metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[[[bis­(pyridin-2-yl-κN)amine]zinc(II)]-μ2-(2E,4E)-hexa-2,4-dienedioato-κ4O1,O1′:O6,O6′] monohydrate]

aDivision of General Education (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea, and bDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
*Correspondence e-mail: ymeekim@ewha.ac.kr

Edited by A. J. Lough, University of Toronto, Canada (Received 1 April 2016; accepted 15 April 2016; online 22 April 2016)

In the title compound, {[Zn(C6H4O4)(C10H9N3)]·H2O}n, the di(pyridin-2-yl)amine (dpa) ligands chelate the ZnII ions, forming [Zn(dpa)]2+ units which are connected by two independent bridging muconate [(2E,4E)-hexa-2,4-dienedioate] ligands to form chains. A crystallographic inversion centre is located at the mid-point of the central C—C bond of each muconate ligand. The carboxyl­ate groups of the muconate ligands bridge the ZnII ions in asymmetric chelating modes. The ZnII ion is coordinated by four O atoms of two chelating carboxyl­ate groups and two pyridyl N atoms in a distorted octa­hedral coordination environment. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds connect chains and solvent water mol­ecules, forming a two-dimensional network parallel to (101).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Metal–organic frameworks (MOFs), constructed from metal ions and polytopic bridging ligands, have been used for selective gas sorption, heterogeneous catalysis, separation, sensors, drug delivery and biological imaging. Di­carboxyl­ates have provided structures of various dimensionalities with different coordination modes and pore sizes. Rigid aromatic di­carboxyl­ates (Sumida et al., 2012[Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T.-H. & Long, J. R. (2012). Chem. Rev. 112, 724-781.]) have been used for the synthesis of MOFs, and flexible cyclo­hexa­nedi­carboxyl­ates (Lee et al. 2011[Lee, Y. J., Kim, E. Y., Kim, S. H., Jang, S. P., Lee, T. G., Kim, C., Kim, S.-J. & Kim, Y. (2011). New J. Chem. 35, 833-841.]; Kim et al. 2011[Kim, E. Y., Park, H. M., Kim, H.-Y., Kim, J. H., Hyun, M. Y., Lee, J. H., Kim, C., Kim, S.-J. & Kim, Y. (2011). J. Mol. Struct. 994, 335-342.]) have also been used. One particular group of flexible di­carboxyl­ates, α,ω-alkane-di­carboxyl­ates, has been shown to be particularly suitable as ligands in MOFs of various topologies. Though less frequently employed in MOFs than aromatic di­carboxyl­ates, recently a systematic investigation of MOFs containing these α,ω-alkane (or alkene)-di­carboxyl­ate has been reported (Hyun et al. 2013[Hyun, M. Y., Hwang, I. H., Lee, M. M., Kim, H., Kim, K. B., Kim, C., Kim, H.-Y., Kim, Y. & Kim, S.-J. (2013). Polyhedron, 53, 166-171.]; Hwang et al., 2012[Hwang, I. H., Bae, J. M., Kim, W.-S., Jo, Y. D., Kim, C., Kim, Y., Kim, S.-J. & Huh, S. (2012). Dalton Trans. 41, 12759-12765.], 2013[Hwang, I. H., Kim, H.-Y., Lee, M. M., Na, Y. J., Kim, J. H., Kim, H.-C., Kim, C., Huh, S., Kim, Y. & Kim, S.-J. (2013). Cryst. Growth Des. 13, 4815-4823.]; Lee et al. 2014[Lee, M. M., Kim, H.-Y., Hwang, I. H., Bae, J. M., Kim, C., Yo, C.-H., Kim, Y. & Kim, S.-J. (2014). Bull. Korean Chem. Soc. 35, 1777-1783.]). We report herein the crystal structure of the title compound.

A fragment of the one-dimensional title compound, in which 2,2′-di­pyridyl­amine ligands chelate ZnII ions to form [Zn(C10H9N3)]2+ units, is shown in Fig. 1[link]. The units are connected by two independent bridging muconate ligands, forming chains along [011] (Fig. 2[link]). The carboxyl­ate groups of the muconate ligands bridge ZnII ions in asymmetric chelating modes. A crystallographic inversion centre is located at the mid-point of the central C—-C bond of each muconate ligand. The ZnII ion is coordinated by four O atoms of two chelating carb­oxy­altes and two pyridyl N atoms in a distorted octa­hedral coordination environment.

[Figure 1]
Figure 1
A fragment of the one-dimensional structure of the title compound showing displacement ellipsoids at the 50% probability level [symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, −y, −z].
[Figure 2]
Figure 2
The one-dimensional structure of the title compound. Solvent water mol­ecules are omitted for clarity.

In the crystal, N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link]) connect the chains and solvent water mol­ecules, forming a two-dimensional network parallel to (101) (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N22—H22N⋯O1Wi 0.88 1.97 2.835 (3) 168
O1W—H1WB⋯O12 0.93 (1) 1.88 (1) 2.791 (3) 165 (3)
O1W—H1WA⋯O13ii 0.93 (1) 1.89 (1) 2.816 (3) 172 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Part of the crystal structure showing a hydrogen-bonded layer parallel to (101). Hydrogen bonds are shown as green dotted lines.

Synthesis and crystallization

Muconic acid (0.1 mmol, 14.2 mg) and Zn(NO3)2·6H2O (0.1 mmol, 30.4 mg) were dissolved in 4 ml H2O and carefully layered with a 4 ml aceto­nitrile solution of 2,2′-di­pyridyl­aime (0.2 mmol, 34.2 mg). Suitable crystals of the title compound were obtained in a few weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C6H4O4)(C10H9N3)]·H2O
Mr 394.68
Crystal system, space group Monoclinic, P21/n
Temperature (K) 170
a, b, c (Å) 8.9885 (13), 15.430 (2), 11.4182 (16)
β (°) 91.806 (2)
V3) 1582.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.59
Crystal size (mm) 0.20 × 0.08 × 0.08
 
Data collection
Diffractometer Bruker APEX CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 8674, 3089, 2391
Rint 0.074
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.083, 0.91
No. of reflections 3089
No. of parameters 232
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.82, −0.51
Computer programs: SMART and SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Chemical context top

Metal–organic frameworks (MOFs) have been constructed by metal ions and polytopic bridging ligands, and used for selective gas sorption, heterogeneous catalysis, separation, sensor, drug delivery, and biological imaging. Di­carboxyl­ates have provided structures of various dimensionalities with different coordination modes and pore sizes. Rigid aromatic di­carboxyl­ates (Sumida, et al., 2012) have been used for the synthesis of MOFs, and flexible cyclo­hexanedi­carboxyl­ates (Lee, et al. 2011; Kim, et al. 2011) have also been used. One particular group of flexible di­carboxyl­ates, α,ω-alkane-di­carboxyl­ates, has been shown to be particularly suitable as ligands in MOFs of various topologies. Though less frequently employed in MOFs than aromatic di­carboxyl­ates, recently a systematic investigation of MOFs containing these α,ω-alkane (or alkene)-di­carboxyl­ate has been reported (Hyun, et al. 2013; Hwang, et al., 2012; Hwang, et al. 2013; Lee, et al. 2014). We report herein the crystal structure of the title compound.

A fragment of the one-dimensional title compound is shown in Fig. 1 in which 2,2'-di­pyridyl­aime ligands chelate ZnII ions to form [Zn(C10H9N3)]2+ units which are connected by two independent bridging muconate ligands to form one-dimensional chains (Fig. 2). The carboxyl­ate groups of the muconate ligands bridge ZnII ions in asymmetric chelating modes. A crystallographic inversion centre is located at the middle of each central C–C bond of the muconate ligands. The ZnII ion is coordinated by four O atoms of two chelating carb­oxy­altes and two pyridyl N atoms to form a disotorted o­cta­hedral coordination environment. In the crystal, N–H···O and O–H···O hydrogen bonds connect one-dimensional chains and solvent water molecules forming a two-dimensional network parallel to (1 0 1) (Fig. 3).

Synthesis and crystallization top

Muconic acid (0.1 mmol, 14.2 mg) and Zn(NO3)2·6H2O (0.1 mmol, 30.4 mg) were dissolved in 4 mL H2O and carefully layered by 4 mL aceto­nitrile solution of 2,2'-di­pyridyl­aime (0.2 mmol, 34.2 mg). Suitable crystals of the title compound were obtained in a few weeks.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms bonded to C atoms were placed in calculated positions with C—H distances of 0.95 Å and an N—H distance of 0.88 Å. They were included in the refinement in riding-motion approximation with Uiso(H) = 1.2Ueq(C) and 1.2Ueq(N). The positions of the H atoms of the water solvent molecule were located in a difference Fourier map and refined with O—H distances restrained to 0.930 (2) Å and Uiso(H) = 1.5Ueq(O).

Related literature top

For rigid aromatic dicarboxylate ligands for MOFs, see: Sumida et al. (2012). For flexible cyclohexanedicarboxylate ligands for MOFs, see: Lee et al. (2011); Kim et al. (2011). For flexible α,ω-alkane-dicarboxylate ligands for MOFs, see: Hwang et al. (2012); Hwang, et al. (2013).

Experimental top

Muconic acid (0.1 mmol, 14.2 mg) and Zn(NO3)2·6H2O (0.1 mmol, 30.4 mg) were dissolved in 4 ml H2O and carefully layered by 4 ml acetonitrile solution of 2,2'-dipyridylaime (0.2 mmol, 34.2 mg). Suitable crystals of the title compound were obtained in a few weeks.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Metal–organic frameworks (MOFs), constructed from metal ions and polytopic bridging ligands, have been used for selective gas sorption, heterogeneous catalysis, separation, sensors, drug delivery and biological imaging. Dicarboxylates have provided structures of various dimensionalities with different coordination modes and pore sizes. Rigid aromatic dicarboxylates (Sumida et al., 2012) have been used for the synthesis of MOFs, and flexible cyclohexanedicarboxylates (Lee et al. 2011; Kim et al. 2011) have also been used. One particular group of flexible dicarboxylates, α,ω-alkane-dicarboxylates, has been shown to be particularly suitable as ligands in MOFs of various topologies. Though less frequently employed in MOFs than aromatic dicarboxylates, recently a systematic investigation of MOFs containing these α,ω-alkane (or alkene)-dicarboxylate has been reported (Hyun et al. 2013; Hwang et al., 2012, 2013; Lee et al. 2014). We report herein the crystal structure of the title compound.

A fragment of the one-dimensional title compound, in which 2,2'-dipyridylaime ligands chelate ZnII ions to form [Zn(C10H9N3)]2+ units is shown in Fig. 1. The units are connected by two independent bridging muconate ligands, forming chains along [???] (Fig. 2). The carboxylate groups of the muconate ligands bridge ZnII ions in asymmetric chelating modes. A crystallographic inversion centre is located at the mid-point of the central C—-C bond of each muconate ligand. The ZnII ion is coordinated by four O atoms of two chelating carboxyaltes and two pyridyl N atoms in a distorted octahedral coordination environment.

In the crystal, N—H···O and O—H···O hydrogen bonds (Table 1) connect the chains and solvent water molecules, forming a two-dimensional network parallel to (101) (Fig. 3).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A fragment of the one-dimensional structure of the title compound showing displacement ellipsoids at the 50% probability level [symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, -y, -z].
[Figure 2] Fig. 2. The one-dimensional structure of the title compound. Solvent water molecules are omitted for clarity.
[Figure 3] Fig. 3. Part of the crystal structure showing a hydrogen-bonded layer parallel to (101). Hydrogen bonds are shown as green dotted lines.
catena-Poly[[[[bis(pyridin-2-yl-κN)amine]zinc(II)]-µ2-(2E,4E)-hexa-2,4-dienedioato-κ4O1,O1':O6,O6'] monohydrate] top
Crystal data top
[Zn(C6H4O4)(C10H9N3)]·H2OF(000) = 808
Mr = 394.68Dx = 1.656 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9885 (13) ÅCell parameters from 2966 reflections
b = 15.430 (2) Åθ = 2.2–26.2°
c = 11.4182 (16) ŵ = 1.59 mm1
β = 91.806 (2)°T = 170 K
V = 1582.8 (4) Å3Rod, colorless
Z = 40.20 × 0.08 × 0.08 mm
Data collection top
Bruker APEX CCD
diffractometer
Rint = 0.074
φ and ω scansθmax = 26.0°, θmin = 2.2°
8674 measured reflectionsh = 1110
3089 independent reflectionsk = 1719
2391 reflections with I > 2σ(I)l = 1414
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0386P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
3089 reflectionsΔρmax = 0.82 e Å3
232 parametersΔρmin = 0.51 e Å3
Crystal data top
[Zn(C6H4O4)(C10H9N3)]·H2OV = 1582.8 (4) Å3
Mr = 394.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9885 (13) ŵ = 1.59 mm1
b = 15.430 (2) ÅT = 170 K
c = 11.4182 (16) Å0.20 × 0.08 × 0.08 mm
β = 91.806 (2)°
Data collection top
Bruker APEX CCD
diffractometer
2391 reflections with I > 2σ(I)
8674 measured reflectionsRint = 0.074
3089 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.82 e Å3
3089 reflectionsΔρmin = 0.51 e Å3
232 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.23460 (3)0.17315 (2)0.36458 (3)0.01835 (11)
O110.4060 (2)0.23845 (11)0.43746 (16)0.0230 (4)
O120.2405 (2)0.34027 (13)0.39400 (17)0.0275 (5)
O130.3294 (2)0.08005 (12)0.25952 (15)0.0220 (4)
O140.3079 (2)0.20738 (12)0.17690 (17)0.0271 (5)
N210.0120 (2)0.19005 (13)0.34368 (18)0.0171 (5)
N220.0519 (2)0.12860 (14)0.52676 (18)0.0202 (5)
H22N0.12570.12490.57540.024*
N230.2028 (2)0.09561 (14)0.50930 (18)0.0186 (5)
C110.3651 (3)0.31814 (17)0.4334 (2)0.0203 (6)
C120.4757 (3)0.38258 (17)0.4777 (2)0.0210 (6)
H120.57010.36260.50620.025*
C130.4478 (3)0.46740 (16)0.4790 (2)0.0189 (6)
H130.35280.48630.45050.023*
C140.4636 (3)0.01539 (17)0.0515 (2)0.0183 (6)
H140.43740.02580.10920.022*
C150.4311 (3)0.09863 (18)0.0699 (2)0.0214 (6)
H150.46040.13980.01330.026*
C160.3517 (3)0.13086 (18)0.1738 (2)0.0190 (6)
C210.0364 (3)0.22925 (18)0.2433 (2)0.0227 (6)
H210.03440.24300.18620.027*
C220.1815 (3)0.24981 (18)0.2204 (3)0.0278 (7)
H220.21120.27560.14780.033*
C230.2856 (3)0.23254 (18)0.3048 (2)0.0242 (6)
H230.38730.24720.29120.029*
C240.2399 (3)0.19425 (17)0.4073 (2)0.0201 (6)
H240.30900.18310.46670.024*
C250.0897 (3)0.17159 (16)0.4240 (2)0.0180 (6)
C260.0778 (3)0.09022 (16)0.5689 (2)0.0173 (6)
C270.0723 (3)0.04551 (18)0.6760 (2)0.0228 (6)
H270.01810.04200.71660.027*
C280.1984 (3)0.00719 (18)0.7208 (2)0.0255 (7)
H280.19700.02260.79350.031*
C290.3296 (3)0.01208 (18)0.6589 (2)0.0242 (6)
H290.41820.01520.68760.029*
C2100.3272 (3)0.05701 (17)0.5565 (2)0.0227 (6)
H2100.41720.06180.51560.027*
O1W0.2013 (2)0.40671 (13)0.16781 (17)0.0265 (5)
H1WA0.197 (3)0.4654 (5)0.186 (2)0.040*
H1WB0.204 (3)0.3763 (17)0.2381 (14)0.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01736 (17)0.01915 (19)0.01871 (18)0.00168 (13)0.00328 (12)0.00258 (14)
O110.0260 (11)0.0143 (10)0.0287 (11)0.0055 (8)0.0006 (8)0.0032 (8)
O120.0220 (11)0.0287 (12)0.0314 (11)0.0029 (9)0.0040 (9)0.0058 (9)
O130.0299 (11)0.0186 (10)0.0180 (10)0.0006 (8)0.0080 (8)0.0018 (8)
O140.0357 (12)0.0176 (11)0.0284 (11)0.0087 (9)0.0061 (9)0.0021 (9)
N210.0192 (12)0.0143 (12)0.0180 (12)0.0003 (9)0.0028 (9)0.0014 (9)
N220.0177 (12)0.0263 (14)0.0168 (12)0.0004 (10)0.0057 (9)0.0050 (10)
N230.0182 (12)0.0177 (12)0.0200 (12)0.0000 (9)0.0009 (9)0.0011 (10)
C110.0259 (15)0.0195 (15)0.0158 (14)0.0055 (12)0.0051 (11)0.0025 (12)
C120.0195 (14)0.0193 (15)0.0241 (15)0.0027 (12)0.0006 (11)0.0029 (12)
C130.0182 (14)0.0204 (15)0.0182 (14)0.0023 (12)0.0007 (11)0.0015 (12)
C140.0162 (13)0.0191 (15)0.0196 (14)0.0027 (11)0.0033 (11)0.0002 (12)
C150.0240 (15)0.0202 (15)0.0203 (15)0.0002 (12)0.0055 (11)0.0003 (12)
C160.0157 (13)0.0235 (16)0.0178 (15)0.0009 (12)0.0001 (11)0.0028 (12)
C210.0259 (16)0.0203 (15)0.0223 (15)0.0004 (12)0.0069 (12)0.0022 (12)
C220.0324 (17)0.0268 (17)0.0244 (16)0.0056 (13)0.0015 (13)0.0066 (13)
C230.0201 (15)0.0238 (16)0.0288 (17)0.0054 (12)0.0004 (12)0.0002 (13)
C240.0197 (14)0.0191 (15)0.0217 (14)0.0000 (11)0.0056 (11)0.0000 (12)
C250.0226 (14)0.0122 (13)0.0193 (14)0.0002 (11)0.0003 (11)0.0039 (11)
C260.0204 (14)0.0142 (14)0.0174 (14)0.0020 (11)0.0013 (11)0.0048 (11)
C270.0202 (14)0.0274 (16)0.0212 (15)0.0007 (12)0.0055 (11)0.0006 (12)
C280.0325 (17)0.0252 (16)0.0189 (15)0.0006 (13)0.0013 (12)0.0042 (13)
C290.0237 (15)0.0223 (16)0.0264 (16)0.0039 (13)0.0045 (12)0.0016 (13)
C2100.0174 (14)0.0215 (16)0.0292 (16)0.0022 (11)0.0025 (12)0.0015 (12)
O1W0.0296 (11)0.0208 (11)0.0296 (12)0.0023 (9)0.0080 (9)0.0014 (9)
Geometric parameters (Å, º) top
Zn1—O112.0000 (18)C14—C14ii1.444 (5)
Zn1—N212.024 (2)C14—H140.9500
Zn1—N232.067 (2)C15—C161.489 (4)
Zn1—O132.0719 (18)C15—H150.9500
Zn1—O142.3225 (19)C21—C221.359 (4)
Zn1—C162.535 (3)C21—H210.9500
O11—C111.284 (3)C22—C231.390 (4)
O12—C111.242 (3)C22—H220.9500
O13—C161.275 (3)C23—C241.363 (4)
O14—C161.246 (3)C23—H230.9500
N21—C251.346 (3)C24—C251.402 (4)
N21—C211.356 (3)C24—H240.9500
N22—C261.381 (3)C26—C271.406 (4)
N22—C251.381 (3)C27—C281.364 (4)
N22—H22N0.8800C27—H270.9500
N23—C261.335 (3)C28—C291.396 (4)
N23—C2101.362 (3)C28—H280.9500
C11—C121.484 (3)C29—C2101.358 (4)
C12—C131.333 (4)C29—H290.9500
C12—H120.9500C210—H2100.9500
C13—C13i1.447 (5)O1W—H1WA0.929 (2)
C13—H130.9500O1W—H1WB0.930 (2)
C14—C151.335 (4)
O11—Zn1—N21136.85 (8)C14—C15—H15118.0
O11—Zn1—N2394.76 (8)C16—C15—H15118.0
N21—Zn1—N2390.45 (8)O14—C16—O13120.2 (2)
O11—Zn1—O13105.36 (7)O14—C16—C15120.0 (2)
N21—Zn1—O13116.36 (8)O13—C16—C15119.8 (2)
N23—Zn1—O1397.54 (8)O14—C16—Zn165.86 (14)
O11—Zn1—O1491.85 (7)O13—C16—Zn154.45 (13)
N21—Zn1—O1499.78 (8)C15—C16—Zn1173.3 (2)
N23—Zn1—O14156.86 (8)N21—C21—C22123.2 (3)
O13—Zn1—O1459.32 (7)N21—C21—H21118.4
O11—Zn1—C1698.74 (8)C22—C21—H21118.4
N21—Zn1—C16111.57 (8)C21—C22—C23119.0 (3)
N23—Zn1—C16127.56 (9)C21—C22—H22120.5
O13—Zn1—C1630.05 (8)C23—C22—H22120.5
O14—Zn1—C1629.31 (7)C24—C23—C22119.2 (3)
C11—O11—Zn1104.57 (17)C24—C23—H23120.4
C16—O13—Zn195.50 (16)C22—C23—H23120.4
C16—O14—Zn184.84 (16)C23—C24—C25119.2 (3)
C25—N21—C21117.6 (2)C23—C24—H24120.4
C25—N21—Zn1125.63 (18)C25—C24—H24120.4
C21—N21—Zn1116.55 (18)N21—C25—N22121.8 (2)
C26—N22—C25133.2 (2)N21—C25—C24121.8 (2)
C26—N22—H22N113.4N22—C25—C24116.4 (2)
C25—N22—H22N113.4N23—C26—N22120.7 (2)
C26—N23—C210117.7 (2)N23—C26—C27121.8 (2)
C26—N23—Zn1125.69 (18)N22—C26—C27117.5 (2)
C210—N23—Zn1115.92 (18)C28—C27—C26119.2 (2)
O12—C11—O11122.0 (2)C28—C27—H27120.4
O12—C11—C12121.8 (2)C26—C27—H27120.4
O11—C11—C12116.2 (2)C27—C28—C29119.5 (3)
C13—C12—C11122.5 (2)C27—C28—H28120.3
C13—C12—H12118.7C29—C28—H28120.3
C11—C12—H12118.7C210—C29—C28118.2 (3)
C12—C13—C13i124.5 (3)C210—C29—H29120.9
C12—C13—H13117.8C28—C29—H29120.9
C13i—C13—H13117.8C29—C210—N23123.7 (3)
C15—C14—C14ii123.5 (3)C29—C210—H210118.2
C15—C14—H14118.3N23—C210—H210118.2
C14ii—C14—H14118.3H1WA—O1W—H1WB107 (3)
C14—C15—C16124.0 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N22—H22N···O1Wiii0.881.972.835 (3)168
O1W—H1WB···O120.93 (1)1.88 (1)2.791 (3)165 (3)
O1W—H1WA···O13iv0.93 (1)1.89 (1)2.816 (3)172 (3)
Symmetry codes: (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N22—H22N···O1Wi0.881.972.835 (3)168.0
O1W—H1WB···O120.930 (2)1.883 (9)2.791 (3)165 (3)
O1W—H1WA···O13ii0.929 (2)1.893 (5)2.816 (3)172 (3)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C6H4O4)(C10H9N3)]·H2O
Mr394.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)170
a, b, c (Å)8.9885 (13), 15.430 (2), 11.4182 (16)
β (°) 91.806 (2)
V3)1582.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.20 × 0.08 × 0.08
Data collection
DiffractometerBruker APEX CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8674, 3089, 2391
Rint0.074
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.083, 0.91
No. of reflections3089
No. of parameters232
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.82, 0.51

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support from Kwangwoon University in the year 2016 is gratefully acknowledged.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHwang, I. H., Bae, J. M., Kim, W.-S., Jo, Y. D., Kim, C., Kim, Y., Kim, S.-J. & Huh, S. (2012). Dalton Trans. 41, 12759–12765.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHwang, I. H., Kim, H.-Y., Lee, M. M., Na, Y. J., Kim, J. H., Kim, H.-C., Kim, C., Huh, S., Kim, Y. & Kim, S.-J. (2013). Cryst. Growth Des. 13, 4815–4823.  Web of Science CSD CrossRef CAS Google Scholar
First citationHyun, M. Y., Hwang, I. H., Lee, M. M., Kim, H., Kim, K. B., Kim, C., Kim, H.-Y., Kim, Y. & Kim, S.-J. (2013). Polyhedron, 53, 166–171.  CSD CrossRef CAS Google Scholar
First citationKim, E. Y., Park, H. M., Kim, H.-Y., Kim, J. H., Hyun, M. Y., Lee, J. H., Kim, C., Kim, S.-J. & Kim, Y. (2011). J. Mol. Struct. 994, 335–342.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, M. M., Kim, H.-Y., Hwang, I. H., Bae, J. M., Kim, C., Yo, C.-H., Kim, Y. & Kim, S.-J. (2014). Bull. Korean Chem. Soc. 35, 1777–1783.  CrossRef CAS Google Scholar
First citationLee, Y. J., Kim, E. Y., Kim, S. H., Jang, S. P., Lee, T. G., Kim, C., Kim, S.-J. & Kim, Y. (2011). New J. Chem. 35, 833–841.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T.-H. & Long, J. R. (2012). Chem. Rev. 112, 724–781.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds