H9A0.863 (4)0.7103 (13)0.158 (2)0.048 (7)*
H9B0.985 (4)0.6512 (13)0.223 (2)0.051 (7)*
H10A1.300 (4)0.6690 (13)0.089 (2)0.049 (7)*
H10B1.191 (4)0.7173 (12)0.001 (2)0.047 (7)*
H11A1.134 (4)0.8107 (13)0.142 (2)0.051 (7)*
H11B1.244 (4)0.7627 (13)0.239 (2)0.055 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0836 (6)0.0395 (4)0.0696 (5)0.0142 (3)0.0319 (4)0.0192 (3)
O10.0533 (12)0.0387 (9)0.0596 (12)0.0148 (8)0.0290 (10)0.0017 (8)
O20.0544 (11)0.0292 (9)0.0709 (12)0.0096 (8)0.0384 (10)0.0073 (8)
O30.0459 (10)0.0263 (8)0.0499 (10)0.0023 (7)0.0141 (8)0.0018 (7)
O40.0427 (11)0.0400 (10)0.0750 (14)0.0110 (9)0.0117 (10)0.0195 (10)
N10.0382 (11)0.0235 (10)0.0425 (12)0.0032 (8)0.0186 (9)0.0008 (8)
N20.0357 (11)0.0289 (10)0.0461 (12)0.0019 (9)0.0184 (10)0.0019 (9)
C10.0342 (12)0.0274 (11)0.0339 (12)0.0022 (9)0.0108 (10)0.0037 (9)
C20.0374 (13)0.0289 (11)0.0425 (14)0.0035 (10)0.0127 (11)0.0046 (10)
C30.0439 (15)0.0473 (15)0.0495 (16)0.0031 (12)0.0257 (13)0.0036 (12)
C40.0556 (17)0.0402 (14)0.0447 (15)0.0047 (12)0.0253 (13)0.0021 (12)
C50.0497 (15)0.0310 (12)0.0383 (14)0.0001 (11)0.0129 (12)0.0003 (10)
C60.0364 (14)0.0310 (12)0.0393 (13)0.0033 (10)0.0154 (11)0.0009 (10)
C70.0307 (12)0.0257 (11)0.0383 (13)0.0012 (10)0.0105 (10)0.0026 (10)
C80.0272 (12)0.0285 (11)0.0366 (13)0.0026 (9)0.0050 (10)0.0007 (10)
C90.0384 (15)0.0399 (14)0.0395 (15)0.0035 (12)0.0129 (12)0.0060 (12)
C100.0351 (14)0.0324 (12)0.0430 (15)0.0028 (11)0.0105 (11)0.0063 (11)
C110.0433 (15)0.0352 (13)0.0429 (16)0.0037 (12)0.0131 (12)0.0075 (12)
Geometric parameters (Å, º) top
Cl1—C51.742 (2)C3—C41.385 (3)
O1—C21.362 (3)C3—H30.92 (2)
O1—H1A0.813 (17)C4—C51.366 (3)
O2—C71.217 (2)C4—H40.93 (2)
O3—C81.232 (2)C5—C61.374 (3)
O4—C111.426 (3)C6—H60.91 (2)
O4—H4A0.812 (17)C7—C81.532 (3)
N1—C71.340 (3)C9—C101.507 (3)
N1—C11.404 (3)C9—H9A0.96 (2)
N1—H10.86 (2)C9—H9B0.98 (2)
N2—C81.317 (3)C10—C111.507 (3)
N2—C91.454 (3)C10—H10A0.93 (2)
N2—H20.88 (2)C10—H10B0.99 (2)
C1—C61.388 (3)C11—H11A1.00 (2)
C1—C21.395 (3)C11—H11B0.97 (2)
C2—C31.375 (3)
C2—O1—H1A111.1 (19)C1—C6—H6118.3 (14)
C11—O4—H4A107 (2)O2—C7—N1126.43 (19)
C7—N1—C1128.59 (18)O2—C7—C8122.01 (18)
C7—N1—H1114.1 (16)N1—C7—C8111.56 (17)
C1—N1—H1117.2 (16)O3—C8—N2125.7 (2)
C8—N2—C9122.0 (2)O3—C8—C7119.94 (18)
C8—N2—H2117.3 (16)N2—C8—C7114.32 (18)
C9—N2—H2120.4 (16)N2—C9—C10112.3 (2)
C6—C1—C2119.7 (2)N2—C9—H9A109.1 (14)
C6—C1—N1123.15 (19)C10—C9—H9A111.4 (14)
C2—C1—N1117.09 (18)N2—C9—H9B108.7 (14)
O1—C2—C3124.1 (2)C10—C9—H9B109.7 (14)
O1—C2—C1116.49 (19)H9A—C9—H9B106 (2)
C3—C2—C1119.4 (2)C11—C10—C9111.5 (2)
C2—C3—C4120.9 (2)C11—C10—H10A109.9 (14)
C2—C3—H3118.0 (15)C9—C10—H10A108.7 (14)
C4—C3—H3121.1 (15)C11—C10—H10B108.4 (13)
C5—C4—C3118.8 (2)C9—C10—H10B110.5 (13)
C5—C4—H4121.6 (14)H10A—C10—H10B108 (2)
C3—C4—H4119.6 (14)O4—C11—C10113.8 (2)
C4—C5—C6121.9 (2)O4—C11—H11A106.9 (13)
C4—C5—Cl1119.99 (18)C10—C11—H11A107.2 (13)
C6—C5—Cl1118.14 (17)O4—C11—H11B108.6 (14)
C5—C6—C1119.2 (2)C10—C11—H11B110.7 (15)
C5—C6—H6122.5 (14)H11A—C11—H11B109.4 (19)
C7—N1—C1—C611.8 (4)C2—C1—C6—C50.5 (3)
C7—N1—C1—C2169.5 (2)N1—C1—C6—C5179.1 (2)
C6—C1—C2—O1179.8 (2)C1—N1—C7—O20.9 (4)
N1—C1—C2—O11.1 (3)C1—N1—C7—C8179.4 (2)
C6—C1—C2—C30.9 (3)C9—N2—C8—O32.5 (4)
N1—C1—C2—C3179.5 (2)C9—N2—C8—C7178.6 (2)
O1—C2—C3—C4179.9 (2)O2—C7—C8—O3173.5 (2)
C1—C2—C3—C40.5 (4)N1—C7—C8—O36.7 (3)
C2—C3—C4—C50.2 (4)O2—C7—C8—N27.5 (3)
C3—C4—C5—C60.6 (4)N1—C7—C8—N2172.22 (19)
C3—C4—C5—Cl1179.7 (2)C8—N2—C9—C1092.4 (3)
C4—C5—C6—C10.3 (4)N2—C9—C10—C11168.6 (2)
Cl1—C5—C6—C1179.97 (18)C9—C10—C11—O4178.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.81 (2)1.88 (2)2.690 (2)173 (3)
O4—H4A···O3ii0.81 (2)1.98 (2)2.794 (2)178 (3)
N2—H2···O2iii0.88 (2)2.12 (3)2.916 (2)150 (2)
Symmetry codes: (i) x3/2, y+3/2, z+1/2; (ii) x+1, y, z; (iii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.813 (17)1.881 (17)2.690 (2)173 (3)
O4—H4A···O3ii0.812 (17)1.983 (18)2.794 (2)178 (3)
N2—H2···O2iii0.88 (2)2.12 (3)2.916 (2)150 (2)
Symmetry codes: (i) x3/2, y+3/2, z+1/2; (ii) x+1, y, z; (iii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H13ClN2O4
Mr272.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.1422 (14), 18.117 (4), 11.061 (2)
β (°) 98.896 (8)
V3)1216.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.49 × 0.16 × 0.03
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.697, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
10616, 2779, 1672
Rint0.054
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.107, 1.00
No. of reflections2779
No. of parameters215
No. of restraints2
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 2012).

 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Nos. 51273184 and 81202399) and the Open Research Fund Program of the Key Laboratory of Marine Drugs (Ocean University of China), Ministry of Education [No. KLMD(OUC) 201401].

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, X.-W., Tao, L., Li, Y.-T., Wu, Z.-Y. & Yan, C.-W. (2012). Eur. J. Med. Chem. 54, 697–708.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMarmur, J. (1961). J. Mol. Biol. 3, 208–218.  CrossRef CAS Google Scholar
First citationMartínez-Martínez, F. J., Padilla-Martínez, I. I., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuextl, M. & Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401–406.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYue, X.-T., Li, X.-W. & Wu, Z.-Y. (2012). Acta Cryst. E68, o8.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Y.-J., Zheng, K., Wu, Z.-Y. & Li, Y. (2012). Acta Cryst. E68, o895.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds