organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4,4,5,5-Tetra­methyl-2-[(Z)-1-(3-methyl­phen­oxy)hex-1-en-2-yl]-1,3,2-dioxaborolane

aCollege of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and bCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: wangxj@zjnu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 16 March 2016; accepted 12 April 2016; online 19 April 2016)

The title compound, C19H29BO3, was prepared by the reaction of 1-(hex-1-yn-1-yl­oxy)-3-methyl­benzene in tetra­hydro­furan with 4,4,5,5-tetra­methyl-1,3,2-dioxaborolane under a nitro­gen atmosphere. In the mol­ecule, the butyl group adopts an extended conformation, with a torsion angle of 179.52 (19)°. The dioxaborolane ring has a twisted conformation on the C—C bond, and its mean plane is inclined to the 3-methylphenyl ring by 44.79 (19)°. In the crystal, there are no significant intermolecular interactions present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was previously prepared by Cui et al. (2013[Cui, W.-J., Mao, M.-Y., He, Z.-Y. & Zhu, G.-G. (2013). J. Org. Chem. 78, 9815-9821.]), and its derivatives were synthesized by Yang & Cheng (2001[Yang, F.-Y. & Cheng, C.-H. (2001). J. Am. Chem. Soc. 123, 761-762.]) and Whelligan et al. (2010[Whelligan, D. K., Thomson, D. W., Taylor, D. & Hoelder, S. (2010). J. Org. Chem. 75, 11-15.]). We present here the crystal structure of the compound (Fig. 1[link]). In the mol­ecule, the conformation of the dioxaborolane ring is similar to half chair, and the butyl group adopts an extended conformation with a C10—C11—C12—C13 torsion angle = 179.52 (19)°. No hydrogen bonding is observed in the crystal.

[Figure 1]
Figure 1
Perspective view of the structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Synthesis and crystallization

To a solution of 1-(hex-1-yn-1-yl­oxy)-3-methyl­benzene (94 mg, 0.5 mmol) in 2.0 ml of tetra­hydro­furan (THF) was added neat 4,4,5,5-tetra­methyl-1,3,2-dioxaborolane (HBpin) (71 mg, 0.55 mmol) under nitro­gen atmosphere. After stirring at room temperature for 1.5 h, the reaction mixture was concentrated and purified by on silica gel (petroleum ether/EtOAc = 60/1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C19H29BO3
Mr 316.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.0293 (9), 18.1230 (17), 10.7973 (10)
β (°) 97.475 (6)
V3) 1945.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.3 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.983, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 30133, 4375, 2665
Rint 0.044
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.168, 1.09
No. of reflections 4375
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Comment top

The title compound was previously prepared by Cui et al. (2013), and its derivatives were synthesized by Yang & Cheng (2001) and Whelligan et al. (2010). We present here the crystal structure of the compound. In teh molecule, the conformation of the dioxaborolane ring is similar to half chair, and the butyl group adopts an extended conformation with the C10–C11–C12–C13 torsion angle = 179.52 (19)°. No hydrogen bonding is observed in the crystal.

Experimental top

To a solution of 1-(hex-1-yn-1-yloxy)-3-methylbenzene (94 mg, 0.5 mmol) in 2.0 ml of tetrahydrofuran (THF) was added neat 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (HBpin) (71 mg, 0.55 mmol) under nitrogen atmosphere. After stirring at room temperature for 1.5 h, the reaction mixture was concentrated and purified by on silica gel (petroleum ether/EtOAc = 60/1).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Structure description top

The title compound was previously prepared by Cui et al. (2013), and its derivatives were synthesized by Yang & Cheng (2001) and Whelligan et al. (2010). We present here the crystal structure of the compound (Fig. 1). In the molecule, the conformation of the dioxaborolane ring is similar to half chair, and the butyl group adopts an extended conformation with a C10—C11—C12—C13 torsion angle = 179.52 (19)°. No hydrogen bonding is observed in the crystal.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
4,4,5,5-Tetramethyl-2-[(Z)-1-(3-methylphenoxy)hex-1-en-2-yl]-1,3,2-dioxaborolane top
Crystal data top
C19H29BO3F(000) = 688
Mr = 316.23Dx = 1.079 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0293 (9) ÅCell parameters from 4375 reflections
b = 18.1230 (17) Åθ = 2.1–27.4°
c = 10.7973 (10) ŵ = 0.07 mm1
β = 97.475 (6)°T = 296 K
V = 1945.9 (3) Å3Block, colourless
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
Bruker APEXII
diffractometer
4375 independent reflections
Radiation source: fine-focus sealed tube2665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 27.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.983, Tmax = 0.993k = 2321
30133 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0826P)2 + 0.1148P]
where P = (Fo2 + 2Fc2)/3
4375 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C19H29BO3V = 1945.9 (3) Å3
Mr = 316.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0293 (9) ŵ = 0.07 mm1
b = 18.1230 (17) ÅT = 296 K
c = 10.7973 (10) Å0.3 × 0.2 × 0.1 mm
β = 97.475 (6)°
Data collection top
Bruker APEXII
diffractometer
4375 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2665 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.993Rint = 0.044
30133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.09Δρmax = 0.18 e Å3
4375 reflectionsΔρmin = 0.18 e Å3
208 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.66602 (17)0.11935 (10)0.19395 (16)0.0479 (4)
O10.49825 (11)0.27876 (7)0.01441 (12)0.0662 (4)
O20.56737 (11)0.06699 (6)0.18524 (11)0.0620 (4)
O30.78374 (10)0.09596 (6)0.25964 (11)0.0573 (3)
C10.36387 (17)0.29473 (9)0.02574 (16)0.0558 (4)
C20.33922 (18)0.33782 (9)0.13101 (16)0.0587 (4)
H2A0.41040.35310.17210.070*
C30.2087 (2)0.35875 (10)0.17633 (18)0.0664 (5)
C40.1053 (2)0.33435 (12)0.1136 (2)0.0820 (7)
H4A0.01700.34660.14380.098*
C50.1308 (2)0.29256 (12)0.0081 (3)0.0882 (7)
H5A0.05970.27720.03310.106*
C60.26130 (19)0.27263 (11)0.0386 (2)0.0732 (5)
H6A0.27890.24500.11150.088*
C70.1814 (3)0.40687 (14)0.2895 (2)0.1007 (8)
H7C0.08640.41520.30820.121*
H7B0.21370.38300.35920.121*
H7A0.22660.45330.27380.121*
C80.52791 (17)0.21201 (9)0.07200 (15)0.0548 (4)
H8A0.46220.17550.06490.066*
C90.64616 (15)0.19761 (9)0.13719 (14)0.0493 (4)
C100.75572 (16)0.25522 (10)0.15952 (15)0.0563 (4)
H10B0.84180.23170.15470.068*
H10A0.74190.29170.09330.068*
C110.76153 (18)0.29400 (10)0.28296 (16)0.0632 (5)
H11B0.77860.25790.34940.076*
H11A0.67470.31630.28910.076*
C120.8690 (2)0.35332 (11)0.30207 (18)0.0763 (6)
H12B0.95570.33080.29640.092*
H12A0.85230.38900.23490.092*
C130.8758 (3)0.39323 (13)0.4244 (2)0.1006 (8)
H13C0.94540.42990.42950.121*
H13B0.89540.35870.49170.121*
H13A0.79110.41670.43040.121*
C140.62832 (19)0.00170 (9)0.23442 (18)0.0635 (5)
C150.75651 (16)0.02563 (10)0.31787 (16)0.0565 (4)
C160.6612 (3)0.04561 (13)0.1223 (2)0.1110 (9)
H16C0.57920.06180.07410.133*
H16B0.71470.08770.15050.133*
H16A0.71030.01500.07150.133*
C170.5277 (2)0.04152 (15)0.3024 (3)0.1157 (10)
H17C0.45260.05670.24360.139*
H17B0.49710.00910.36300.139*
H17A0.56940.08410.34380.139*
C180.8788 (2)0.02308 (12)0.3206 (2)0.0831 (6)
H18C0.89270.03520.23670.100*
H18B0.86530.06750.36560.100*
H18A0.95620.00250.36120.100*
C190.7334 (3)0.04403 (14)0.45048 (18)0.0917 (7)
H19C0.65520.07470.44870.110*
H19B0.81030.06970.49180.110*
H19A0.72010.00070.49480.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0444 (10)0.0490 (10)0.0490 (9)0.0016 (8)0.0007 (8)0.0027 (8)
O10.0523 (7)0.0530 (7)0.0881 (9)0.0010 (5)0.0104 (6)0.0185 (6)
O20.0509 (7)0.0507 (7)0.0791 (8)0.0044 (5)0.0114 (6)0.0111 (6)
O30.0468 (6)0.0527 (7)0.0689 (7)0.0018 (5)0.0065 (5)0.0086 (6)
C10.0504 (10)0.0473 (9)0.0661 (10)0.0005 (7)0.0056 (8)0.0005 (8)
C20.0585 (11)0.0536 (10)0.0615 (10)0.0058 (8)0.0012 (8)0.0016 (8)
C30.0666 (12)0.0567 (11)0.0705 (11)0.0123 (9)0.0117 (9)0.0080 (9)
C40.0536 (12)0.0669 (13)0.1195 (18)0.0088 (10)0.0116 (12)0.0070 (13)
C50.0605 (13)0.0714 (14)0.136 (2)0.0021 (11)0.0232 (12)0.0120 (14)
C60.0678 (12)0.0633 (12)0.0886 (14)0.0002 (10)0.0104 (10)0.0164 (10)
C70.1099 (18)0.0981 (18)0.0862 (15)0.0364 (15)0.0170 (13)0.0121 (13)
C80.0571 (10)0.0424 (9)0.0620 (10)0.0049 (7)0.0037 (8)0.0053 (7)
C90.0471 (9)0.0484 (9)0.0506 (9)0.0010 (7)0.0004 (7)0.0011 (7)
C100.0530 (10)0.0553 (10)0.0593 (10)0.0056 (8)0.0020 (7)0.0041 (8)
C110.0690 (12)0.0538 (10)0.0662 (11)0.0074 (8)0.0065 (9)0.0014 (8)
C120.0868 (14)0.0681 (13)0.0716 (12)0.0258 (11)0.0013 (10)0.0003 (10)
C130.136 (2)0.0864 (16)0.0765 (14)0.0390 (15)0.0029 (14)0.0076 (12)
C140.0657 (11)0.0445 (9)0.0749 (12)0.0028 (8)0.0108 (9)0.0092 (8)
C150.0546 (10)0.0541 (10)0.0586 (9)0.0042 (8)0.0011 (7)0.0093 (8)
C160.160 (2)0.0626 (14)0.0960 (17)0.0129 (15)0.0365 (16)0.0184 (12)
C170.0818 (16)0.0952 (18)0.164 (3)0.0247 (14)0.0082 (16)0.0607 (18)
C180.0690 (13)0.0736 (14)0.1030 (16)0.0160 (11)0.0028 (11)0.0132 (12)
C190.1162 (18)0.0980 (17)0.0586 (12)0.0114 (14)0.0023 (11)0.0079 (11)
Geometric parameters (Å, º) top
B1—O31.363 (2)C11—C121.517 (2)
B1—O21.365 (2)C11—H11B0.9700
B1—C91.548 (2)C11—H11A0.9700
O1—C81.3749 (19)C12—C131.500 (3)
O1—C11.3914 (19)C12—H12B0.9700
O2—C141.456 (2)C12—H12A0.9700
O3—C151.463 (2)C13—H13C0.9600
C1—C61.374 (3)C13—H13B0.9600
C1—C21.375 (2)C13—H13A0.9600
C2—C31.390 (2)C14—C171.506 (3)
C2—H2A0.9300C14—C161.520 (3)
C3—C41.383 (3)C14—C151.552 (2)
C3—C71.498 (3)C15—C181.508 (2)
C4—C51.364 (3)C15—C191.517 (3)
C4—H4A0.9300C16—H16C0.9600
C5—C61.388 (3)C16—H16B0.9600
C5—H5A0.9300C16—H16A0.9600
C6—H6A0.9300C17—H17C0.9600
C7—H7C0.9600C17—H17B0.9600
C7—H7B0.9600C17—H17A0.9600
C7—H7A0.9600C18—H18C0.9600
C8—C91.324 (2)C18—H18B0.9600
C8—H8A0.9300C18—H18A0.9600
C9—C101.512 (2)C19—H19C0.9600
C10—C111.501 (2)C19—H19B0.9600
C10—H10B0.9700C19—H19A0.9600
C10—H10A0.9700
O3—B1—O2112.99 (15)C13—C12—C11114.32 (18)
O3—B1—C9123.30 (15)C13—C12—H12B108.7
O2—B1—C9123.70 (14)C11—C12—H12B108.7
C8—O1—C1117.89 (13)C13—C12—H12A108.7
B1—O2—C14107.64 (12)C11—C12—H12A108.7
B1—O3—C15107.28 (12)H12B—C12—H12A107.6
C6—C1—C2121.19 (17)C12—C13—H13C109.5
C6—C1—O1122.72 (16)C12—C13—H13B109.5
C2—C1—O1116.00 (15)H13C—C13—H13B109.5
C1—C2—C3120.40 (18)C12—C13—H13A109.5
C1—C2—H2A119.8H13C—C13—H13A109.5
C3—C2—H2A119.8H13B—C13—H13A109.5
C4—C3—C2118.19 (18)O2—C14—C17108.13 (16)
C4—C3—C7121.14 (19)O2—C14—C16106.33 (15)
C2—C3—C7120.7 (2)C17—C14—C16111.4 (2)
C5—C4—C3121.04 (19)O2—C14—C15102.45 (13)
C5—C4—H4A119.5C17—C14—C15115.27 (17)
C3—C4—H4A119.5C16—C14—C15112.36 (18)
C4—C5—C6120.9 (2)O3—C15—C18108.75 (14)
C4—C5—H5A119.6O3—C15—C19105.91 (15)
C6—C5—H5A119.6C18—C15—C19109.50 (16)
C1—C6—C5118.26 (19)O3—C15—C14102.45 (12)
C1—C6—H6A120.9C18—C15—C14115.77 (16)
C5—C6—H6A120.9C19—C15—C14113.67 (16)
C3—C7—H7C109.5C14—C16—H16C109.5
C3—C7—H7B109.5C14—C16—H16B109.5
H7C—C7—H7B109.5H16C—C16—H16B109.5
C3—C7—H7A109.5C14—C16—H16A109.5
H7C—C7—H7A109.5H16C—C16—H16A109.5
H7B—C7—H7A109.5H16B—C16—H16A109.5
C9—C8—O1122.69 (15)C14—C17—H17C109.5
C9—C8—H8A118.7C14—C17—H17B109.5
O1—C8—H8A118.7H17C—C17—H17B109.5
C8—C9—C10122.06 (15)C14—C17—H17A109.5
C8—C9—B1116.84 (14)H17C—C17—H17A109.5
C10—C9—B1121.07 (13)H17B—C17—H17A109.5
C11—C10—C9114.10 (14)C15—C18—H18C109.5
C11—C10—H10B108.7C15—C18—H18B109.5
C9—C10—H10B108.7H18C—C18—H18B109.5
C11—C10—H10A108.7C15—C18—H18A109.5
C9—C10—H10A108.7H18C—C18—H18A109.5
H10B—C10—H10A107.6H18B—C18—H18A109.5
C10—C11—C12113.41 (15)C15—C19—H19C109.5
C10—C11—H11B108.9C15—C19—H19B109.5
C12—C11—H11B108.9H19C—C19—H19B109.5
C10—C11—H11A108.9C15—C19—H19A109.5
C12—C11—H11A108.9H19C—C19—H19A109.5
H11B—C11—H11A107.7H19B—C19—H19A109.5
O3—B1—O2—C148.47 (19)O3—B1—C9—C104.3 (2)
C9—B1—O2—C14172.46 (15)O2—B1—C9—C10174.71 (15)
O2—B1—O3—C159.78 (18)C8—C9—C10—C1196.8 (2)
C9—B1—O3—C15169.30 (15)B1—C9—C10—C1181.07 (19)
C8—O1—C1—C635.4 (2)C9—C10—C11—C12178.12 (16)
C8—O1—C1—C2148.01 (16)C10—C11—C12—C13179.52 (19)
C6—C1—C2—C31.4 (3)B1—O2—C14—C17143.74 (18)
O1—C1—C2—C3178.00 (15)B1—O2—C14—C1696.49 (19)
C1—C2—C3—C40.7 (3)B1—O2—C14—C1521.59 (17)
C1—C2—C3—C7178.83 (18)B1—O3—C15—C18145.33 (15)
C2—C3—C4—C51.8 (3)B1—O3—C15—C1997.07 (16)
C7—C3—C4—C5177.8 (2)B1—O3—C15—C1422.30 (17)
C3—C4—C5—C60.7 (3)O2—C14—C15—O326.26 (17)
C2—C1—C6—C52.4 (3)C17—C14—C15—O3143.43 (17)
O1—C1—C6—C5178.81 (18)C16—C14—C15—O387.46 (18)
C4—C5—C6—C11.4 (3)O2—C14—C15—C18144.43 (16)
C1—O1—C8—C9164.95 (16)C17—C14—C15—C1898.4 (2)
O1—C8—C9—C103.5 (3)C16—C14—C15—C1830.7 (2)
O1—C8—C9—B1178.53 (15)O2—C14—C15—C1987.53 (18)
O3—B1—C9—C8177.75 (15)C17—C14—C15—C1929.6 (2)
O2—B1—C9—C83.3 (2)C16—C14—C15—C19158.76 (18)

Experimental details

Crystal data
Chemical formulaC19H29BO3
Mr316.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.0293 (9), 18.1230 (17), 10.7973 (10)
β (°) 97.475 (6)
V3)1945.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
30133, 4375, 2665
Rint0.044
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.168, 1.09
No. of reflections4375
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The work was supported by the chemical weight of the open fund (No. ZC323015033).

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, W.-J., Mao, M.-Y., He, Z.-Y. & Zhu, G.-G. (2013). J. Org. Chem. 78, 9815–9821.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhelligan, D. K., Thomson, D. W., Taylor, D. & Hoelder, S. (2010). J. Org. Chem. 75, 11–15.  CrossRef PubMed CAS Google Scholar
First citationYang, F.-Y. & Cheng, C.-H. (2001). J. Am. Chem. Soc. 123, 761–762.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds