organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-[2,4-Dihy­dr­oxy-5-(5-hy­dr­oxy-2,4,6-trioxo-3,5-di­hydro-1H-pyrimidin-5-yl)-3-meth­­oxy­phen­yl]-5-hy­droxy-3,5-di­hydro-1H-pyrimidine-2,4,6-trione penta­hydrate

aInstitute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel, and bDepartment of Chemistry, The Nuclear Research Centre Negev, Beer Sheva, 84190, Israel
*Correspondence e-mail: almog@mail.huji.ac.il

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 February 2016; accepted 14 February 2016; online 20 February 2016)

The title compound, C15H12N4O11·5H2O, has a `propeller-like' structure. The two alloxan units have screw-boat conformations. Their mean planes are normal to the central aromatic ring with dihedral angles of 87.91 (7) and 88.27 (7)°, and they are inclined to one another by 40.86 (7)°. In the crystal, mol­ecules are linked via O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional framework. There are also C—H⋯O hydrogen bonds present within the framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Vasarene and analogues are prepared by a one-pot reaction between cyclic vicinal polycarbonyl compounds, such as ninhydrin and benzo[f]ninhydrin (Almog et al., 2009[Almog, J., Rozin, R., Klein, A., Shamuilov-Levinton, G. & Cohen, S. (2009). Tetrahedron, 65, 7954-7962.]), and polyhy­droxy aromatics. Previous work by our group (Almog et al., 2009[Almog, J., Rozin, R., Klein, A., Shamuilov-Levinton, G. & Cohen, S. (2009). Tetrahedron, 65, 7954-7962.]) has shown that the reaction with alloxan (1,3-di­hydro­pyrimidine-2,4,5,6-tetrone) results in a partially closed, `propeller-like' structure, where the alloxan units are in a perpendicular and slightly tilted position (40–60°), due to the tetra­hedral angle of the sp3 carbon atom of the alloxan attached to the central aromatic ring. Attempts to prepare bis-adducts with other polyhy­droxy aromatics have also been successful, following a similar pattern. These compounds have shown promising potential for the challenging task of selective precipitation of certain alkali fluorides from aqueous solutions.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. A selective methyl­ation on the central hydroxyl group of the 1,2,3-benzene­triol mol­ecule was performed prior to the one-pot reaction with alloxan. It can be used as a model for potential binding to a solid phase for future separation techniques.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. All solvent mol­ecules have been omitted for clarity.

The title compound, contains several oxygen and nitro­gen functional groups (hydroxyls, carbonyls and amides) that are capable of forming multiple hydrogen bonds with protic solvent mol­ecules (Table 1[link] and Figs. 2[link] and 3[link]). This greatly enhances its solubility in water, thus enabling the selective binding and precipitation of the highly soluble heavy alkali fluorides from aqueous solutions, as shall be reported in a forthcoming article, and exhibiting promising potential as a new analytical method for salt-separation techniques. The `propeller-like' structure is established as non-hemiketal ring closure is allowed with a second carbonyl group, unlike the ninhydrin-based vasarene analogues (Almog et al., 2016[Almog, J., Bengiat, R., Gil, M., Klein, A., Cohen, O., Bogoslavski, B., Cohen, S. & Dubnikova, F. (2016). Tetrahedron. Submitted.]). We suspect that this is due to two main factors: 1) the less reactive amidic carbonyls compared to the `true' ketones on ninhydrin; 2) a greater ring strain when closing a six-membered ring compared to the five-membered ring of ninhydrin. Nevertheless, this structure is responsible for the greater flexibility of the ligand as opposed to the rigid ninhydrin-based vasarenes, assisting in the final complex formation with alkali fluoride ion-pairs.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O1Wi 0.81 (3) 1.97 (2) 2.6935 (18) 148 (2)
O3—H3O⋯O2 0.75 (3) 2.41 (2) 2.7788 (16) 112 (2)
O3—H3O⋯O2Wii 0.75 (3) 2.12 (3) 2.7849 (18) 147 (2)
O4—H4O⋯O9iii 0.83 (2) 1.93 (2) 2.7520 (16) 168 (2)
O8—H8O⋯O6iv 0.87 (3) 2.13 (2) 2.8495 (16) 140 (2)
O8—H8O⋯O4Wv 0.87 (3) 2.63 (3) 3.2504 (19) 129 (2)
N1—H1N⋯O2W 0.92 (2) 1.97 (2) 2.8746 (19) 169 (2)
N2—H2N⋯O1Wvi 0.89 (2) 1.92 (2) 2.8023 (18) 170.2 (18)
N3—H3N⋯O3Wvii 0.82 (3) 2.00 (3) 2.8026 (19) 167 (2)
N4—H4N⋯O4Wvii 0.82 (2) 2.13 (2) 2.9134 (19) 158 (2)
O1W—H11W⋯O10ii 0.87 (2) 1.97 (2) 2.8006 (18) 161 (3)
O1W—H21W⋯O5W 0.90 (2) 1.77 (2) 2.651 (3) 164 (2)
O2W—H12W⋯O5viii 0.85 (2) 2.23 (2) 3.0518 (19) 165 (3)
O2W—H22W⋯O4W 0.84 (2) 1.98 (2) 2.825 (2) 175 (3)
O3W—H13W⋯O7vi 0.86 (2) 2.30 (2) 3.0573 (18) 147 (3)
O3W—H13W⋯O11 0.86 (2) 2.44 (2) 3.0292 (19) 126 (3)
O3W—H23W⋯O4ix 0.83 (2) 2.10 (2) 2.9303 (18) 178 (3)
O4W—H14W⋯O3Wv 0.84 (2) 1.97 (2) 2.814 (2) 178 (3)
O4W—H24W⋯O11viii 0.83 (2) 2.08 (2) 2.8937 (18) 168 (3)
O5W—H15W⋯O9 0.84 2.34 3.151 (3) 164
O5W—H25W⋯O7 0.87 2.21 2.918 (3) 139
C7—H7B⋯O7i 0.96 2.63 3.501 (2) 151
C7—H7B⋯O11x 0.96 2.59 3.242 (2) 125
C7—H7C⋯O10ii 0.96 2.54 3.458 (2) 159
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y, -z; (iv) x+1, y+1, z; (v) -x+1, -y+1, -z; (vi) x, y+1, z; (vii) x-1, y-1, z; (viii) x+1, y, z; (ix) -x, -y+1, -z; (x) -x, -y+1, -z+1.
[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound, showing some of the hydrogen bonds involving the water mol­ecules (dashed lines; see Table 1[link]). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
A perspective view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and C-bound H atoms have been omitted for clarity.

Synthesis and crystallization

Alloxan monohydrate (329 mg, 2.05 mmol) and 2-meth­oxy­benzene-1,3-diol (prepared according to a known procedure; Donnelly et al., 2008[Donnelly, A. C., Mays, J. R., Burlison, J., Nelson, J. T., Vielhauer, G., Holzbeierlein, J. & Blagg, B. S. J. (2008). J. Org. Chem. 73, 8901-8920.]) (142 mg, 1.01 mmol) were stirred at room temperature in glacial acetic acid (10 ml) for 24 h. The white precipitate that formed was collected by vacuum filtration. The filtrate was left sealed and after a few days colourless crystals were formed. They were filtered onto sintered glass and washed with AcOH followed by diethyl ether (yield: 103 mg, 24%). Recrystallization (MeOH/H2O) afforded colourless crystals (m.p. > 473 K with decomposition). Analysis calculated for C15H12N4O11+2H2O: C, 39.14; H, 3.50; N, 12.17; found: C, 39.35; H, 3.29; N, 11.90; 1H NMR (DMSO-d6) δ (p.p.m.): 3.49 (s, 3H), 7.35 (br s, 2H), 7.62 (s, 1H), 9.45 (br s, 2H), 11.31 (br s, 4H); UV/Vis (DMSO): λmax = 282 nm. IR: ν = 494, 527, 606, 702, 793, 1020, 1132, 1246, 1348, 1411, 1479, 1699, 2842, 3101, 3209, 3300, 3373 cm−1; MS/MS positive mode ESI (m/z): 407.05 [(M + H) - H2O]+, 442.08 [M + NH4]+, 447.04 [M + Na]+, 871.09 [2M + Na]+.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H12N4O11·5H2O
Mr 514.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 9.4495 (6), 10.0608 (6), 12.3484 (8)
α, β, γ (°) 109.133 (1), 91.964 (1), 106.201 (1)
V3) 1054.79 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.15
Crystal size (mm) 0.43 × 0.36 × 0.26
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.939, 0.962
No. of measured, independent and observed [I > 2σ(I)] reflections 12041, 4821, 4337
Rint 0.018
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.04
No. of reflections 4821
No. of parameters 381
No. of restraints 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.44
Computer programs: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

5-[2,4-Dihydroxy-5-(5-hydroxy-2,4,6-trioxo-1,3-diazinan-5-yl)-3-methoxyphenyl]-5-hydroxy-1,3-diazinane-2,4,6-trione pentahydrate top
Crystal data top
C15H12N4O11·5H2OZ = 2
Mr = 514.36F(000) = 536
Triclinic, P1Dx = 1.620 Mg m3
a = 9.4495 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0608 (6) ÅCell parameters from 6750 reflections
c = 12.3484 (8) Åθ = 2.3–27.9°
α = 109.133 (1)°µ = 0.15 mm1
β = 91.964 (1)°T = 295 K
γ = 106.201 (1)°Plate, colourless
V = 1054.79 (11) Å30.43 × 0.36 × 0.26 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4821 independent reflections
Radiation source: fine-focus sealed tube4337 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 1212
Tmin = 0.939, Tmax = 0.962k = 1313
12041 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0802P)2 + 0.3761P]
where P = (Fo2 + 2Fc2)/3
4821 reflections(Δ/σ)max < 0.001
381 parametersΔρmax = 0.35 e Å3
12 restraintsΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21877 (13)0.03575 (13)0.36014 (11)0.0352 (3)
H1O0.219 (3)0.061 (3)0.429 (2)0.045 (6)*
O20.01468 (13)0.28905 (12)0.52758 (9)0.0303 (2)
O30.19179 (13)0.48136 (12)0.44958 (10)0.0327 (3)
H3O0.185 (3)0.489 (3)0.512 (2)0.045 (6)*
O40.20540 (13)0.03555 (12)0.01383 (9)0.0337 (3)
H4O0.252 (3)0.119 (3)0.034 (2)0.043 (6)*
O50.42159 (15)0.08106 (14)0.16241 (16)0.0562 (4)
O60.55723 (13)0.40618 (12)0.09977 (11)0.0396 (3)
O70.06530 (12)0.16599 (13)0.16113 (11)0.0362 (3)
O80.15820 (12)0.39213 (12)0.08897 (9)0.0313 (3)
H8O0.220 (3)0.451 (3)0.061 (2)0.052 (6)*
O90.37197 (14)0.28800 (13)0.16235 (12)0.0441 (3)
O100.55171 (16)0.72199 (15)0.45658 (14)0.0553 (4)
O110.12768 (13)0.64877 (13)0.23793 (11)0.0368 (3)
N10.45466 (15)0.49915 (14)0.31528 (12)0.0326 (3)
H1N0.540 (3)0.474 (3)0.324 (2)0.049 (6)*
N20.34045 (14)0.68507 (14)0.34510 (12)0.0302 (3)
H2N0.342 (2)0.778 (2)0.3814 (17)0.032 (5)*
N30.48738 (15)0.16430 (15)0.12230 (13)0.0335 (3)
H3N0.577 (3)0.174 (3)0.114 (2)0.048 (6)*
N40.31095 (14)0.28503 (14)0.12969 (11)0.0277 (3)
H4N0.297 (3)0.363 (3)0.128 (2)0.045 (6)*
C10.11481 (15)0.11043 (15)0.21253 (12)0.0235 (3)
C20.11630 (15)0.13784 (15)0.33064 (12)0.0246 (3)
C30.01410 (16)0.26189 (15)0.41090 (12)0.0240 (3)
C40.08900 (15)0.36102 (15)0.37351 (12)0.0234 (3)
C50.08942 (15)0.33507 (14)0.25529 (12)0.0225 (3)
C60.01113 (15)0.20805 (15)0.17600 (12)0.0231 (3)
H60.00860.18840.09720.028*
C70.0760 (2)0.2224 (2)0.57378 (15)0.0398 (4)
H7A0.04240.11740.53380.060*
H7B0.06880.24350.65470.060*
H7C0.17770.26170.56390.060*
C80.22382 (15)0.02921 (15)0.12904 (12)0.0241 (3)
C90.38477 (17)0.02905 (17)0.14319 (15)0.0322 (3)
C100.45805 (16)0.29232 (16)0.11523 (13)0.0274 (3)
C110.19071 (16)0.16394 (15)0.14372 (12)0.0246 (3)
C120.20492 (15)0.43398 (15)0.20782 (12)0.0237 (3)
C130.35182 (16)0.40093 (16)0.22442 (14)0.0288 (3)
C140.45360 (18)0.64053 (17)0.37814 (15)0.0337 (3)
C150.21882 (16)0.59811 (15)0.26550 (13)0.0259 (3)
O1W0.31872 (17)0.02845 (14)0.43957 (12)0.0440 (3)
H11W0.378 (3)0.062 (2)0.470 (2)0.087 (10)*
H21W0.275 (3)0.019 (3)0.3773 (18)0.066 (8)*
O2W0.71624 (15)0.40613 (14)0.31264 (11)0.0390 (3)
H12W0.679 (3)0.3131 (19)0.283 (2)0.080 (9)*
H22W0.753 (3)0.430 (3)0.258 (2)0.066 (8)*
O3W0.21039 (14)0.78324 (16)0.05355 (12)0.0430 (3)
H13W0.146 (3)0.780 (4)0.101 (2)0.090 (10)*
H23W0.209 (4)0.853 (3)0.032 (3)0.087 (10)*
O4W0.82549 (15)0.48740 (15)0.12591 (14)0.0452 (3)
H14W0.814 (3)0.405 (2)0.0736 (19)0.062 (7)*
H24W0.916 (2)0.526 (3)0.149 (2)0.072 (8)*
O5W0.2259 (3)0.0461 (3)0.2693 (2)0.0937 (7)
H15W0.26550.12340.25490.141*
H25W0.13060.02600.25460.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0381 (6)0.0301 (6)0.0288 (6)0.0037 (5)0.0073 (5)0.0110 (5)
O20.0382 (6)0.0322 (6)0.0221 (5)0.0133 (5)0.0054 (4)0.0095 (4)
O30.0358 (6)0.0262 (6)0.0229 (5)0.0038 (4)0.0025 (4)0.0035 (4)
O40.0439 (6)0.0227 (5)0.0230 (5)0.0050 (5)0.0045 (4)0.0069 (4)
O50.0354 (7)0.0264 (6)0.1024 (13)0.0103 (5)0.0032 (7)0.0175 (7)
O60.0339 (6)0.0251 (6)0.0516 (7)0.0031 (5)0.0112 (5)0.0124 (5)
O70.0270 (6)0.0313 (6)0.0468 (7)0.0080 (4)0.0018 (5)0.0108 (5)
O80.0324 (6)0.0303 (6)0.0239 (5)0.0019 (4)0.0030 (4)0.0098 (4)
O90.0341 (6)0.0246 (6)0.0579 (8)0.0095 (5)0.0037 (5)0.0049 (5)
O100.0433 (7)0.0347 (7)0.0624 (9)0.0054 (6)0.0213 (6)0.0074 (6)
O110.0351 (6)0.0326 (6)0.0456 (7)0.0140 (5)0.0026 (5)0.0148 (5)
N10.0246 (6)0.0248 (6)0.0415 (7)0.0067 (5)0.0037 (5)0.0042 (5)
N20.0304 (6)0.0172 (6)0.0357 (7)0.0038 (5)0.0015 (5)0.0031 (5)
N30.0200 (6)0.0261 (7)0.0495 (8)0.0021 (5)0.0005 (5)0.0116 (6)
N40.0300 (6)0.0179 (6)0.0345 (7)0.0049 (5)0.0050 (5)0.0103 (5)
C10.0224 (6)0.0179 (6)0.0252 (7)0.0007 (5)0.0002 (5)0.0061 (5)
C20.0244 (7)0.0208 (6)0.0274 (7)0.0039 (5)0.0047 (5)0.0094 (5)
C30.0275 (7)0.0226 (6)0.0210 (6)0.0081 (5)0.0024 (5)0.0064 (5)
C40.0235 (6)0.0188 (6)0.0239 (6)0.0040 (5)0.0013 (5)0.0047 (5)
C50.0211 (6)0.0186 (6)0.0250 (6)0.0023 (5)0.0015 (5)0.0076 (5)
C60.0234 (6)0.0200 (6)0.0218 (6)0.0020 (5)0.0005 (5)0.0063 (5)
C70.0492 (10)0.0416 (9)0.0316 (8)0.0178 (8)0.0002 (7)0.0139 (7)
C80.0239 (6)0.0182 (6)0.0254 (7)0.0000 (5)0.0009 (5)0.0076 (5)
C90.0263 (7)0.0224 (7)0.0433 (9)0.0029 (6)0.0030 (6)0.0105 (6)
C100.0278 (7)0.0216 (6)0.0278 (7)0.0011 (5)0.0063 (5)0.0073 (5)
C110.0257 (7)0.0211 (6)0.0234 (6)0.0037 (5)0.0009 (5)0.0062 (5)
C120.0207 (6)0.0190 (6)0.0254 (7)0.0007 (5)0.0004 (5)0.0050 (5)
C130.0238 (7)0.0199 (6)0.0366 (8)0.0027 (5)0.0019 (6)0.0056 (6)
C140.0273 (7)0.0242 (7)0.0391 (8)0.0019 (6)0.0016 (6)0.0031 (6)
C150.0250 (7)0.0220 (6)0.0298 (7)0.0047 (5)0.0061 (5)0.0096 (5)
O1W0.0566 (8)0.0268 (6)0.0403 (7)0.0062 (6)0.0070 (6)0.0066 (5)
O2W0.0402 (7)0.0338 (6)0.0386 (7)0.0114 (5)0.0019 (5)0.0075 (5)
O3W0.0336 (6)0.0498 (8)0.0502 (8)0.0137 (6)0.0053 (6)0.0228 (6)
O4W0.0378 (7)0.0322 (7)0.0616 (9)0.0099 (5)0.0003 (6)0.0128 (6)
O5W0.1022 (17)0.0852 (15)0.1002 (17)0.0286 (13)0.0120 (13)0.0437 (13)
Geometric parameters (Å, º) top
O1—C21.3563 (17)N4—H4N0.82 (2)
O1—H1O0.81 (3)C1—C61.3827 (19)
O2—C31.3762 (17)C1—C21.394 (2)
O2—C71.431 (2)C1—C81.5059 (18)
O3—C41.3518 (17)C2—C31.3869 (19)
O3—H3O0.75 (3)C3—C41.3955 (19)
O4—C81.4219 (17)C4—C51.3966 (19)
O4—H4O0.83 (2)C5—C61.3904 (18)
O5—C91.205 (2)C5—C121.5314 (18)
O6—C101.2133 (17)C6—H60.9300
O7—C111.2042 (19)C7—H7A0.9600
O8—C121.4046 (17)C7—H7B0.9600
O8—H8O0.87 (3)C7—H7C0.9600
O9—C131.2143 (19)C8—C111.5369 (19)
O10—C141.210 (2)C8—C91.537 (2)
O11—C151.2067 (19)C12—C151.5339 (19)
N1—C131.357 (2)C12—C131.537 (2)
N1—C141.382 (2)O1W—H11W0.867 (17)
N1—H1N0.92 (2)O1W—H21W0.903 (16)
N2—C151.3602 (19)O2W—H12W0.846 (17)
N2—C141.367 (2)O2W—H22W0.843 (16)
N2—H2N0.89 (2)O3W—H13W0.861 (17)
N3—C101.368 (2)O3W—H23W0.833 (17)
N3—C91.3692 (19)O4W—H14W0.840 (16)
N3—H3N0.82 (3)O4W—H24W0.833 (17)
N4—C111.3714 (18)O5W—H15W0.8414
N4—C101.374 (2)O5W—H25W0.8652
C2—O1—H1O111.7 (16)O2—C7—H7C109.5
C3—O2—C7113.68 (12)H7A—C7—H7C109.5
C4—O3—H3O113.0 (18)H7B—C7—H7C109.5
C8—O4—H4O111.3 (15)O4—C8—C1109.26 (11)
C12—O8—H8O108.8 (16)O4—C8—C11107.57 (12)
C13—N1—C14125.29 (14)C1—C8—C11109.46 (11)
C13—N1—H1N114.9 (14)O4—C8—C9106.24 (12)
C14—N1—H1N118.6 (15)C1—C8—C9110.79 (12)
C15—N2—C14126.12 (13)C11—C8—C9113.36 (11)
C15—N2—H2N115.7 (13)O5—C9—N3121.38 (15)
C14—N2—H2N118.0 (13)O5—C9—C8122.43 (14)
C10—N3—C9126.54 (14)N3—C9—C8115.94 (13)
C10—N3—H3N113.5 (16)O6—C10—N3121.61 (14)
C9—N3—H3N119.9 (16)O6—C10—N4121.50 (14)
C11—N4—C10126.23 (13)N3—C10—N4116.86 (12)
C11—N4—H4N119.2 (16)O7—C11—N4121.48 (14)
C10—N4—H4N114.6 (16)O7—C11—C8121.78 (13)
C6—C1—C2119.54 (12)N4—C11—C8116.65 (12)
C6—C1—C8122.37 (13)O8—C12—C5107.70 (11)
C2—C1—C8118.05 (12)O8—C12—C15108.11 (12)
O1—C2—C3123.45 (13)C5—C12—C15112.28 (11)
O1—C2—C1116.33 (12)O8—C12—C13109.21 (12)
C3—C2—C1120.20 (12)C5—C12—C13106.52 (11)
O2—C3—C2120.41 (13)C15—C12—C13112.87 (11)
O2—C3—C4119.60 (12)O9—C13—N1121.36 (14)
C2—C3—C4119.98 (13)O9—C13—C12121.34 (13)
O3—C4—C3121.33 (13)N1—C13—C12117.20 (13)
O3—C4—C5118.67 (12)O10—C14—N2121.94 (15)
C3—C4—C5119.98 (12)O10—C14—N1120.89 (16)
C6—C5—C4119.25 (12)N2—C14—N1117.13 (14)
C6—C5—C12117.72 (12)O11—C15—N2121.43 (14)
C4—C5—C12122.83 (12)O11—C15—C12120.95 (13)
C1—C6—C5121.01 (13)N2—C15—C12117.57 (13)
C1—C6—H6119.5H11W—O1W—H21W97.9 (19)
C5—C6—H6119.5H12W—O2W—H22W103 (2)
O2—C7—H7A109.5H13W—O3W—H23W106 (2)
O2—C7—H7B109.5H14W—O4W—H24W107 (2)
H7A—C7—H7B109.5H15W—O5W—H25W107.1
C6—C1—C2—O1178.56 (13)C9—N3—C10—N40.5 (2)
C8—C1—C2—O10.9 (2)C11—N4—C10—O6177.64 (14)
C6—C1—C2—C30.2 (2)C11—N4—C10—N34.1 (2)
C8—C1—C2—C3177.40 (13)C10—N4—C11—O7176.55 (14)
C7—O2—C3—C288.96 (17)C10—N4—C11—C86.9 (2)
C7—O2—C3—C491.82 (17)O4—C8—C11—O779.73 (16)
O1—C2—C3—O21.5 (2)C1—C8—C11—O738.88 (18)
C1—C2—C3—O2179.69 (12)C9—C8—C11—O7163.12 (14)
O1—C2—C3—C4179.28 (13)O4—C8—C11—N496.79 (14)
C1—C2—C3—C41.1 (2)C1—C8—C11—N4144.60 (13)
O2—C3—C4—O32.1 (2)C9—C8—C11—N420.35 (18)
C2—C3—C4—O3178.71 (13)C6—C5—C12—O815.20 (17)
O2—C3—C4—C5179.37 (12)C4—C5—C12—O8170.04 (13)
C2—C3—C4—C50.1 (2)C6—C5—C12—C15134.11 (13)
O3—C4—C5—C6176.98 (13)C4—C5—C12—C1551.12 (18)
C3—C4—C5—C61.6 (2)C6—C5—C12—C13101.87 (14)
O3—C4—C5—C122.3 (2)C4—C5—C12—C1372.90 (16)
C3—C4—C5—C12176.31 (13)C14—N1—C13—O9168.41 (17)
C2—C1—C6—C51.6 (2)C14—N1—C13—C1215.2 (2)
C8—C1—C6—C5179.10 (13)O8—C12—C13—O940.9 (2)
C4—C5—C6—C12.5 (2)C5—C12—C13—O975.12 (18)
C12—C5—C6—C1177.45 (13)C15—C12—C13—O9161.22 (15)
C6—C1—C8—O43.02 (19)O8—C12—C13—N1142.66 (14)
C2—C1—C8—O4179.41 (12)C5—C12—C13—N1101.29 (15)
C6—C1—C8—C11114.53 (15)C15—C12—C13—N122.37 (19)
C2—C1—C8—C1163.03 (17)C15—N2—C14—O10173.69 (17)
C6—C1—C8—C9119.74 (15)C15—N2—C14—N18.6 (2)
C2—C1—C8—C962.70 (17)C13—N1—C14—O10178.46 (17)
C10—N3—C9—O5170.40 (18)C13—N1—C14—N20.7 (3)
C10—N3—C9—C815.2 (2)C14—N2—C15—O11176.55 (16)
O4—C8—C9—O580.4 (2)C14—N2—C15—C120.8 (2)
C1—C8—C9—O538.1 (2)O8—C12—C15—O1140.69 (18)
C11—C8—C9—O5161.66 (17)C5—C12—C15—O1177.98 (17)
O4—C8—C9—N393.87 (16)C13—C12—C15—O11161.60 (14)
C1—C8—C9—N3147.57 (14)O8—C12—C15—N2136.70 (13)
C11—C8—C9—N324.05 (19)C5—C12—C15—N2104.63 (14)
C9—N3—C10—O6177.74 (16)C13—C12—C15—N215.78 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1Wi0.81 (3)1.97 (2)2.6935 (18)148 (2)
O3—H3O···O20.75 (3)2.41 (2)2.7788 (16)112 (2)
O3—H3O···O2Wii0.75 (3)2.12 (3)2.7849 (18)147 (2)
O4—H4O···O9iii0.83 (2)1.93 (2)2.7520 (16)168 (2)
O8—H8O···O6iv0.87 (3)2.13 (2)2.8495 (16)140 (2)
O8—H8O···O4Wv0.87 (3)2.63 (3)3.2504 (19)129 (2)
N1—H1N···O2W0.92 (2)1.97 (2)2.8746 (19)169 (2)
N2—H2N···O1Wvi0.89 (2)1.92 (2)2.8023 (18)170.2 (18)
N3—H3N···O3Wvii0.82 (3)2.00 (3)2.8026 (19)167 (2)
N4—H4N···O4Wvii0.82 (2)2.13 (2)2.9134 (19)158 (2)
O1W—H11W···O10ii0.87 (2)1.97 (2)2.8006 (18)161 (3)
O1W—H21W···O5W0.90 (2)1.77 (2)2.651 (3)164 (2)
O2W—H12W···O5viii0.85 (2)2.23 (2)3.0518 (19)165 (3)
O2W—H22W···O4W0.84 (2)1.98 (2)2.825 (2)175 (3)
O3W—H13W···O7vi0.86 (2)2.30 (2)3.0573 (18)147 (3)
O3W—H13W···O110.86 (2)2.44 (2)3.0292 (19)126 (3)
O3W—H23W···O4ix0.83 (2)2.10 (2)2.9303 (18)178 (3)
O4W—H14W···O3Wv0.84 (2)1.97 (2)2.814 (2)178 (3)
O4W—H24W···O11viii0.83 (2)2.08 (2)2.8937 (18)168 (3)
O5W—H15W···O90.842.343.151 (3)164
O5W—H25W···O70.872.212.918 (3)139
C7—H7B···O7i0.962.633.501 (2)151
C7—H7B···O11x0.962.593.242 (2)125
C7—H7C···O10ii0.962.543.458 (2)159
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z; (iv) x+1, y+1, z; (v) x+1, y+1, z; (vi) x, y+1, z; (vii) x1, y1, z; (viii) x+1, y, z; (ix) x, y+1, z; (x) x, y+1, z+1.
 

Acknowledgements

This research was supported by the Pazy Research Foundation.

References

First citationAlmog, J., Bengiat, R., Gil, M., Klein, A., Cohen, O., Bogoslavski, B., Cohen, S. & Dubnikova, F. (2016). Tetrahedron. Submitted.  Google Scholar
First citationAlmog, J., Rozin, R., Klein, A., Shamuilov-Levinton, G. & Cohen, S. (2009). Tetrahedron, 65, 7954–7962.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2010). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDonnelly, A. C., Mays, J. R., Burlison, J., Nelson, J. T., Vielhauer, G., Holzbeierlein, J. & Blagg, B. S. J. (2008). J. Org. Chem. 73, 8901–8920.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds