organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[6-Chloro-2-(phenanthren-9-yl)quinolin-4-yl]pyrrolidin-2-one

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: dhanapal.ramu@gmail.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 2 March 2016; accepted 29 March 2016; online 5 April 2016)

In the title compound, C27H19ClN2O, the quinoline system is planar, with a maximum deviation from the mean plane of 0.003 Å for the N atom. This ring makes dihedral angles of 56.64 (5) and 49.26 (2)° with phenanthrene and pyrrolidine rings, respectively. The pyrrolidine ring adopts a twisted conformation. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming a two-dimensional network lying parallel to (010).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A large number of natural products contain the quinoline and pyrrolidine heterocycles, and they are found in numerous commercial products, including pharmaceuticals, fragrances and dyes (Padwa et al., 1999[Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595-3607.]). Pyrrolidine derivatives are found to have anti­convulsant, anti­microbial and anti­fungal activities against various pathogens (Amal Raj et al., 2003[Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]).

In the mol­ecular structure of the title mol­ecule (Fig. 1[link]), the chloro­benzene ring belonging to the quinoline system adopts an almost planar conformation with a maximum deviation of 0.162 Å for Cl1. The pyrrolidine ring N1/C18–C21 adopts a twisted conformation with puckering parameters q2 = 0.112 (3) Å and φ = 25.4 (15)°. This latter ring forms dihedral angles of 49.26 (2) and 49.27 (8)° with the quinoline and phenanthrene rings, respectively. The keto atom O1 in the 2-pyrrolidinone group deviates by 0.128 Å from the pyrrolidine mean plane.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.

In the crystal structure, mol­ecules are linked via C—H⋯O inter­molecular hydrogen bonds, forming a two-dimensional network lying parallel to the (010) plane (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.45 3.358 (4) 164
Symmetry code: (i) [-x, -y+2, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular packing viewed down the b axis. The hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

4-Chloro­aniline (2.4 mmol), which was reacted with pyrene-1-carboxaldehyde (2.4 mmol) and N-vinyl-2-pyrrolidinone (2.5 mmol) in the presence of scandium(III) tri­fluoro­methane­sulfonate (5 mol %), in aceto­nitrile. This reaction was carried out at 80°C, and after completion, the reaction mixture was filtered and washed with aceto­nitrile. The overall yield was 85%. The product was dissolved in chloro­form and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent over two days, resulting in the formation of single crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C27H19ClN2O
Mr 422.89
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 293
a, b, c (Å) 14.824 (3), 8.2946 (17), 16.924 (3)
V3) 2081.0 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.952, 0.960
No. of measured, independent and observed [I > 2σ(I)] reflections 8128, 3530, 2845
Rint 0.027
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.06
No. of reflections 3530
No. of parameters 280
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.16
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.11 (7)
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Comment top

A large number of natural products contain the quinoline and Pyrrolidine heterocycles, and they are found in numerous commercial products, including pharmaceuticals, fragrances and dyes (Padwa et al., 1999). Pyrrolidine derivatives are found to have anticonvulsant, antimicrobial and antifungal activities against various pathogens (Amal Raj et al., 2003).

The molecular structure of he title molecule is shown in Fig. 1. The phenyl ring adopts an almost planar conformation with a maximum deviation -0.162° for the Cl1 atom. The pyrrolindine ring adopts a twisted conformation on (N1/C18-C21) with puckering parameters of q2 =0.112 (3)Å and φ = 25.4 (15)°. This latter ring forms dihedral angles of 48.6 (12) and 49.26 (2)° with quinoline-phenanthren ring system and the pyrrolindine ring, respectively. The keto atom O1 deviate from the attached ring system of pyrrolindine by -0.128Å.

In the crystal packing, molecules are linked via C—H···O intermolecular hydrogen bonds forming a two dimension network lying parallel to the (100) plane (Table 1 and Fig.2).

Experimental top

4-Chloroaniline (2.4 mmol), which was reacted with pyrene-1-carboxaldehyde (2.4 mmol) and N-vinyl-2-pyrrolidinone (2.5 mmol) in the presence of scandium(III) trifluoromethanesulfonate (5 mol %), in acetonitrile. This reaction was carried out at 80°C, and after completion, the reaction mixture was filtered and washed with acetonitrile. The overall yield was 85%. The product was dissolved in chloroform and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent over two days, resulting in the formation of single crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The absolute structure was determined by refinement of the Flack parameter (Flack, 1983), which converged to x = 0.11 (7).

Structure description top

A large number of natural products contain the quinoline and pyrrolidine heterocycles, and they are found in numerous commercial products, including pharmaceuticals, fragrances and dyes (Padwa et al., 1999). Pyrrolidine derivatives are found to have anticonvulsant, antimicrobial and antifungal activities against various pathogens (Amal Raj et al., 2003).

In the molecular structure of the title molecule (Fig. 1), the chlorobenzene ring belonging to the quinoline system adopts an almost planar conformation with a maximum deviation of 0.162 Å for Cl1. The pyrrolidine ring N1/C18–C21 adopts a twisted conformation with puckering parameters q2 = 0.112 (3) Å and φ = 25.4 (15)°. This latter ring forms dihedral angles of 49.26 (2) and 49.27 (8)° with the quinoline and phenanthrene rings, respectively. The keto atom O1 in the 2-pyrrolidinone group deviates by 0.128 Å from the pyrrolidine mean plane.

In the crystal structure, molecules are linked via C—H···O intermolecular hydrogen bonds, forming a two-dimensional network lying parallel to the (010) plane (Table 1 and Fig. 2).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing viewed down the b axis.
1-[6-Chloro-2-(phenanthren-9-yl)quinolin-4-yl]pyrrolidin-2-one top
Crystal data top
C27H19ClN2OF(000) = 880
Mr = 422.89Dx = 1.350 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2845 reflections
a = 14.824 (3) Åθ = 2.4–25.0°
b = 8.2946 (17) ŵ = 0.21 mm1
c = 16.924 (3) ÅT = 293 K
V = 2081.0 (7) Å3Block, colourless
Z = 40.25 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3530 independent reflections
Radiation source: fine-focus sealed tube2845 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1713
Tmin = 0.952, Tmax = 0.960k = 99
8128 measured reflectionsl = 2019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.0804P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3530 reflectionsΔρmax = 0.15 e Å3
280 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (7)
Crystal data top
C27H19ClN2OV = 2081.0 (7) Å3
Mr = 422.89Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.824 (3) ŵ = 0.21 mm1
b = 8.2946 (17) ÅT = 293 K
c = 16.924 (3) Å0.25 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3530 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2845 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.960Rint = 0.027
8128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093Δρmax = 0.15 e Å3
S = 1.06Δρmin = 0.16 e Å3
3530 reflectionsAbsolute structure: Flack (1983)
280 parametersAbsolute structure parameter: 0.11 (7)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05298 (16)0.8783 (3)0.71094 (14)0.0444 (6)
C20.01627 (17)0.7975 (3)0.75181 (15)0.0508 (6)
H20.06660.76180.72400.061*
C30.01143 (19)0.7702 (3)0.83100 (16)0.0596 (7)
H30.05780.71580.85670.072*
C40.0630 (2)0.8239 (4)0.87318 (17)0.0669 (8)
H40.06530.80930.92760.080*
C50.13266 (19)0.8978 (3)0.83552 (17)0.0602 (7)
H50.18280.93020.86450.072*
C60.13060 (16)0.9263 (3)0.75391 (15)0.0458 (6)
C70.20672 (17)0.9978 (3)0.71181 (16)0.0491 (6)
C80.28684 (19)1.0456 (4)0.7507 (2)0.0648 (8)
H80.29211.03200.80500.078*
C90.35642 (19)1.1118 (4)0.7090 (2)0.0755 (9)
H90.40861.14270.73540.091*
C100.35063 (19)1.1336 (4)0.6281 (2)0.0734 (9)
H100.39851.17960.60060.088*
C110.27442 (19)1.0874 (3)0.58848 (19)0.0621 (7)
H110.27081.10130.53400.075*
C120.20145 (16)1.0189 (3)0.62972 (17)0.0486 (6)
C130.12090 (17)0.9717 (3)0.58905 (15)0.0488 (6)
H130.11780.98630.53460.059*
C140.04928 (15)0.9070 (3)0.62676 (14)0.0433 (6)
C150.03207 (16)0.8673 (3)0.57893 (13)0.0422 (5)
C160.11754 (16)0.9326 (3)0.59887 (14)0.0441 (6)
H160.12340.99780.64320.053*
C170.19117 (15)0.8999 (3)0.55315 (13)0.0400 (5)
C180.30624 (17)0.9863 (4)0.65352 (15)0.0564 (7)
H18A0.30680.88330.68070.068*
H18B0.26681.05960.68180.068*
C190.4006 (2)1.0547 (4)0.64752 (17)0.0673 (8)
H19A0.40681.14870.68120.081*
H19B0.44480.97490.66360.081*
C200.41419 (16)1.1001 (3)0.56260 (15)0.0556 (7)
H20A0.42121.21590.55740.067*
H20B0.46761.04800.54150.067*
C210.33183 (15)1.0443 (3)0.51965 (16)0.0468 (6)
C220.18137 (15)0.7916 (3)0.48919 (13)0.0408 (5)
C230.25435 (16)0.7291 (3)0.44529 (14)0.0458 (6)
H230.31300.76220.45600.055*
C240.23791 (19)0.6196 (3)0.38689 (15)0.0535 (7)
C250.1507 (2)0.5708 (3)0.36694 (15)0.0614 (8)
H250.14150.49970.32520.074*
C260.07948 (19)0.6280 (3)0.40885 (15)0.0584 (7)
H260.02130.59550.39580.070*
C270.09297 (16)0.7365 (3)0.47227 (13)0.0435 (6)
Cl10.32930 (6)0.53261 (10)0.33873 (5)0.0793 (3)
N10.27677 (13)0.9669 (2)0.57219 (11)0.0426 (5)
N20.01915 (14)0.7756 (2)0.51683 (12)0.0472 (5)
O10.31649 (13)1.0648 (3)0.45001 (12)0.0693 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0415 (13)0.0449 (12)0.0469 (14)0.0090 (11)0.0008 (12)0.0090 (11)
C20.0424 (14)0.0554 (14)0.0545 (17)0.0058 (11)0.0011 (12)0.0031 (13)
C30.0571 (16)0.0645 (16)0.0574 (18)0.0103 (13)0.0070 (15)0.0063 (14)
C40.073 (2)0.081 (2)0.0466 (16)0.0090 (17)0.0010 (15)0.0048 (15)
C50.0574 (16)0.0721 (17)0.0512 (16)0.0089 (14)0.0143 (15)0.0093 (15)
C60.0419 (14)0.0497 (13)0.0457 (14)0.0072 (11)0.0045 (12)0.0101 (11)
C70.0423 (15)0.0498 (14)0.0551 (16)0.0099 (11)0.0040 (12)0.0169 (11)
C80.0445 (16)0.0788 (19)0.0711 (19)0.0060 (15)0.0093 (15)0.0211 (16)
C90.0409 (16)0.084 (2)0.101 (3)0.0031 (15)0.0036 (18)0.0272 (19)
C100.0451 (17)0.0728 (18)0.102 (3)0.0040 (14)0.0187 (18)0.0194 (18)
C110.0505 (16)0.0644 (16)0.0714 (19)0.0024 (14)0.0104 (15)0.0170 (15)
C120.0405 (14)0.0461 (13)0.0591 (18)0.0027 (11)0.0023 (13)0.0129 (11)
C130.0459 (14)0.0544 (14)0.0460 (14)0.0059 (12)0.0007 (12)0.0088 (12)
C140.0384 (13)0.0463 (12)0.0451 (14)0.0070 (10)0.0018 (11)0.0092 (11)
C150.0441 (13)0.0446 (12)0.0379 (13)0.0044 (10)0.0042 (11)0.0057 (10)
C160.0448 (14)0.0488 (13)0.0387 (14)0.0046 (11)0.0022 (11)0.0099 (10)
C170.0397 (13)0.0415 (12)0.0387 (13)0.0025 (10)0.0011 (11)0.0006 (10)
C180.0489 (15)0.0770 (17)0.0431 (16)0.0007 (13)0.0066 (12)0.0028 (13)
C190.0555 (16)0.0774 (18)0.069 (2)0.0070 (14)0.0211 (15)0.0002 (16)
C200.0377 (13)0.0622 (16)0.0669 (18)0.0006 (12)0.0045 (13)0.0085 (13)
C210.0421 (14)0.0539 (14)0.0446 (15)0.0002 (11)0.0003 (12)0.0003 (12)
C220.0450 (14)0.0426 (12)0.0349 (12)0.0002 (10)0.0024 (11)0.0008 (11)
C230.0440 (14)0.0525 (13)0.0409 (13)0.0034 (11)0.0040 (11)0.0004 (12)
C240.0660 (18)0.0543 (14)0.0402 (14)0.0061 (13)0.0126 (13)0.0003 (12)
C250.077 (2)0.0652 (17)0.0418 (16)0.0102 (15)0.0101 (14)0.0149 (13)
C260.0604 (17)0.0667 (16)0.0483 (16)0.0136 (14)0.0046 (14)0.0148 (14)
C270.0474 (15)0.0477 (12)0.0352 (13)0.0044 (11)0.0021 (11)0.0034 (11)
Cl10.0815 (5)0.0924 (5)0.0641 (5)0.0260 (4)0.0160 (4)0.0179 (4)
N10.0360 (10)0.0531 (11)0.0388 (12)0.0023 (9)0.0029 (9)0.0026 (9)
N20.0433 (11)0.0564 (11)0.0419 (11)0.0084 (9)0.0028 (10)0.0062 (10)
O10.0604 (12)0.0985 (15)0.0491 (13)0.0232 (11)0.0054 (10)0.0164 (11)
Geometric parameters (Å, º) top
C1—C21.408 (3)C16—C171.365 (3)
C1—C61.418 (3)C16—H160.9300
C1—C141.445 (3)C17—C221.414 (3)
C2—C31.361 (3)C17—N11.422 (3)
C2—H20.9300C18—N11.453 (3)
C3—C41.388 (4)C18—C191.513 (4)
C3—H30.9300C18—H18A0.9700
C4—C51.359 (4)C18—H18B0.9700
C4—H40.9300C19—C201.499 (4)
C5—C61.402 (4)C19—H19A0.9700
C5—H50.9300C19—H19B0.9700
C6—C71.461 (4)C20—C211.495 (3)
C7—C121.402 (4)C20—H20A0.9700
C7—C81.414 (4)C20—H20B0.9700
C8—C91.365 (5)C21—O11.212 (3)
C8—H80.9300C21—N11.367 (3)
C9—C101.384 (4)C22—C231.411 (3)
C9—H90.9300C22—C271.417 (3)
C10—C111.368 (4)C23—C241.364 (4)
C10—H100.9300C23—H230.9300
C11—C121.407 (4)C24—C251.396 (4)
C11—H110.9300C24—Cl11.738 (3)
C12—C131.433 (4)C25—C261.357 (4)
C13—C141.350 (3)C25—H250.9300
C13—H130.9300C26—C271.415 (3)
C14—C151.489 (3)C26—H260.9300
C15—N21.311 (3)C27—N21.368 (3)
C15—C161.419 (3)
C2—C1—C6118.2 (2)C15—C16—H16119.9
C2—C1—C14122.3 (2)C16—C17—C22118.5 (2)
C6—C1—C14119.4 (2)C16—C17—N1120.5 (2)
C3—C2—C1121.6 (3)C22—C17—N1120.9 (2)
C3—C2—H2119.2N1—C18—C19104.8 (2)
C1—C2—H2119.2N1—C18—H18A110.8
C2—C3—C4119.7 (3)C19—C18—H18A110.8
C2—C3—H3120.2N1—C18—H18B110.8
C4—C3—H3120.2C19—C18—H18B110.8
C5—C4—C3120.5 (3)H18A—C18—H18B108.9
C5—C4—H4119.7C20—C19—C18106.4 (2)
C3—C4—H4119.7C20—C19—H19A110.4
C4—C5—C6121.4 (3)C18—C19—H19A110.4
C4—C5—H5119.3C20—C19—H19B110.4
C6—C5—H5119.3C18—C19—H19B110.4
C5—C6—C1118.4 (2)H19A—C19—H19B108.6
C5—C6—C7122.2 (2)C21—C20—C19106.2 (2)
C1—C6—C7119.4 (2)C21—C20—H20A110.5
C12—C7—C8118.2 (3)C19—C20—H20A110.5
C12—C7—C6119.4 (2)C21—C20—H20B110.5
C8—C7—C6122.4 (3)C19—C20—H20B110.5
C9—C8—C7120.5 (3)H20A—C20—H20B108.7
C9—C8—H8119.8O1—C21—N1125.9 (2)
C7—C8—H8119.8O1—C21—C20125.6 (2)
C8—C9—C10121.1 (3)N1—C21—C20108.5 (2)
C8—C9—H9119.4C23—C22—C17123.9 (2)
C10—C9—H9119.4C23—C22—C27118.9 (2)
C11—C10—C9119.9 (3)C17—C22—C27117.0 (2)
C11—C10—H10120.0C24—C23—C22119.3 (2)
C9—C10—H10120.0C24—C23—H23120.4
C10—C11—C12120.3 (3)C22—C23—H23120.4
C10—C11—H11119.8C23—C24—C25122.2 (2)
C12—C11—H11119.8C23—C24—Cl1118.5 (2)
C7—C12—C11119.9 (3)C25—C24—Cl1119.2 (2)
C7—C12—C13119.2 (2)C26—C25—C24119.5 (2)
C11—C12—C13120.8 (3)C26—C25—H25120.2
C14—C13—C12122.5 (2)C24—C25—H25120.2
C14—C13—H13118.8C25—C26—C27120.6 (3)
C12—C13—H13118.8C25—C26—H26119.7
C13—C14—C1120.1 (2)C27—C26—H26119.7
C13—C14—C15117.9 (2)N2—C27—C26117.1 (2)
C1—C14—C15122.0 (2)N2—C27—C22123.5 (2)
N2—C15—C16122.9 (2)C26—C27—C22119.3 (2)
N2—C15—C14116.5 (2)C21—N1—C17124.7 (2)
C16—C15—C14120.63 (19)C21—N1—C18112.6 (2)
C17—C16—C15120.2 (2)C17—N1—C18121.7 (2)
C17—C16—H16119.9C15—N2—C27117.5 (2)
C6—C1—C2—C32.3 (3)C14—C15—C16—C17177.8 (2)
C14—C1—C2—C3179.4 (2)C15—C16—C17—C224.2 (3)
C1—C2—C3—C40.5 (4)C15—C16—C17—N1179.1 (2)
C2—C3—C4—C52.6 (4)N1—C18—C19—C2010.3 (3)
C3—C4—C5—C61.9 (4)C18—C19—C20—C215.0 (3)
C4—C5—C6—C11.0 (4)C19—C20—C21—O1177.2 (3)
C4—C5—C6—C7176.7 (2)C19—C20—C21—N12.6 (3)
C2—C1—C6—C53.0 (3)C16—C17—C22—C23169.9 (2)
C14—C1—C6—C5179.8 (2)N1—C17—C22—C236.8 (3)
C2—C1—C6—C7174.8 (2)C16—C17—C22—C276.1 (3)
C14—C1—C6—C72.4 (3)N1—C17—C22—C27177.2 (2)
C5—C6—C7—C12178.2 (2)C17—C22—C23—C24177.1 (2)
C1—C6—C7—C120.4 (3)C27—C22—C23—C241.1 (3)
C5—C6—C7—C81.1 (4)C22—C23—C24—C252.3 (4)
C1—C6—C7—C8178.8 (2)C22—C23—C24—Cl1175.13 (18)
C12—C7—C8—C90.6 (4)C23—C24—C25—C263.0 (4)
C6—C7—C8—C9179.9 (3)Cl1—C24—C25—C26174.4 (2)
C7—C8—C9—C100.0 (5)C24—C25—C26—C270.2 (4)
C8—C9—C10—C110.5 (5)C25—C26—C27—N2173.4 (2)
C9—C10—C11—C120.5 (4)C25—C26—C27—C223.2 (4)
C8—C7—C12—C110.6 (4)C23—C22—C27—N2172.5 (2)
C6—C7—C12—C11179.9 (2)C17—C22—C27—N23.7 (3)
C8—C7—C12—C13179.8 (2)C23—C22—C27—C263.8 (3)
C6—C7—C12—C130.9 (3)C17—C22—C27—C26180.0 (2)
C10—C11—C12—C70.0 (4)O1—C21—N1—C171.1 (4)
C10—C11—C12—C13179.3 (2)C20—C21—N1—C17178.7 (2)
C7—C12—C13—C140.1 (3)O1—C21—N1—C18170.0 (3)
C11—C12—C13—C14179.4 (2)C20—C21—N1—C189.9 (3)
C12—C13—C14—C11.9 (3)C16—C17—N1—C21130.9 (2)
C12—C13—C14—C15178.1 (2)C22—C17—N1—C2152.5 (3)
C2—C1—C14—C13173.9 (2)C16—C17—N1—C1837.0 (3)
C6—C1—C14—C133.1 (3)C22—C17—N1—C18139.6 (2)
C2—C1—C14—C156.2 (3)C19—C18—N1—C2112.8 (3)
C6—C1—C14—C15176.8 (2)C19—C18—N1—C17178.0 (2)
C13—C14—C15—N253.4 (3)C16—C15—N2—C273.2 (3)
C1—C14—C15—N2126.6 (2)C14—C15—N2—C27179.5 (2)
C13—C14—C15—C16123.9 (2)C26—C27—N2—C15175.4 (2)
C1—C14—C15—C1656.0 (3)C22—C27—N2—C150.9 (3)
N2—C15—C16—C170.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.453.358 (4)164
Symmetry code: (i) x, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.453.358 (4)164
Symmetry code: (i) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H19ClN2O
Mr422.89
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)14.824 (3), 8.2946 (17), 16.924 (3)
V3)2081.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.952, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
8128, 3530, 2845
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.06
No. of reflections3530
No. of parameters280
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.16
Absolute structureFlack (1983)
Absolute structure parameter0.11 (7)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection facilities.

References

First citationAmal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science PubMed Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPadwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds