organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N′-[(1S,3R,8R)-2,2-Di­chloro-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]dodecan-11-yl]acetohydrazide

aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, and bLaboratoire de Chimie de Coordination, 205 Route de Narbone, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: berraho@uca.ac.ma

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 31 March 2016; accepted 3 April 2016; online 8 April 2016)

The title compound, C18H26Cl2N2O, was synthesized in four steps from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from an essential oil of the Atlas cedar (Cedrus atlantica). It crystallizes with two independent mol­ecules in the asymmetric unit. Each mol­ecule is built up from fused six- and seven-membered rings and an appended three-membered ring. An acetylhydrazone substituent is attached to the six-membered ring. In both mol­ecules the six-membered rings display half-chair conformations, whereas the seven-membered rings have boat conformations. In the two mol­ecules, the mean planes of the two rings are inclined to one another by 59.9 (3) and 59.1 (3)°. In the crystal, the two mol­ecules are linked via N—H⋯O hydrogen bonds, forming dimers with an R22(8) loop. Within the dimer there are also C—H⋯O hydrogen bonds present. The dimers are linked via C—H⋯Cl hydrogen bonds, forming slabs parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The bicyclic sesquiterpene β-himachalene is the main constituent of the essential oil of the Atlas cedar (Cedrus atlantica) (El Haib et al., 2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological properties (El Jamili et al., 2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]; Benharref et al., 2015[Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o284-o285.]). These compounds have been tested, using the food-poisoning technique, for their potential anti­fungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004[Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest. Manag. Sci. 60, 927-932.]). In this paper we present the crystal structure of the title compound, N′-[(1S,3R,8R)-2,2-di­chloro-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]dodecan-11-yl]acetohydrazide.

The title compound, Fig. 1[link], crystallizes with two independent mol­ecules in the asymmetric unit. Each mol­ecule is built up from fused six- and seven-membered rings and an appended three-membered ring. The six-membered rings each display a half-chair conformation, with puckering parameters of θ = 126.7 (7)° and φ2 = 169.4 (8) ° for the first mol­ecule (C1/C8–C12), and θ = 53.4 (5)°, φ2 = 169.3 (7) ° for the second mol­ecule (C1A/C8A–C12A). The seven-membered rings have boat conformations with θ = 88.2 (3) °, φ2 = −50.2 (3)° and φ3 = −93.40 (8)° for the first mol­ecule (C1/C3–C8), and θ = 87.9 (3)°, φ2 =-50.6 (3)° and φ3 = −90.68 (8)° for the other mol­ecule (C1A/C3A–C8A). In the first mol­ecule, the mean planes of the two rings are inclined to one another by 59.9 (3)° [59.1 (3)° in the second mol­ecule].

[Figure 1]
Figure 1
A view of the mol­ecular structure of the two independent mol­ecules of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, the two mol­ecules are linked by two N—H⋯O hydrogen bonds, forming a dimer with an [R_{2}^{2}](8) ring motif (Fig. 2[link] and Table 1[link]). Within the dimer there are also C—H⋯O hydrogen bonds present (Table 1[link]). The dimers are linked via C—H⋯Cl hydrogen bonds, forming slabs lying parallel to the ab plane (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 2.14 2.977 (6) 163
N2A—H2A⋯O1 0.86 2.14 2.968 (6) 163
C12—H12B⋯O2 0.97 2.41 3.315 (8) 154
C12A—H12D⋯O1 0.97 2.41 3.328 (8) 158
C16—H16C⋯Cl4i 0.96 2.77 3.580 (7) 143
C16A—H16F⋯Cl1ii 0.96 2.77 3.604 (6) 146
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z.
[Figure 2]
Figure 2
A partial view along the a axis of the crystal packing of the title compound, showing the N—H⋯O and C—H⋯Cl hydrogen bonds as dashed lines (see Table 1[link]). H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

To a solution of an equimolecular qu­antity of (1S,3R,8R)-2,2-di­chloro-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]dodecan-11-one (Ourhriss et al., 2013[Ourhriss, N., Benharref, A., Oukhrib, A., Daran, J.-C. & Berraho, M. (2013). Acta Cryst. E69, o830.]) and thio­semicarbazide dissolved in ethanol, several drops of concentrated HCl were added. The reaction mixture was heated at reflux for 5 h and then evaporated under reduced pressure. The residue obtained was chromatographed on a silica gel column with a mixture of hexane and ethyl acetate as eluent (80/20). 1 g (2.7 mmol) of thio­semicarbazone was dissolved in 2 ml of pyridine and 2 ml of acetic anhydride. The mixture was heated at reflux during 1 h with magnetic stirring, and then evaporated under reduced pressure. Chromatography of the residue on silica (hexa­ne/ethyl acetate, 90:10 v/v) allowed the isolation of the title compound with a yield of 90% (867 mg, 2.43 mmol). The product was recrystallized from ethyl acetate.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Owing to the presence of the Cl atoms, the absolute configuration of the mol­ecules in the crystal was confirmed by resonant scattering to be C1(S),C3(R),C8(R).

Table 2
Experimental details

Crystal data
Chemical formula C18H26Cl2N2O
Mr 357.33
Crystal system, space group Triclinic, P1
Temperature (K) 173
a, b, c (Å) 9.9172 (5), 10.0010 (5), 10.4124 (5)
α, β, γ (°) 86.863 (4), 84.173 (4), 66.037 (4)
V3) 938.73 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.45 × 0.2 × 0.15
 
Data collection
Diffractometer Agilent Xcalibur (Eos, Gemini ultra)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.])
Tmin, Tmax 0.785, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15916, 6506, 6259
Rint 0.025
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.146, 1.06
No. of reflections 6506
No. of parameters 425
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.09, −0.29
Absolute structure Flack x determined using 2891 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (3)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL- 6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

To a solution of an equimolecular quantity of (1S,3R,8R)-2,2-dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecan-11-one (Ourhriss et al., 2013) and thiosemicarbazide dissolved in ethanol, several drops of concentrated HCl were added. The reaction mixture was heated at reflux for 5 h and then evaporated under reduced pressure. The residue obtained was chromatographed on a silica gel column with a mixture of hexane and ethyl acetate as eluent (80/20). 1 g (2.7 mmol) of thiosemicarbazone was dissolved in 2 ml of pyridine and 2 ml of acetic anhydride. The mixture was heated at reflux during 1 h with magnetic stirring, and then evaporated under reduced pressure. Chromatography of the residue on silica (hexane/ethyl acetate, 90:10 v/v) allowed the isolation of the title compound with a yield of 90% (867 mg, 2.43 mmol). The product was recrystallized from ethyl acetate.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Owing to the presence of the Cl atoms, the absolute configuration of the molecules in the crystal was confirmed by resonant scattering to be C1(S),C3(R),C8(R).

Structure description top

The bicyclic sesquiterpene β-himachalene is the main constituent of the essential oil of the Atlas cedar (Cedrus atlantica) (El Haib et al., 2011). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological properties (El Jamili et al., 2002; Benharref et al., 2015). These compounds have been tested, using the food-poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). In this paper we present the crystal structure of the title compound, N'-[(1S,3R,8R)-2,2-dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecan-11-yl]acetohydrazide.

The title compound, Fig. 1, crystallizes with two independent molecules in the asymmetric unit. Each molecule is built up from fused six- and seven-membered rings and an appended three-membered ring. The six-membered rings each display a half-chair conformation, with puckering parameters of θ = 126.7 (7)° and φ2 = 169.4 (8) ° for the first molecule (C1/C8–C12), and θ = 53.4 (5)°, φ2 = 169.3 (7) ° for the second molecule (C1A/C8A–C12A). The seven-membered rings have boat conformations with θ = 88.2 (3) °, φ2 = -50.2 (3)° and φ3 = -93.40 (8)° for the first molecule (C1/C3–C8), and θ = 87.9 (3)°, φ2 =-50.6 (3)° and φ3 = -90.68 (8)° for the other molecule (C1A/C3A–C8A). In the first molecule, the mean planes of the two rings are inclined to one another by 59.9 (3)° [59.1 (3)° in the second molecule].

In the crystal, the two molecules are linked by two N—H···O hydrogen bonds, forming a dimer with an R22(8) ring motif (Fig. 2 and Table 1). Within the dimer there are also C—H···O hydrogen bonds present (Table 1). The dimers are linked via C—H···Cl hydrogen bonds, forming slabs lying parallel to the ab plane (Fig. 2 and Table 1).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the two independent molecules of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title compound, showing the N—H···O and C—H···Cl hydrogen bonds as dashed lines (see Table 1). H atoms not involved in these interactions have been omitted for clarity.
N'-[(1S,3R,8R)-2,2-Dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecan-11-yl]acetohydrazide top
Crystal data top
C18H26Cl2N2OZ = 2
Mr = 357.33F(000) = 380
Triclinic, P1Dx = 1.264 Mg m3
a = 9.9172 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0010 (5) ÅCell parameters from 6506 reflections
c = 10.4124 (5) Åθ = 3–25°
α = 86.863 (4)°µ = 0.35 mm1
β = 84.173 (4)°T = 173 K
γ = 66.037 (4)°Needle, colourless
V = 938.73 (9) Å30.45 × 0.2 × 0.15 mm
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
6506 independent reflections
Radiation source: Enhance (Mo) X-ray Source6259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.1978 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1111
Tmin = 0.785, Tmax = 1.000l = 1212
15916 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0973P)2 + 0.5962P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
6506 reflectionsΔρmax = 1.09 e Å3
425 parametersΔρmin = 0.29 e Å3
3 restraintsAbsolute structure: Flack x determined using 2891 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
C18H26Cl2N2Oγ = 66.037 (4)°
Mr = 357.33V = 938.73 (9) Å3
Triclinic, P1Z = 2
a = 9.9172 (5) ÅMo Kα radiation
b = 10.0010 (5) ŵ = 0.35 mm1
c = 10.4124 (5) ÅT = 173 K
α = 86.863 (4)°0.45 × 0.2 × 0.15 mm
β = 84.173 (4)°
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
6506 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
6259 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 1.000Rint = 0.025
15916 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.146Δρmax = 1.09 e Å3
S = 1.06Δρmin = 0.29 e Å3
6506 reflectionsAbsolute structure: Flack x determined using 2891 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
425 parametersAbsolute structure parameter: 0.00 (3)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52732 (18)0.03725 (16)0.77911 (17)0.0499 (4)
Cl20.53714 (16)0.24288 (17)0.72961 (16)0.0452 (4)
O10.3707 (5)0.6906 (5)0.3487 (4)0.0372 (9)
N10.3445 (5)0.3523 (5)0.3868 (4)0.0281 (10)
N20.3379 (5)0.4884 (5)0.4154 (4)0.0278 (9)
H20.31510.51900.49350.033*
C10.2723 (6)0.2065 (5)0.7052 (5)0.0229 (10)
C20.4178 (6)0.1518 (6)0.7655 (5)0.0321 (12)
C30.2756 (6)0.2247 (6)0.8506 (5)0.0298 (11)
C40.2213 (9)0.1289 (7)0.9419 (5)0.0435 (16)
H4A0.26830.02860.91270.052*
H4B0.25080.13111.02750.052*
C50.0536 (9)0.1785 (8)0.9497 (6)0.0490 (18)
H5A0.00890.25421.01400.059*
H5B0.02960.09640.97900.059*
C60.0162 (8)0.2381 (7)0.8212 (6)0.0425 (14)
H6A0.12140.26140.83620.051*
H6B0.00590.32950.80080.051*
C70.0426 (7)0.1424 (6)0.7007 (5)0.0338 (12)
C80.2149 (6)0.0950 (6)0.6676 (5)0.0268 (11)
H80.26460.00560.71800.032*
C90.2637 (6)0.0570 (6)0.5276 (5)0.0278 (11)
H90.26460.03020.49980.033*
C100.3061 (5)0.1389 (6)0.4399 (5)0.0256 (10)
C110.3026 (5)0.2807 (6)0.4764 (5)0.0239 (10)
C120.2408 (6)0.3346 (6)0.6115 (5)0.0252 (10)
H12A0.13470.39100.61290.030*
H12B0.28540.39790.63740.030*
C130.2407 (7)0.3735 (6)0.9055 (5)0.0358 (13)
H13A0.29080.36150.98220.054*
H13B0.13570.42290.92620.054*
H13C0.27330.43050.84280.054*
C140.0476 (7)0.2294 (7)0.5903 (6)0.0384 (13)
H14A0.01170.17430.51230.058*
H14B0.03760.32090.57830.058*
H14C0.15000.24760.61120.058*
C150.0164 (8)0.0004 (8)0.7230 (7)0.0468 (16)
H15A0.07660.05860.78840.070*
H15B0.04250.05320.64400.070*
H15C0.08610.02470.75030.070*
C160.3500 (7)0.0933 (7)0.3009 (5)0.0341 (12)
H16A0.34950.00140.29120.051*
H16B0.44760.08910.27620.051*
H16C0.28090.16330.24680.051*
C170.3672 (6)0.5734 (7)0.3206 (5)0.0331 (12)
C180.3901 (9)0.5238 (10)0.1849 (5)0.0508 (19)
H18A0.41600.59080.12880.076*
H18B0.30060.52090.16060.076*
H18C0.46860.42790.17770.076*
Cl30.75890 (15)0.44374 (14)0.29511 (13)0.0356 (3)
Cl41.05043 (14)0.43749 (14)0.24643 (13)0.0347 (3)
O20.2944 (5)0.6314 (5)0.6686 (4)0.0369 (9)
N1A0.6333 (5)0.6647 (5)0.6269 (4)0.0252 (9)
N2A0.4988 (5)0.6664 (5)0.5988 (4)0.0287 (9)
H2A0.47280.68440.52130.034*
C1A0.8036 (5)0.7056 (5)0.3058 (5)0.0233 (10)
C2A0.8595 (6)0.5531 (6)0.2536 (5)0.0252 (10)
C3A0.7986 (6)0.6809 (6)0.1622 (5)0.0256 (10)
C4A0.9069 (6)0.7168 (6)0.0693 (5)0.0314 (12)
H4A10.91180.67570.01420.038*
H4A21.00460.67150.10050.038*
C5A0.8634 (7)0.8827 (7)0.0531 (6)0.0393 (14)
H5A10.95120.89900.02250.047*
H5A20.79410.91980.01270.047*
C6A0.7933 (7)0.9705 (7)0.1763 (6)0.0361 (13)
H6A10.69770.96600.19730.043*
H6A20.77461.07190.15560.043*
C7A0.8758 (6)0.9293 (6)0.3003 (5)0.0306 (11)
C8A0.9160 (6)0.7635 (6)0.3408 (5)0.0243 (10)
H8A1.01010.70580.29200.029*
C9A0.9407 (6)0.7329 (6)0.4811 (5)0.0268 (11)
H9A1.02560.73650.50840.032*
C10A0.8511 (6)0.7011 (5)0.5701 (5)0.0256 (10)
C11A0.7098 (6)0.7009 (5)0.5359 (5)0.0230 (10)
C12A0.6664 (5)0.7511 (5)0.4015 (4)0.0222 (10)
H12C0.61370.85680.39930.027*
H12D0.60070.70850.37720.027*
C13A0.6534 (6)0.7120 (7)0.1061 (5)0.0314 (12)
H13D0.61780.80780.06670.047*
H13E0.58190.70760.17370.047*
H13F0.66870.64030.04230.047*
C14A1.0227 (7)0.9487 (7)0.2765 (7)0.0423 (14)
H14D1.00241.04950.25630.063*
H14E1.08200.88890.20570.063*
H14F1.07520.91980.35270.063*
C15A0.7790 (7)1.0353 (6)0.4049 (6)0.0379 (13)
H15D0.83101.01750.48110.057*
H15E0.68891.02110.42470.057*
H15F0.75581.13400.37490.057*
C16A0.8864 (6)0.6713 (6)0.7088 (5)0.0307 (11)
H16D0.98120.67310.71740.046*
H16E0.88890.57690.73510.046*
H16F0.81170.74510.76240.046*
C17A0.4081 (7)0.6395 (6)0.6944 (5)0.0306 (12)
C18A0.4541 (9)0.6207 (9)0.8302 (5)0.0500 (18)
H18D0.37660.61280.88920.075*
H18E0.47190.70380.85190.075*
H18F0.54300.53350.83600.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0515 (9)0.0321 (7)0.0603 (10)0.0059 (7)0.0253 (8)0.0053 (7)
Cl20.0364 (8)0.0523 (9)0.0568 (9)0.0263 (7)0.0037 (6)0.0166 (7)
O10.043 (2)0.054 (3)0.032 (2)0.038 (2)0.0114 (17)0.0112 (18)
N10.026 (2)0.040 (3)0.023 (2)0.017 (2)0.0027 (17)0.0044 (18)
N20.034 (2)0.044 (3)0.017 (2)0.028 (2)0.0016 (17)0.0007 (18)
C10.032 (3)0.019 (2)0.017 (2)0.010 (2)0.0020 (19)0.0036 (18)
C20.039 (3)0.030 (3)0.032 (3)0.017 (2)0.009 (2)0.006 (2)
C30.041 (3)0.035 (3)0.019 (2)0.020 (2)0.005 (2)0.002 (2)
C40.086 (5)0.042 (3)0.016 (2)0.039 (3)0.004 (3)0.000 (2)
C50.084 (5)0.063 (4)0.023 (3)0.055 (4)0.011 (3)0.008 (3)
C60.051 (4)0.047 (3)0.042 (3)0.034 (3)0.010 (3)0.010 (3)
C70.043 (3)0.039 (3)0.030 (3)0.029 (3)0.001 (2)0.002 (2)
C80.038 (3)0.026 (3)0.022 (3)0.017 (2)0.008 (2)0.0005 (19)
C90.032 (3)0.028 (3)0.027 (3)0.013 (2)0.008 (2)0.006 (2)
C100.024 (2)0.034 (3)0.022 (2)0.012 (2)0.0064 (19)0.008 (2)
C110.022 (2)0.035 (3)0.018 (2)0.014 (2)0.0031 (18)0.002 (2)
C120.032 (3)0.027 (3)0.023 (2)0.018 (2)0.001 (2)0.001 (2)
C130.054 (4)0.037 (3)0.026 (3)0.028 (3)0.001 (2)0.006 (2)
C140.034 (3)0.045 (3)0.044 (3)0.023 (3)0.005 (3)0.003 (3)
C150.066 (4)0.049 (4)0.045 (4)0.045 (4)0.001 (3)0.003 (3)
C160.034 (3)0.040 (3)0.023 (3)0.008 (2)0.006 (2)0.008 (2)
C170.030 (3)0.054 (4)0.027 (3)0.028 (3)0.009 (2)0.006 (2)
C180.074 (5)0.096 (6)0.017 (3)0.069 (5)0.005 (3)0.009 (3)
Cl30.0456 (8)0.0336 (7)0.0393 (7)0.0267 (6)0.0121 (6)0.0041 (5)
Cl40.0318 (7)0.0338 (7)0.0348 (7)0.0085 (5)0.0050 (5)0.0048 (5)
O20.047 (2)0.045 (2)0.032 (2)0.034 (2)0.0073 (17)0.0058 (17)
N1A0.035 (2)0.026 (2)0.021 (2)0.0181 (19)0.0035 (17)0.0007 (16)
N2A0.036 (2)0.036 (2)0.023 (2)0.024 (2)0.0012 (17)0.0003 (17)
C1A0.022 (2)0.027 (2)0.025 (3)0.013 (2)0.0037 (19)0.0036 (19)
C2A0.029 (3)0.029 (3)0.021 (2)0.015 (2)0.006 (2)0.001 (2)
C3A0.032 (3)0.033 (3)0.018 (2)0.020 (2)0.004 (2)0.001 (2)
C4A0.035 (3)0.046 (3)0.018 (2)0.021 (3)0.002 (2)0.002 (2)
C5A0.046 (3)0.052 (4)0.032 (3)0.033 (3)0.007 (2)0.013 (3)
C6A0.043 (3)0.037 (3)0.038 (3)0.025 (3)0.009 (3)0.009 (2)
C7A0.037 (3)0.032 (3)0.033 (3)0.023 (2)0.007 (2)0.001 (2)
C8A0.023 (2)0.028 (3)0.027 (3)0.015 (2)0.0019 (19)0.0014 (19)
C9A0.027 (3)0.029 (3)0.028 (3)0.014 (2)0.007 (2)0.004 (2)
C10A0.035 (3)0.024 (2)0.019 (2)0.011 (2)0.007 (2)0.0028 (18)
C11A0.031 (3)0.019 (2)0.021 (2)0.011 (2)0.005 (2)0.0018 (18)
C12A0.023 (2)0.028 (3)0.021 (2)0.016 (2)0.0034 (19)0.0022 (19)
C13A0.038 (3)0.044 (3)0.023 (3)0.026 (3)0.012 (2)0.004 (2)
C14A0.046 (4)0.047 (4)0.049 (4)0.034 (3)0.011 (3)0.008 (3)
C15A0.047 (3)0.032 (3)0.043 (3)0.023 (3)0.009 (3)0.003 (2)
C16A0.035 (3)0.034 (3)0.023 (3)0.012 (2)0.008 (2)0.002 (2)
C17A0.048 (3)0.035 (3)0.020 (2)0.029 (3)0.004 (2)0.003 (2)
C18A0.087 (5)0.076 (5)0.021 (3)0.069 (4)0.001 (3)0.003 (3)
Geometric parameters (Å, º) top
Cl1—C21.763 (6)Cl3—C2A1.768 (5)
Cl2—C21.766 (6)Cl4—C2A1.769 (5)
O1—C171.238 (8)O2—C17A1.220 (7)
N1—C111.283 (7)N1A—C11A1.282 (7)
N1—N21.383 (7)N1A—N2A1.387 (6)
N2—C171.353 (7)N2A—C17A1.363 (7)
N2—H20.8600N2A—H2A0.8600
C1—C21.510 (7)C1A—C2A1.507 (7)
C1—C121.513 (7)C1A—C12A1.524 (7)
C1—C81.527 (7)C1A—C8A1.529 (7)
C1—C31.540 (7)C1A—C3A1.538 (7)
C2—C31.512 (8)C2A—C3A1.504 (7)
C3—C131.515 (8)C3A—C4A1.510 (7)
C3—C41.526 (8)C3A—C13A1.516 (7)
C4—C51.525 (11)C4A—C5A1.539 (9)
C4—H4A0.9700C4A—H4A10.9700
C4—H4B0.9700C4A—H4A20.9700
C5—C61.546 (10)C5A—C6A1.531 (9)
C5—H5A0.9700C5A—H5A10.9700
C5—H5B0.9700C5A—H5A20.9700
C6—C71.536 (8)C6A—C7A1.545 (8)
C6—H6A0.9700C6A—H6A10.9700
C6—H6B0.9700C6A—H6A20.9700
C7—C141.531 (9)C7A—C15A1.523 (8)
C7—C151.546 (8)C7A—C14A1.540 (8)
C7—C81.582 (8)C7A—C8A1.584 (7)
C8—C91.506 (7)C8A—C9A1.501 (7)
C8—H80.9800C8A—H8A0.9800
C9—C101.342 (8)C9A—C10A1.333 (8)
C9—H90.9300C9A—H9A0.9300
C10—C111.474 (7)C10A—C11A1.482 (7)
C10—C161.508 (7)C10A—C16A1.507 (7)
C11—C121.512 (7)C11A—C12A1.506 (7)
C12—H12A0.9700C12A—H12C0.9700
C12—H12B0.9700C12A—H12D0.9700
C13—H13A0.9600C13A—H13D0.9600
C13—H13B0.9600C13A—H13E0.9600
C13—H13C0.9600C13A—H13F0.9600
C14—H14A0.9600C14A—H14D0.9600
C14—H14B0.9600C14A—H14E0.9600
C14—H14C0.9600C14A—H14F0.9600
C15—H15A0.9600C15A—H15D0.9600
C15—H15B0.9600C15A—H15E0.9600
C15—H15C0.9600C15A—H15F0.9600
C16—H16A0.9600C16A—H16D0.9600
C16—H16B0.9600C16A—H16E0.9600
C16—H16C0.9600C16A—H16F0.9600
C17—C181.488 (8)C17A—C18A1.509 (8)
C18—H18A0.9600C18A—H18D0.9600
C18—H18B0.9600C18A—H18E0.9600
C18—H18C0.9600C18A—H18F0.9600
C11—N1—N2118.3 (4)C11A—N1A—N2A117.5 (4)
C17—N2—N1120.1 (4)C17A—N2A—N1A119.9 (4)
C17—N2—H2119.9C17A—N2A—H2A120.1
N1—N2—H2119.9N1A—N2A—H2A120.1
C2—C1—C12116.9 (5)C2A—C1A—C12A116.1 (4)
C2—C1—C8118.6 (4)C2A—C1A—C8A118.8 (4)
C12—C1—C8113.5 (4)C12A—C1A—C8A112.7 (4)
C2—C1—C359.4 (4)C2A—C1A—C3A59.2 (3)
C12—C1—C3121.4 (4)C12A—C1A—C3A122.4 (4)
C8—C1—C3116.7 (4)C8A—C1A—C3A117.6 (4)
C1—C2—C361.3 (4)C3A—C2A—C1A61.4 (3)
C1—C2—Cl1120.8 (4)C3A—C2A—Cl3119.3 (4)
C3—C2—Cl1121.4 (4)C1A—C2A—Cl3119.9 (4)
C1—C2—Cl2119.4 (4)C3A—C2A—Cl4121.9 (4)
C3—C2—Cl2119.6 (4)C1A—C2A—Cl4120.5 (4)
Cl1—C2—Cl2108.2 (3)Cl3—C2A—Cl4107.9 (3)
C2—C3—C13118.9 (5)C2A—C3A—C4A118.1 (5)
C2—C3—C4118.5 (5)C2A—C3A—C13A119.3 (4)
C13—C3—C4113.0 (5)C4A—C3A—C13A113.0 (4)
C2—C3—C159.3 (3)C2A—C3A—C1A59.4 (3)
C13—C3—C1120.8 (5)C4A—C3A—C1A115.9 (4)
C4—C3—C1116.4 (5)C13A—C3A—C1A121.3 (4)
C5—C4—C3112.6 (5)C3A—C4A—C5A112.5 (5)
C5—C4—H4A109.1C3A—C4A—H4A1109.1
C3—C4—H4A109.1C5A—C4A—H4A1109.1
C5—C4—H4B109.1C3A—C4A—H4A2109.1
C3—C4—H4B109.1C5A—C4A—H4A2109.1
H4A—C4—H4B107.8H4A1—C4A—H4A2107.8
C4—C5—C6114.7 (5)C6A—C5A—C4A114.6 (5)
C4—C5—H5A108.6C6A—C5A—H5A1108.6
C6—C5—H5A108.6C4A—C5A—H5A1108.6
C4—C5—H5B108.6C6A—C5A—H5A2108.6
C6—C5—H5B108.6C4A—C5A—H5A2108.6
H5A—C5—H5B107.6H5A1—C5A—H5A2107.6
C7—C6—C5119.0 (6)C5A—C6A—C7A120.0 (5)
C7—C6—H6A107.6C5A—C6A—H6A1107.3
C5—C6—H6A107.6C7A—C6A—H6A1107.3
C7—C6—H6B107.6C5A—C6A—H6A2107.3
C5—C6—H6B107.6C7A—C6A—H6A2107.3
H6A—C6—H6B107.0H6A1—C6A—H6A2106.9
C14—C7—C6107.0 (5)C15A—C7A—C14A108.1 (5)
C14—C7—C15108.1 (5)C15A—C7A—C6A107.6 (5)
C6—C7—C15110.0 (5)C14A—C7A—C6A109.7 (5)
C14—C7—C8112.4 (4)C15A—C7A—C8A112.8 (4)
C6—C7—C8112.2 (5)C14A—C7A—C8A107.1 (5)
C15—C7—C8107.0 (5)C6A—C7A—C8A111.5 (4)
C9—C8—C1109.0 (4)C9A—C8A—C1A109.4 (4)
C9—C8—C7112.9 (4)C9A—C8A—C7A113.2 (4)
C1—C8—C7114.2 (4)C1A—C8A—C7A113.8 (4)
C9—C8—H8106.8C9A—C8A—H8A106.7
C1—C8—H8106.8C1A—C8A—H8A106.7
C7—C8—H8106.8C7A—C8A—H8A106.7
C10—C9—C8125.3 (5)C10A—C9A—C8A125.5 (5)
C10—C9—H9117.4C10A—C9A—H9A117.3
C8—C9—H9117.4C8A—C9A—H9A117.3
C9—C10—C11120.2 (4)C9A—C10A—C11A120.6 (5)
C9—C10—C16121.4 (5)C9A—C10A—C16A121.4 (5)
C11—C10—C16118.3 (5)C11A—C10A—C16A118.0 (5)
N1—C11—C10116.3 (4)N1A—C11A—C10A116.0 (4)
N1—C11—C12125.4 (5)N1A—C11A—C12A126.7 (5)
C10—C11—C12118.2 (4)C10A—C11A—C12A117.2 (4)
C11—C12—C1110.2 (4)C11A—C12A—C1A110.3 (4)
C11—C12—H12A109.6C11A—C12A—H12C109.6
C1—C12—H12A109.6C1A—C12A—H12C109.6
C11—C12—H12B109.6C11A—C12A—H12D109.6
C1—C12—H12B109.6C1A—C12A—H12D109.6
H12A—C12—H12B108.1H12C—C12A—H12D108.1
C3—C13—H13A109.5C3A—C13A—H13D109.5
C3—C13—H13B109.5C3A—C13A—H13E109.5
H13A—C13—H13B109.5H13D—C13A—H13E109.5
C3—C13—H13C109.5C3A—C13A—H13F109.5
H13A—C13—H13C109.5H13D—C13A—H13F109.5
H13B—C13—H13C109.5H13E—C13A—H13F109.5
C7—C14—H14A109.5C7A—C14A—H14D109.5
C7—C14—H14B109.5C7A—C14A—H14E109.5
H14A—C14—H14B109.5H14D—C14A—H14E109.5
C7—C14—H14C109.5C7A—C14A—H14F109.5
H14A—C14—H14C109.5H14D—C14A—H14F109.5
H14B—C14—H14C109.5H14E—C14A—H14F109.5
C7—C15—H15A109.5C7A—C15A—H15D109.5
C7—C15—H15B109.5C7A—C15A—H15E109.5
H15A—C15—H15B109.5H15D—C15A—H15E109.5
C7—C15—H15C109.5C7A—C15A—H15F109.5
H15A—C15—H15C109.5H15D—C15A—H15F109.5
H15B—C15—H15C109.5H15E—C15A—H15F109.5
C10—C16—H16A109.5C10A—C16A—H16D109.5
C10—C16—H16B109.5C10A—C16A—H16E109.5
H16A—C16—H16B109.5H16D—C16A—H16E109.5
C10—C16—H16C109.5C10A—C16A—H16F109.5
H16A—C16—H16C109.5H16D—C16A—H16F109.5
H16B—C16—H16C109.5H16E—C16A—H16F109.5
O1—C17—N2119.5 (5)O2—C17A—N2A120.1 (5)
O1—C17—C18122.2 (5)O2—C17A—C18A122.4 (5)
N2—C17—C18118.3 (5)N2A—C17A—C18A117.6 (5)
C17—C18—H18A109.5C17A—C18A—H18D109.5
C17—C18—H18B109.5C17A—C18A—H18E109.5
H18A—C18—H18B109.5H18D—C18A—H18E109.5
C17—C18—H18C109.5C17A—C18A—H18F109.5
H18A—C18—H18C109.5H18D—C18A—H18F109.5
H18B—C18—H18C109.5H18E—C18A—H18F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.142.977 (6)163
N2A—H2A···O10.862.142.968 (6)163
C12—H12B···O20.972.413.315 (8)154
C12A—H12D···O10.972.413.328 (8)158
C16—H16C···Cl4i0.962.773.580 (7)143
C16A—H16F···Cl1ii0.962.773.604 (6)146
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.142.977 (6)163
N2A—H2A···O10.862.142.968 (6)163
C12—H12B···O20.972.413.315 (8)154
C12A—H12D···O10.972.413.328 (8)158
C16—H16C···Cl4i0.962.773.580 (7)143
C16A—H16F···Cl1ii0.962.773.604 (6)146
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H26Cl2N2O
Mr357.33
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.9172 (5), 10.0010 (5), 10.4124 (5)
α, β, γ (°)86.863 (4), 84.173 (4), 66.037 (4)
V3)938.73 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.45 × 0.2 × 0.15
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini ultra)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2014)
Tmin, Tmax0.785, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15916, 6506, 6259
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.146, 1.06
No. of reflections6506
No. of parameters425
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.09, 0.29
Absolute structureFlack x determined using 2891 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.00 (3)

Computer programs: CrysAlis PRO (Agilent, 2014), SIR97 (Altomare et al., 1999), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBenharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o284–o285.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL- 6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDaoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest. Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOurhriss, N., Benharref, A., Oukhrib, A., Daran, J.-C. & Berraho, M. (2013). Acta Cryst. E69, o830.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds