organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tramadolium 2-chloro­benzoate

aDepartment of Chemistry, GSSS Institute of Engineering Technology for Women, Mysuru 570016, India, bDepartment of Chemistry, BET Academy of Higher Education, Bharathi College, Bharthi Nagara, Mandya 571422, India, cDepartment of Engineering Chemistry, Cauvery Institute of Technology, Mandya 571402, India, dDepartment of Materials Science, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, eDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006, India, and fPURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India
*Correspondence e-mail: madanmx@mangaloreuniversity.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 December 2015; accepted 4 January 2016; online 16 January 2016)

In the title mol­ecular salt, C16H26NO2+·C7H4ClO2, {systematic name: [2-hy­droxy-2-(3-meth­oxy­phen­yl)cyclo­hexyl­meth­yl]di­methyl­ammonium 2-chloro­benzoate}, the cyclo­hexane ring of the cation exhibits a chair conformation with the aromatic and amine substituents in equatorial orientations and the hydroxyl group in an axial orientation. In the anion, the dihedral angle between the aromatic ring and the carboxyl­ate group is 39.16 (13)°. In the crystal, the cations are linked to the anions by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, generating [010] chains. Further C—H⋯O and C—H⋯π inter­actions are also observed, which link the chains into a three-dimensional framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A view of the title mol­ecular salt is shown in Fig. 1[link]. Details of the hydrogen bonds and C—H⋯π inter­actions are given in Table 1[link] and illustrated in Fig. 2[link]. For a related structure, see: Sheshadri et al. (2015[Sheshadri, S. N., Nagendra, P., Siddaraju, B. P., Hemakumar, K. H., Byrappa, K., Lokanath, N. K. & Madan Kumar, S. (2015). Acta Cryst. E71, o864-o865.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O27i 0.82 1.92 2.721 (3) 164
N17—H17⋯O28 0.98 1.66 2.619 (3) 164
C14—H14B⋯O28 0.97 2.50 3.305 (3) 140
C8—H8B⋯O28ii 0.96 2.59 3.338 (4) 135
C18—H18A⋯O10ii 0.96 2.58 3.428 (4) 148
C23—H23⋯Cg1iii 0.93 2.66 3.546 (4) 160
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+2; (iii) x-1, y+1, z.
[Figure 1]
Figure 1
A view of the title compound with displacement ellipsoids drawn at the 50% probability level. The intra­molecular hydrogen bond is drawn as a dashed line.
[Figure 2]
Figure 2
A view along the a axis of the packing of the title compound. Hydrogen bonds are drawn as a dashed lines.

Synthesis and crystallization

Tramadol (3 g, 0.01 mol) and 2-chloro benzoic acid (1 g, 0.01 mol) were each dissolved in 10 ml of ethanol. The solutions were mixed and stirred in a beaker at 300 K for 30 min. The mixture was kept aside for three days at room temperature. Colourless blocks were formed and one was used for the data collection.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H26NO2+·C7H4ClO2
Mr 419.93
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.205 (6), 9.688 (7), 12.943 (9)
α, β, γ (°) 104.871 (11), 91.465 (7), 100.983 (12)
V3) 1091.8 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.47 × 0.46 × 0.23
 
Data collection
Diffractometer Rigaku Saturn724+ diffractometer
Absorption correction Multi-scan (NUMABS; Rigaku 1999[Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.909, 0.954
No. of measured, independent and observed [I > 2σ(I)] reflections 5644, 3759, 2737
Rint 0.021
(sin θ/λ)max−1) 0.601
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.111, 1.03
No. of reflections 3759
No. of parameters 266
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.26
Computer programs: CrystalClear SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan]), SHELXS1997 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Related literature top

For a related structure, see: Sheshadri et al. (2015).

Experimental top

Tramadol (3 g, 0.01 mol) and 2-chloro benzoic acid (1 g, 0.01 mol) were each dissolved in 10 ml of ethanol. The solutions were mixed and stirred in a beaker at 300 K for 30 min. The mixture was kept aside for three days at room temperature. Colourless blocks were formed and one was used for the data collection.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

A view of the title molecular salt is shown in Fig. 1. Details of the hydrogen bonds and C—H···π interactions are given in Table 1 and illustrated in Fig. 2. For a related structure, see: Sheshadri et al. (2015).

Computing details top

Data collection: CrystalClear SM Expert (Rigaku, 2011); cell refinement: CrystalClear SM Expert (Rigaku, 2011); data reduction: CrystalClear SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS1997 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids drawn at the 50% probability level. The intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. A view along the a axis of the packing of the title compound. Hydrogen bonds are drawn as a dashed lines.
[2-Hydroxy-2-(3-methoxyphenyl)cyclohexylmethyl]dimethylammonium 2-chlorobenzoate top
Crystal data top
C16H26NO2+·C7H4ClO2Z = 2
Mr = 419.93F(000) = 448
Triclinic, P1Dx = 1.277 Mg m3
a = 9.205 (6) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.688 (7) ÅCell parameters from 3759 reflections
c = 12.943 (9) Åθ = 3.1–25.3°
α = 104.871 (11)°µ = 0.20 mm1
β = 91.465 (7)°T = 293 K
γ = 100.983 (12)°Block, colourless
V = 1091.8 (13) Å30.47 × 0.46 × 0.23 mm
Data collection top
Rigaku Saturn724+
diffractometer
3759 independent reflections
Radiation source: Sealed tube2737 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.021
Detector resolution: 28.5714 pixels mm-1θmax = 25.3°, θmin = 3.1°
profile data from ω–scansh = 1111
Absorption correction: multi-scan
(NUMABS; Rigaku 1999)
k = 1011
Tmin = 0.909, Tmax = 0.954l = 1315
5644 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.271P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3759 reflectionsΔρmax = 0.23 e Å3
266 parametersΔρmin = 0.26 e Å3
Crystal data top
C16H26NO2+·C7H4ClO2γ = 100.983 (12)°
Mr = 419.93V = 1091.8 (13) Å3
Triclinic, P1Z = 2
a = 9.205 (6) ÅMo Kα radiation
b = 9.688 (7) ŵ = 0.20 mm1
c = 12.943 (9) ÅT = 293 K
α = 104.871 (11)°0.47 × 0.46 × 0.23 mm
β = 91.465 (7)°
Data collection top
Rigaku Saturn724+
diffractometer
3759 independent reflections
Absorption correction: multi-scan
(NUMABS; Rigaku 1999)
2737 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.954Rint = 0.021
5644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
3759 reflectionsΔρmin = 0.26 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.18349 (7)0.60882 (6)0.56379 (5)0.0535 (2)
O270.4450 (2)0.97619 (19)0.78882 (17)0.0728 (6)
O280.34218 (16)0.74702 (16)0.77727 (13)0.0451 (4)
C200.1255 (2)0.7722 (2)0.61387 (17)0.0375 (5)
C210.2059 (2)0.8822 (2)0.69885 (16)0.0357 (5)
C220.1524 (3)1.0101 (3)0.72920 (18)0.0487 (6)
H220.20471.08680.78420.058*
C230.0248 (3)1.0276 (3)0.68102 (19)0.0533 (7)
H230.00951.11380.70470.064*
C240.0514 (3)0.9175 (3)0.5981 (2)0.0542 (7)
H240.13770.92890.56520.065*
C250.0009 (3)0.7906 (3)0.56338 (19)0.0498 (6)
H250.05160.71680.50590.060*
C260.3432 (3)0.8682 (2)0.75872 (17)0.0398 (5)
O71.02381 (18)0.2539 (2)0.99917 (13)0.0586 (5)
O100.54164 (16)0.26798 (16)0.81780 (12)0.0416 (4)
H100.51340.17930.79620.062*
N170.60162 (19)0.71995 (18)0.84805 (13)0.0347 (4)
H170.50200.71340.81620.042*
C10.9828 (2)0.3083 (2)0.91759 (17)0.0388 (5)
C21.0957 (2)0.3841 (3)0.87499 (18)0.0448 (6)
H21.19320.39860.90280.054*
C31.0643 (2)0.4392 (3)0.79062 (19)0.0467 (6)
H31.14070.49140.76180.056*
C40.9191 (2)0.4169 (3)0.74858 (18)0.0421 (6)
H40.89920.45200.69040.050*
C50.8031 (2)0.3428 (2)0.79229 (16)0.0320 (5)
C60.8359 (2)0.2882 (2)0.87754 (16)0.0356 (5)
H60.75980.23810.90800.043*
C80.9107 (3)0.1785 (4)1.0477 (2)0.0814 (10)
H8A0.85800.09290.99550.122*
H8B0.84320.24081.07510.122*
H8C0.95400.15051.10540.122*
C90.6417 (2)0.3177 (2)0.74684 (16)0.0324 (5)
C110.6219 (2)0.2069 (2)0.63600 (17)0.0422 (6)
H11A0.69820.23980.59240.051*
H11B0.63650.11390.64480.051*
C120.4703 (3)0.1842 (3)0.5766 (2)0.0536 (7)
H12A0.46880.12040.50510.064*
H12B0.39430.13760.61420.064*
C130.4369 (3)0.3285 (3)0.56868 (19)0.0517 (7)
H13A0.33740.31250.53540.062*
H13B0.50600.36950.52380.062*
C140.4494 (2)0.4356 (2)0.67874 (17)0.0426 (6)
H14A0.37520.39760.72180.051*
H14B0.42950.52740.67110.051*
C150.6030 (2)0.4623 (2)0.73608 (15)0.0317 (5)
H150.67580.50410.69270.038*
C160.6174 (2)0.5690 (2)0.84660 (16)0.0364 (5)
H16A0.54250.53030.88890.044*
H16B0.71370.57430.88130.044*
C180.6123 (3)0.8113 (3)0.96057 (18)0.0555 (7)
H18A0.53950.76560.99970.083*
H18B0.59470.90590.96100.083*
H18C0.70970.82120.99360.083*
C190.7097 (3)0.7899 (3)0.7845 (2)0.0543 (7)
H19A0.80860.78770.80850.082*
H19B0.70030.88920.79370.082*
H19C0.69030.73790.71000.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0658 (4)0.0412 (4)0.0514 (4)0.0202 (3)0.0058 (3)0.0027 (3)
O270.0604 (12)0.0367 (10)0.1158 (16)0.0075 (9)0.0366 (11)0.0273 (10)
O280.0375 (9)0.0325 (9)0.0685 (10)0.0069 (7)0.0082 (8)0.0202 (8)
C200.0386 (12)0.0337 (12)0.0425 (12)0.0091 (10)0.0056 (10)0.0130 (10)
C210.0379 (12)0.0309 (12)0.0414 (12)0.0080 (10)0.0051 (10)0.0144 (9)
C220.0600 (16)0.0366 (14)0.0492 (14)0.0186 (12)0.0044 (12)0.0055 (11)
C230.0600 (17)0.0492 (16)0.0585 (15)0.0304 (13)0.0031 (13)0.0141 (13)
C240.0431 (14)0.0646 (18)0.0630 (16)0.0217 (13)0.0018 (12)0.0240 (14)
C250.0467 (15)0.0476 (15)0.0530 (14)0.0104 (12)0.0094 (12)0.0106 (11)
C260.0409 (13)0.0300 (13)0.0476 (13)0.0067 (11)0.0025 (11)0.0097 (10)
O70.0397 (10)0.0873 (14)0.0591 (10)0.0111 (9)0.0044 (8)0.0401 (10)
O100.0354 (9)0.0330 (9)0.0565 (9)0.0024 (7)0.0060 (7)0.0151 (7)
N170.0313 (10)0.0282 (10)0.0420 (10)0.0059 (8)0.0037 (8)0.0056 (8)
C10.0382 (13)0.0417 (13)0.0384 (12)0.0121 (10)0.0003 (10)0.0115 (10)
C20.0267 (11)0.0532 (15)0.0534 (14)0.0064 (11)0.0023 (10)0.0138 (11)
C30.0298 (12)0.0554 (16)0.0603 (15)0.0089 (11)0.0103 (11)0.0243 (12)
C40.0348 (13)0.0485 (15)0.0496 (13)0.0139 (11)0.0042 (11)0.0210 (11)
C50.0294 (11)0.0278 (11)0.0396 (12)0.0110 (9)0.0023 (9)0.0067 (9)
C60.0302 (11)0.0356 (13)0.0418 (12)0.0076 (9)0.0049 (10)0.0109 (10)
C80.0576 (18)0.117 (3)0.085 (2)0.0026 (18)0.0068 (16)0.067 (2)
C90.0275 (11)0.0291 (12)0.0419 (12)0.0063 (9)0.0036 (9)0.0113 (9)
C110.0432 (13)0.0329 (13)0.0483 (13)0.0134 (10)0.0031 (11)0.0035 (10)
C120.0529 (15)0.0395 (14)0.0580 (15)0.0116 (12)0.0144 (13)0.0053 (11)
C130.0447 (14)0.0484 (15)0.0557 (15)0.0150 (12)0.0189 (12)0.0009 (12)
C140.0369 (13)0.0363 (13)0.0532 (14)0.0147 (10)0.0067 (11)0.0049 (10)
C150.0285 (11)0.0296 (11)0.0363 (11)0.0072 (9)0.0017 (9)0.0073 (9)
C160.0371 (12)0.0302 (12)0.0437 (12)0.0109 (10)0.0008 (10)0.0105 (9)
C180.0679 (17)0.0428 (15)0.0488 (14)0.0193 (13)0.0081 (13)0.0047 (11)
C190.0479 (15)0.0417 (15)0.0737 (17)0.0018 (12)0.0085 (13)0.0209 (13)
Geometric parameters (Å, º) top
Cl1—C201.739 (2)C5—C61.390 (3)
O27—C261.234 (3)C5—C91.535 (3)
O28—C261.255 (3)C6—H60.9300
C20—C211.396 (3)C8—H8A0.9600
C20—C251.383 (3)C8—H8B0.9600
C21—C221.387 (3)C8—H8C0.9600
C21—C261.512 (3)C9—C111.538 (3)
C22—H220.9300C9—C151.548 (3)
C22—C231.375 (3)C11—H11A0.9700
C23—H230.9300C11—H11B0.9700
C23—C241.368 (4)C11—C121.526 (3)
C24—H240.9300C12—H12A0.9700
C24—C251.369 (3)C12—H12B0.9700
C25—H250.9300C12—C131.515 (3)
O7—C11.370 (3)C13—H13A0.9700
O7—C81.411 (3)C13—H13B0.9700
O10—H100.8200C13—C141.519 (3)
O10—C91.423 (2)C14—H14A0.9700
N17—H170.9800C14—H14B0.9700
N17—C161.493 (3)C14—C151.525 (3)
N17—C181.487 (3)C15—H150.9800
N17—C191.482 (3)C15—C161.520 (3)
C1—C21.367 (3)C16—H16A0.9700
C1—C61.395 (3)C16—H16B0.9700
C2—H20.9300C18—H18A0.9600
C2—C31.379 (3)C18—H18B0.9600
C3—H30.9300C18—H18C0.9600
C3—C41.386 (3)C19—H19A0.9600
C4—H40.9300C19—H19B0.9600
C4—C51.386 (3)C19—H19C0.9600
C21—C20—Cl1121.50 (17)O10—C9—C11111.22 (17)
C25—C20—Cl1117.08 (18)O10—C9—C15105.91 (16)
C25—C20—C21121.4 (2)C5—C9—C11108.63 (16)
C20—C21—C26124.04 (19)C5—C9—C15110.75 (16)
C22—C21—C20116.4 (2)C11—C9—C15109.63 (17)
C22—C21—C26119.52 (19)C9—C11—H11A108.8
C21—C22—H22118.8C9—C11—H11B108.8
C23—C22—C21122.4 (2)H11A—C11—H11B107.7
C23—C22—H22118.8C12—C11—C9113.94 (18)
C22—C23—H23120.2C12—C11—H11A108.8
C24—C23—C22119.6 (2)C12—C11—H11B108.8
C24—C23—H23120.2C11—C12—H12A109.5
C23—C24—H24119.9C11—C12—H12B109.5
C23—C24—C25120.2 (2)H12A—C12—H12B108.1
C25—C24—H24119.9C13—C12—C11110.77 (19)
C20—C25—H25120.0C13—C12—H12A109.5
C24—C25—C20120.0 (2)C13—C12—H12B109.5
C24—C25—H25120.0C12—C13—H13A109.4
O27—C26—O28124.8 (2)C12—C13—H13B109.4
O27—C26—C21118.5 (2)C12—C13—C14111.1 (2)
O28—C26—C21116.63 (19)H13A—C13—H13B108.0
C1—O7—C8118.02 (18)C14—C13—H13A109.4
C9—O10—H10109.5C14—C13—H13B109.4
C16—N17—H17107.5C13—C14—H14A109.3
C18—N17—H17107.5C13—C14—H14B109.3
C18—N17—C16109.97 (17)C13—C14—C15111.71 (18)
C19—N17—H17107.5H14A—C14—H14B107.9
C19—N17—C16113.29 (17)C15—C14—H14A109.3
C19—N17—C18110.81 (19)C15—C14—H14B109.3
O7—C1—C6123.4 (2)C9—C15—H15108.0
C2—C1—O7116.1 (2)C14—C15—C9111.10 (17)
C2—C1—C6120.5 (2)C14—C15—H15108.0
C1—C2—H2120.1C16—C15—C9109.16 (16)
C1—C2—C3119.7 (2)C16—C15—C14112.43 (17)
C3—C2—H2120.1C16—C15—H15108.0
C2—C3—H3119.9N17—C16—C15115.42 (17)
C2—C3—C4120.2 (2)N17—C16—H16A108.4
C4—C3—H3119.9N17—C16—H16B108.4
C3—C4—H4119.6C15—C16—H16A108.4
C3—C4—C5120.8 (2)C15—C16—H16B108.4
C5—C4—H4119.6H16A—C16—H16B107.5
C4—C5—C6118.54 (19)N17—C18—H18A109.5
C4—C5—C9121.37 (19)N17—C18—H18B109.5
C6—C5—C9120.08 (19)N17—C18—H18C109.5
C1—C6—H6119.9H18A—C18—H18B109.5
C5—C6—C1120.2 (2)H18A—C18—H18C109.5
C5—C6—H6119.9H18B—C18—H18C109.5
O7—C8—H8A109.5N17—C19—H19A109.5
O7—C8—H8B109.5N17—C19—H19B109.5
O7—C8—H8C109.5N17—C19—H19C109.5
H8A—C8—H8B109.5H19A—C19—H19B109.5
H8A—C8—H8C109.5H19A—C19—H19C109.5
H8B—C8—H8C109.5H19B—C19—H19C109.5
O10—C9—C5110.70 (17)
Cl1—C20—C21—C22177.46 (18)C4—C5—C9—O10167.60 (18)
Cl1—C20—C21—C263.5 (3)C4—C5—C9—C1170.0 (3)
Cl1—C20—C25—C24179.2 (2)C4—C5—C9—C1550.4 (3)
C20—C21—C22—C231.8 (4)C5—C9—C11—C12173.8 (2)
C20—C21—C26—O27143.1 (2)C5—C9—C15—C14173.22 (17)
C20—C21—C26—O2839.3 (3)C5—C9—C15—C1662.2 (2)
C21—C20—C25—C241.4 (4)C6—C1—C2—C31.1 (3)
C21—C22—C23—C241.8 (4)C6—C5—C9—O1013.8 (3)
C22—C21—C26—O2737.9 (3)C6—C5—C9—C11108.6 (2)
C22—C21—C26—O28139.7 (2)C6—C5—C9—C15130.95 (19)
C22—C23—C24—C250.1 (4)C8—O7—C1—C2178.2 (2)
C23—C24—C25—C201.5 (4)C8—O7—C1—C62.5 (3)
C25—C20—C21—C220.2 (3)C9—C5—C6—C1178.68 (18)
C25—C20—C21—C26178.8 (2)C9—C11—C12—C1353.9 (3)
C26—C21—C22—C23177.3 (2)C9—C15—C16—N17172.82 (16)
O7—C1—C2—C3178.3 (2)C11—C9—C15—C1453.4 (2)
O7—C1—C6—C5178.0 (2)C11—C9—C15—C16177.90 (18)
O10—C9—C11—C1264.1 (3)C11—C12—C13—C1455.0 (3)
O10—C9—C15—C1466.7 (2)C12—C13—C14—C1557.8 (3)
O10—C9—C15—C1657.8 (2)C13—C14—C15—C957.2 (3)
C1—C2—C3—C40.5 (4)C13—C14—C15—C16179.84 (19)
C2—C1—C6—C51.3 (3)C14—C15—C16—N1763.4 (2)
C2—C3—C4—C51.8 (3)C15—C9—C11—C1252.7 (3)
C3—C4—C5—C61.6 (3)C18—N17—C16—C15177.93 (18)
C3—C4—C5—C9179.80 (19)C19—N17—C16—C1557.5 (2)
C4—C5—C6—C10.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O10—H10···O27i0.821.922.721 (3)164
N17—H17···O280.981.662.619 (3)164
C14—H14B···O280.972.503.305 (3)140
C8—H8B···O28ii0.962.593.338 (4)135
C18—H18A···O10ii0.962.583.428 (4)148
C23—H23···Cg1iii0.932.663.546 (4)160
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+2; (iii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O10—H10···O27i0.821.922.721 (3)164
N17—H17···O280.981.662.619 (3)164
C14—H14B···O280.972.503.305 (3)140
C8—H8B···O28ii0.962.593.338 (4)135
C18—H18A···O10ii0.962.583.428 (4)148
C23—H23···Cg1iii0.932.663.546 (4)160
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+2; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H26NO2+·C7H4ClO2
Mr419.93
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.205 (6), 9.688 (7), 12.943 (9)
α, β, γ (°)104.871 (11), 91.465 (7), 100.983 (12)
V3)1091.8 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.47 × 0.46 × 0.23
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionMulti-scan
(NUMABS; Rigaku 1999)
Tmin, Tmax0.909, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
5644, 3759, 2737
Rint0.021
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.111, 1.03
No. of reflections3759
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: CrystalClear SM Expert (Rigaku, 2011), SHELXS1997 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), Mercury (Macrae et al., 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors thank the DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility. PN thanks Bharthi College, Maddur, for research facilities.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheshadri, S. N., Nagendra, P., Siddaraju, B. P., Hemakumar, K. H., Byrappa, K., Lokanath, N. K. & Madan Kumar, S. (2015). Acta Cryst. E71, o864–o865.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds