organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

7-Iodo-1H-indole-2,3-dione

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 4 March 2016; accepted 10 March 2016; online 15 March 2016)

The title compound, C8H4INO2, has a single planar mol­ecule in the asymmetric unit, with the non-H atoms possessing a mean deviation from planarity of 0.058 Å. The mol­ecules dimerize in the solid state through N—H⋯O hydrogen bonds. There are inter­molecular I⋯O close contacts of 3.193 (4) Å that link the mol­ecules into infinite chains along [20-1]. No ππ inter­actions were observed in the structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We report herein the crystal structure of 7-iodo­isatin (Fig. 1[link]). The mol­ecule is nearly planar, with the non-H atoms possessing a mean deviation from planarity of 0.058 Å, and exhibits bond lengths and angles similar to those observed in isatin (Goldschmidt & Llewellyn, 1950[Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.]). In the crystal, mol­ecules dimerize through N1—H1⋯O1i hydrogen bonds (see Table 1[link] for symmetry code), which are further linked through I1⋯O2 close contacts [symmetry code: (i) 1 + x, [1\over2] − y, −[1\over2] + z] of 3.193 (4) Å, leading to infinite chains along [20[\overline{1}]]. Similar I⋯O inter­actions are observed in the structures of 4-iodo­isatin (Golen & Manke, 2016a[Golen, J. A. & Manke, D. R. (2016a). IUCrData 1, x160215.]) and 5-iodo­isatin (Garden et al., 2006[Garden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321-o323.]). The structure of 7-bromo­isatin also demonstrates a similar halogen–oxygen inter­action (Golen & Manke, 2016b[Golen, J. A. & Manke, D. R. (2016b). IUCrData 1, x160268.]). The packing of the title compound, indicating the hydrogen bonding, is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (1) 2.08 (2) 2.915 (6) 160 (5)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
[Figure 2]
Figure 2
The mol­ecular packing of the title compound, with hydrogen bonding shown as dashed lines and iodine–oxygen inter­actions shown as thin solid lines.

Synthesis and crystallization

A commercial sample (AK Scientific) of 7-iodo-1H-indole-2,3-dione was used for crystallization. A sample suitable for single-crystal X-ray analysis was grown by slow evaporation from an acetone solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H4INO2
Mr 273.02
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 4.0896 (3), 13.2139 (10), 15.1946 (11)
β (°) 92.325 (4)
V3) 820.43 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 30.33
Crystal size (mm) 0.2 × 0.1 × 0.08
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.037, 0.167
No. of measured, independent and observed [I > 2σ(I)] reflections 11737, 1479, 1321
Rint 0.061
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.076, 1.12
No. of reflections 1479
No. of parameters 113
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.48, −0.49
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

Experimental top

A commercial sample (AK Scientific) of 7-iodo-1H-indole-2,3-dione was used for crystallization. A sample suitable for single-crystal X-ray analysis was grown by slow evaporation from an acetone solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

We report herein the crystal structure of 7-iodoisatin (Fig. 1). The molecule is nearly planar, with the non-H atoms possessing a mean deviation from planarity of 0.058 Å, and exhibits bond lengths and angles similar to those observed in isatin (Goldschmidt & Llewellyn, 1950). In the crystal, molecules dimerize through N1—H1···O1i hydrogen bonds (see Table 1 for symmetry code), which are further linked through I1···O2 close contacts [symmetry code needed here?] of 3.193 (4) Å, leading to infinite chains along [201]. Similar I···O interactions are observed in the structures of 4-iodoisatin (Golen & Manke, 2016a) and 5-iodoisatin (Garden et al., 2006). The structure of 7-bromoisatin also demonstrates a similar halogen–oxygen interaction (Golen & Manke, 2016b). The packing of the title compound, indicating the hydrogen bonding, is shown in Fig. 2.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of the title compound, with hydrogen bonding shown as dashed lines and iodine–oxygen interactions shown as thin solid lines.
7-Iodo-1H-indole-2,3-dione top
Crystal data top
C8H4INO2F(000) = 512
Mr = 273.02Dx = 2.210 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 4.0896 (3) ÅCell parameters from 7596 reflections
b = 13.2139 (10) Åθ = 4.4–67.8°
c = 15.1946 (11) ŵ = 30.33 mm1
β = 92.325 (4)°T = 296 K
V = 820.43 (10) Å3BLOCK, red
Z = 40.2 × 0.1 × 0.08 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
1479 independent reflections
Radiation source: Cu1321 reflections with I > 2σ(I)
HELIOS MX monochromatorRint = 0.061
φ and ω scansθmax = 68.1°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 44
Tmin = 0.037, Tmax = 0.167k = 1515
11737 measured reflectionsl = 1818
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0197P)2 + 2.0314P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
1479 reflectionsΔρmax = 0.48 e Å3
113 parametersΔρmin = 0.49 e Å3
Crystal data top
C8H4INO2V = 820.43 (10) Å3
Mr = 273.02Z = 4
Monoclinic, P21/cCu Kα radiation
a = 4.0896 (3) ŵ = 30.33 mm1
b = 13.2139 (10) ÅT = 296 K
c = 15.1946 (11) Å0.2 × 0.1 × 0.08 mm
β = 92.325 (4)°
Data collection top
Bruker D8 Venture CMOS
diffractometer
1479 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1321 reflections with I > 2σ(I)
Tmin = 0.037, Tmax = 0.167Rint = 0.061
11737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.48 e Å3
1479 reflectionsΔρmin = 0.49 e Å3
113 parameters
Special details top

Experimental. Absorption correction: SADABS2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.1330 before and 0.0872 after correction. The Ratio of minimum to maximum transmission is 0.2240. The λ/2 correction factor is 0.00150.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.19785 (10)0.18336 (3)0.57456 (2)0.05351 (16)
O10.7430 (14)0.5226 (3)0.4045 (3)0.0806 (16)
O20.9639 (13)0.3999 (3)0.2590 (3)0.0719 (14)
N10.5378 (14)0.3695 (3)0.4492 (3)0.0529 (12)
C10.6936 (17)0.4330 (4)0.3954 (4)0.0587 (16)
C20.8030 (16)0.3679 (4)0.3167 (3)0.0525 (14)
C30.6755 (14)0.2681 (4)0.3337 (3)0.0451 (12)
C40.6910 (18)0.1779 (4)0.2852 (4)0.0578 (16)
H40.79030.17600.23120.069*
C50.5550 (17)0.0925 (4)0.3200 (4)0.0617 (16)
H50.56220.03180.28910.074*
C60.4069 (16)0.0956 (4)0.4006 (4)0.0555 (14)
H60.31380.03700.42240.067*
C70.3947 (14)0.1848 (4)0.4495 (3)0.0439 (11)
C80.5242 (14)0.2709 (4)0.4142 (3)0.0430 (12)
H10.463 (13)0.387 (4)0.4997 (18)0.046 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0581 (3)0.0575 (2)0.0458 (2)0.00171 (17)0.01231 (16)0.00592 (15)
O10.138 (5)0.041 (2)0.065 (3)0.007 (2)0.040 (3)0.0021 (18)
O20.111 (4)0.051 (2)0.056 (2)0.002 (2)0.036 (3)0.0072 (18)
N10.085 (4)0.040 (2)0.035 (2)0.004 (2)0.017 (2)0.0001 (18)
C10.092 (5)0.040 (3)0.045 (3)0.000 (3)0.015 (3)0.000 (2)
C20.076 (4)0.046 (3)0.036 (3)0.010 (3)0.010 (3)0.009 (2)
C30.055 (4)0.045 (3)0.036 (2)0.008 (2)0.005 (2)0.003 (2)
C40.084 (5)0.050 (3)0.040 (3)0.009 (3)0.008 (3)0.002 (2)
C50.083 (5)0.046 (3)0.056 (3)0.001 (3)0.001 (3)0.013 (3)
C60.068 (4)0.044 (3)0.054 (3)0.006 (3)0.001 (3)0.002 (2)
C70.047 (3)0.045 (3)0.040 (2)0.003 (2)0.005 (2)0.005 (2)
C80.053 (3)0.042 (3)0.034 (2)0.003 (2)0.005 (2)0.002 (2)
Geometric parameters (Å, º) top
I1—C72.094 (5)C3—C81.395 (7)
O1—C11.207 (7)C4—H40.9300
O2—C21.196 (6)C4—C51.373 (8)
N1—C11.350 (7)C5—H50.9300
N1—C81.408 (6)C5—C61.389 (8)
N1—H10.869 (5)C6—H60.9300
C1—C21.553 (7)C6—C71.395 (7)
C2—C31.445 (8)C7—C81.372 (7)
C3—C41.404 (7)
C1—N1—C8111.0 (4)C5—C4—H4121.0
C1—N1—H1124 (4)C4—C5—H5119.6
C8—N1—H1125 (4)C4—C5—C6120.9 (5)
O1—C1—N1128.3 (5)C6—C5—H5119.6
O1—C1—C2125.4 (5)C5—C6—H6119.3
N1—C1—C2106.2 (4)C5—C6—C7121.4 (5)
O2—C2—C1123.5 (5)C7—C6—H6119.3
O2—C2—C3131.9 (5)C6—C7—I1119.9 (4)
C3—C2—C1104.6 (4)C8—C7—I1122.0 (4)
C4—C3—C2131.1 (5)C8—C7—C6118.0 (5)
C8—C3—C2108.0 (4)C3—C8—N1110.1 (4)
C8—C3—C4121.0 (5)C7—C8—N1129.0 (4)
C3—C4—H4121.0C7—C8—C3120.8 (5)
C5—C4—C3117.9 (5)
I1—C7—C8—N13.2 (9)C2—C3—C8—N12.1 (6)
I1—C7—C8—C3175.2 (4)C2—C3—C8—C7176.6 (5)
O1—C1—C2—O24.0 (11)C3—C4—C5—C60.0 (10)
O1—C1—C2—C3177.5 (7)C4—C3—C8—N1179.4 (6)
O2—C2—C3—C42.8 (12)C4—C3—C8—C71.9 (9)
O2—C2—C3—C8175.5 (7)C4—C5—C6—C70.9 (10)
N1—C1—C2—O2175.9 (6)C5—C6—C7—I1175.7 (5)
N1—C1—C2—C32.7 (7)C5—C6—C7—C82.2 (9)
C1—N1—C8—C30.2 (7)C6—C7—C8—N1178.9 (5)
C1—N1—C8—C7178.3 (6)C6—C7—C8—C32.6 (9)
C1—C2—C3—C4178.9 (7)C8—N1—C1—O1178.6 (7)
C1—C2—C3—C82.8 (6)C8—N1—C1—C21.5 (7)
C2—C3—C4—C5177.6 (6)C8—C3—C4—C50.5 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (1)2.08 (2)2.915 (6)160 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.869 (5)2.08 (2)2.915 (6)160 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H4INO2
Mr273.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.0896 (3), 13.2139 (10), 15.1946 (11)
β (°) 92.325 (4)
V3)820.43 (10)
Z4
Radiation typeCu Kα
µ (mm1)30.33
Crystal size (mm)0.2 × 0.1 × 0.08
Data collection
DiffractometerBruker D8 Venture CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.037, 0.167
No. of measured, independent and
observed [I > 2σ(I)] reflections
11737, 1479, 1321
Rint0.061
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.076, 1.12
No. of reflections1479
No. of parameters113
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.49

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321–o323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGolen, J. A. & Manke, D. R. (2016a). IUCrData 1, x160215.  Google Scholar
First citationGolen, J. A. & Manke, D. R. (2016b). IUCrData 1, x160268.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds