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PROPHESY, a technique for the reconstruction of surface-depth profiles from

X-ray photoelectron spectroscopy data, is introduced. The inversion metho-

dology is based on a Bayesian framework and primal-dual convex optimization.

The acquisition model is developed for several geometries representing

different sample types: plane (bulk sample), cylinder (liquid microjet) and

sphere (droplet). The methodology is tested and characterized with respect to

simulated data as a proof of concept. Possible limitations of the method due

to uncertainty in the attenuation length of the photo-emitted electron are

illustrated.

1. Introduction

Atmospheric aerosols affect Earth’s radiative balance by

absorbing and scattering solar radiation (direct aerosol

climate effect) as well as by modifying cloud properties as

nucleation seeds for cloud droplets (indirect aerosol climate

effects) (Ramanathan et al., 2001; Schulze et al., 2020).

Aerosols still constitute the major uncertainty in estimating

the global radiative climate forcing (Arias et al., 2021),

hindering the scientific understanding of climate change. Part

of the uncertainty is due to an incomplete understanding of

how liquid droplets interact with water and other gas-phase

chemicals present in the atmosphere (Heitto et al., 2022). The

interaction between the gas and condensed phase is mediated

by the droplet surface which governs the mass transfer

between phases. Droplet surfaces are chemically and physi-

cally distinct from the bulk and comprise a significant fraction

of the condensed atmospheric phases, due to the high surface

area to volume ratios (SA/V) of atmospheric droplets (Prisle

et al., 2010; Bzdek et al., 2020; Prisle, 2021; Lin et al., 2021). For

surface-active species, the reaction rate at the droplet surface

is the rate-limiting step for heterogeneous OH oxidation

reactions (Huang et al., 2018). Although considerable progress

has been achieved in the surface characterization of aqueous

systems, significant gaps remain, particularly in the unexplored

transition region between the surface and bulk.

Direct measurements of particle and aqueous surfaces of

atmospheric relevance have become possible with recent

developments in X-ray photoelectron spectroscopy (XPS).

While traditionally applied to solid state matter (Cardona &

Ley, 1978), improvements in ambient-pressure measurement

capabilities such as better analyzer pre-lenses, optimized

differential pumping and liquid microjet technology have

enabled XPS measurements on liquids, while the increased

photon flux at the latest generation of synchrotron radiation

facilities has allowed for measurements on dilute aqueous
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solutions of atmospheric relevance while targeting a wider

range of atmospherically relevant elements deeper below the

surface. Samples irradiated by X-rays emit photoelectrons

(PEs) due to the photoelectric effect. PE count rates are

recorded as a function of PE kinetic energy Ke, and the

location and intensities of peaks in the PE spectrum are used

to determine the identity and abundance of chemically

distinct species.

The attenuation of the PE signal is determined by the

quantity and nature of interactions that the PEs undergo

in the sample. These interactions can be classified as either

elastic or inelastic. The inelastic scattering in water is char-

acterized by the inelastic cross-section (Emfietzoglou, 2003;

Emfietzoglou et al., 2013) and is related to the inelastic mean

free path (IMFP) (Thürmer et al., 2013; Nguyen-Truong, 2018;

Suzuki et al., 2014; Ottosson et al., 2010). Similarly, the elec-

tron elastic scattering is determined by the elastic cross-

section (Shin et al., 2018; Triggiani et al., 2023) and is related to

the electron elastic mean free path (EMFP). Both EMFP and

IMFP depend on the kinetic energy of the photoelectron and

the transport medium, particularly water (Sinha & Antony,

2021). The numerical values for the IMFP and the EMFP are

still uncertain even for pure water (Nguyen-Truong, 2018;

Sinha & Antony, 2021). However, for Ke ranging from 200 to

2000 eV, predictions for the IMFP and the effective attenua-

tion length (EAL) align reasonably well with experimental

measurements (Nguyen-Truong, 2018; Sinha & Antony, 2021).

The PE signal decays exponentially with the depth of origin

of the PEs, which makes XPS a highly surface-sensitive

measurement technique.

XPS has been successfully applied for aqueous solutions in

the form of a liquid microjet (LJ) (Winter, 2009), with a high

curvature mimicking the geometry of droplets. This has been

used to investigate solutions of atmospherically relevant

concentrations and compounds such as alcohols (Walz et al.,

2015, 2016; Kirschner et al., 2021), amines (Ekholm et al., 2018;

Werner et al., 2018), carboxylic acids and carboxylates

(Ottosson et al., 2011, 2012; Prisle et al., 2012; Werner et al.,

2016, 2018; Ekholm et al., 2018), formaldehyde (Ottosson

et al., 2008) and various inorganic salts, including sodium

chloride, sodium sulfate, ammonium sulfate and ammonium

chloride (Winter, 2009; Prisle et al., 2012; Öhrwall et al., 2015).

These LJ XPS experiments have determined the surface-

specific compositions and molecular-level structures of

aqueous solutions with immediate atmospheric relevance.

Consistent with observations of atmospheric halogen chem-

istry (Braun et al., 2017), measurements of aqueous KBr and

KI solutions showed enhanced halide concentrations at the

surface (Ghosal et al., 2005). The surface propensities of C4–

C6 alcohols were found to vary with positional isomerism

(Walz et al., 2015, 2016) and the chain length of the straight

chain alcohols (Walz et al., 2016). XPS revealed by direct

observation that the protonation equilibria between atmo-

spheric organic acid/base conjugate pairs were significantly

shifted in favor of the neutral species in the aqueous surface

(Werner et al., 2018). Various organic acids, including decanoic

acid (Prisle et al., 2012), succinic acid (Werner et al., 2014),

propionic and octanoic acid (Öhrwall et al., 2015) and butyric

acid (Werner et al., 2018) were observed to be even further

enhanced at the surface in the presence of ammonium ions.

This could have large potential implications for heterogeneous

aerosol and cloud chemistry in the atmosphere, due to the high

pH sensitivity of many reactions involved (Pye et al., 2020).

To our knowledge, XPS measurements have not been

carried out directly on aqueous droplets of atmospheric

interest. Specific surface enhancement of certain species was

observed in free-flying water–salt clusters and dry, submicro-

metre aerosol particles. In solvated, sub-2 nm RbBr clusters,

bromide was found to reside closer to the cluster surface

than rubidium (Hautala et al., 2017), Mg2+ were found to be

strongly enriched at the surface of submicrometre aerosol

particles generated from solutions of MgBr2 and NaBr

mixtures, in contrast to particles generated from solutions

containing MgCl2 and CaCl2 mixtures (Pelimanni et al., 2022).

In submicrometre aerosols with inorganic composition meant

to mimic sea-salt aerosols, the surface enhancement of

magnesium has been found to depend both on the size of the

aerosol particle and the type of organic species in the particle

(Patanen et al., 2022). Measurements on mixtures of artificial

sea salt and acetic acid as free-flying, dried particles suggest

the formation of a core-shell structure (Unger et al., 2020),

which differs from the observations with electron microscopy

on analogous particles deposited on hygroscopic substrates

(Ault et al., 2013; Chi et al., 2015). XPS measurements have

provided evidence of water-mediated chemical changes at the

surfaces of submicrometre nanoparticles composed of pure

NaCl, malonic acid or sucrose, deposited onto a substrate

below the respective particle deliquescence points (Lin et

al., 2021).

Direct, surface-sensitive measurements such as XPS are

necessary to independently validate modeling approaches to

estimate the surface composition of aqueous droplets. Several

thermodynamic models have been developed to describe bulk/

surface partitioning of solutes in atmospheric models. They

can be broadly classified according to the equation of state

employed to relate thermodynamic variables and the treat-

ment of the surface as an idealized Gibbs dividing surface or

a finite mono- or multi-layer (Malila & Prisle, 2018). Recent

efforts have also included the effects of the formation of

aggregate structures such as micelles on droplet surface

properties (Calderón & Prisle, 2021). Vepsäläinen et al. (2022)

have compared the most commonly used thermodynamic

surface frameworks and found large differences in their

predicted cloud droplet forming potential of surface active

particles. So far, the applicability of these thermodynamic

models has been limited by the availability of experimental

parameters on relevant systems needed to constrain the

models (Prisle, 2021).

Molecular dynamics (MD) approaches have been utilized in

conjunction with XPS experiments to estimate the composi-

tion of aqueous surfaces of atmospheric interest, including

inorganic species such as NaI (Ottosson et al., 2010), bromine

(Gladich et al., 2020), potassium fluoride (Brown et al., 2008)

and organic species such as pentanol (Walz et al., 2015, 2016),

research papers

942 Matthew Ozon et al. � PROPHESY inversion model for XPS depth profiles J. Synchrotron Rad. (2023). 30, 941–961



mixtures of butyric acid and n-hexyl amine (Werner et al.,

2018), orcinol and resorcinol (Yang et al., 2022), oleic and

stearic acid (Stewart et al., 2022), octanoic acid and sodium

octanoate (Dupuy et al., 2022) and tetrabutylammonium

iodide (Winter et al., 2004). Small particles of atmospherically

relevant size and composition (organic and inorganic

compounds) have been simulated to reveal several types

of surface enrichment (Karadima et al., 2017, 2019). XPS

measurement for aqueous solutions similar to those simulated

can then be used to validate MD simulated depth profiles.

However, for realistic atmospheric aerosols, potentially made

up of more than thousands of organic compounds (Donahue et

al., 2011), MD simulations are computationally intense and

difficult to perform. Furthermore, parameterizations neces-

sary to describe the molecular interactions in the system,

especially for atmospherically relevant multicomponent solu-

tions, are typically not available.

The depth into the solution where the transition from

surface to bulk chemistry occurs is key to further increasing

our understanding of atmospheric aqueous surfaces. This

requires knowledge of the radial density profiles of species

that have a depth distribution different from that of the water.

For most aqueous solutions containing multiple species, it is

currently not known whether the observed surface enhance-

ment is due to differences in the density profiles of the various

species or competition for limited surface sites between

species with different surface propensities (Prisle et al., 2012;

Werner et al., 2014, 2018; Öhrwall et al., 2015). It is possible to

derive relative density profiles using angular-resolved XPS, as

demonstrated for solutions containing environmental organic

compounds (Dupuy et al., 2022, 2023), and in particular

organosulfates (Lewis et al., 2019). For these mixtures, the

relative surface abundances of co-solutes observed with XPS

was found to originate from different peak intensity, rather

than peak depth, of the radial density profiles with respect to

the surface. Unfortunately, these angular-resolved measure-

ments are prohibitively time-consuming for the characteriza-

tion of a wide range of systems. Depth profiles were obtained

for alkali halides in aqueous solutions by changing the X-ray

photon energy to yield PEs originating from either the

aqueous surface or bulk (Ghosal et al., 2005; Ottosson et al.,

2010), but required additional ion density profiles from MD

simulations (Dupuy et al., 2021).

For thin liquid films, inversion methods for angular-resolved

XPS data have been devised based on regularized least-

squares using relative intensity ratios (Eschen et al., 1995;

Baschenko, 1991), and applied to determine the behavior of

ternary systems (Pohl et al., 2013). There, the method gener-

ates possible concentration profiles with the genetic algorithm.

The measurement model is discretized in layers assuming

piecewise constant concentration in each layer. For solids, one

inversion methodology relies on inverting the Laplace trans-

form using a series of homogeneous layers (Bussing &

Holloway, 1985) where the ill-posedness of the reconstruction

problem is emphasized. This means that many profiles give

rise to the same data. The measured data, normalized peak

area, must meet criteria so that depth profiles can be recon-

structed. Depth profiling can only be carried out if the

normalized peak area is monotonically increasing with respect

to the attenuation length (Roberts et al., 2009). The metho-

dology was improved by introducing a maximum entropy

method relying on the Bayesian framework (Macak, 2011;

Smith & Livesey, 1992). The estimated signals satisfy several

criteria, including data fidelity (the difference between the

measurement and the theoretical prediction using the estimate

and the measurement model) and the maximum entropy

principle. Other methods based on the Bayesian framework

have been developed for the angle-resolved XPS data

acquired for solid samples (Paynter, 2009; Livesey & Smith,

1994; Szklarczyk et al., 2017). Related works for analyzing the

surface depth composition of solid matter using XPS or Auger

electron spectroscopy have been devised (Tougaard, 2021).

Other experimental setups have been used for studying thin

film liquid samples such as those in formamide solution (Wang

& Andersson, 2011; Wang & Morgner, 2011) and ethylene

glycol (Baschenko et al., 1993), with different constraints and

optimization algorithms used for reconstruction. The preva-

lent approach does not directly reconstruct the depth profile

but instead simulates profiles that are consistent with the

experimental data using MD. Depth profiling for bulk liquid

samples, therefore, remains an open question, in particular for

atmospherically relevant aqueous organic solutions.

Here, we introduce PROPHESY (Ozon et al., 2023a), a

method for the reconstruction of absolute, quantitative and

non-isotropic concentration depth profiles using experimental

XPS data. The framework is based on Bayesian inversion and

requires the raw spectra, peak areas, effective attenuation

length of the PEs and the geometry of the sample (such as

sample radius and height of the illuminated area), as well

as the typical experimental conditions, including photon flux,

transmission function, sample bulk concentration, elemental

total cross-section and alignment parameter. We first intro-

duce the measurement model in Section 2 and detail the

assumptions. In Section 3 we present the optimization model

and the numerical details. The results of numerical experi-

ments are described in Section 4, in Section 5 we discuss the

assumptions and the potential limitations of the model, and we

conclude with highlights of the work in Section 6.

2. Forward modeling

2.1. Introduction of the model

A sketch of an XPS experiment (Winter & Faubel, 2006) is

depicted in Fig. 1 where the fundamental components are the

photon beam (the light), the probed sample (producing the

electron flux) and the measurement device (the kinetic energy

analyzer) (Roy & Tremblay, 1990).

The probing light is characterized by a photon flux density

profile (Fedoseenko et al., 2003; Kachel, 2016), a vector

potential (Meis, 2014) and an energy whose spread defines the

quality of the monochromaticity. The interaction between the

beam and the matter generates a PE flux. The signal from the

sample is represented using the Beer–Lambert (Paynter, 1981)
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model integrated over the volume of the sample �V where

the signal is proportional to the local concentration �(M) of

effective emitters and attenuated along its way in the sample

by all the species in the solution with concentration �tot(M).

In the Beer–Lambert attenuation model for XPS, the char-

acteristic length, which we assumed to be the effective

attenuation length �e [m], strongly depends on the kinetic

energy Ke [eV] (Suzuki et al., 2014; Thürmer et al., 2013;

Ottosson et al., 2010). The values of the EAL are not precisely

known even for pure water (Suzuki et al., 2014; Nguyen-

Truong, 2018; Sinha & Antony, 2021), and the values reported

by Garcia-Molina et al. (2017) and Tanuma et al. (1994)

suggest that they depend on the composition of the sample.

We consider the case of a dilute solution for which the

attenuation is governed by the solvent, and we consider that

even at the interface the EAL is that of the solvent. This

assumption introduces modeling errors, especially for samples

with strong surface-enhanced species; however, we believe

that the model captures the predominant phenomena gener-

ating the PE signal and we discuss this assumption in Section 5.

The PE signal measured by the kinetic energy analyzer (Wicks

& Ingle, 2009) is represented by the half-circle shape in Fig. 1.

In a simplified approximation, the portion of a PE signal for a

given kinetic energy Kk
e‘

is a weighted sum of the signal around

the predefined Kk
e‘

of the measurement (Popović et al., 2017).

The weight function ’ k
‘ is often termed the point spread

function or efficiency of the device. The analyzer has a limited

spatial extent, and therefore the PEs in a given solid angle can

be detected. The quantity of such PEs is determined by the

differential photoionization cross-section density (Cooper,

1962; Manson & Cooper, 1968) ��(�, Ke, �) [m2 eV�1

sterad�1], a function determined by the initial �i, N and final

�f , N states of the system, e.g. a carbon atom, where the initial

state has only bounded electrons and the final state has one

free electron. The cross-section ��(�, Ke, �) depends on the

energy h� [eV] of the exciting photon, the kinetic energy Ke of

the emitted electron, the angular direction (�, see Fig. 1) of

emission relative to the polarization vector of the light and the

considered elemental orbital �, e.g. � = C 1s. The kinetic

energy spread of ��(�, Ke, �) depends on the central element

(Yeh & Lindau, 1985), in the case of aqueous organic mixtures,

e.g. C, O, etc, as well as on the core-hole lifetime (Nicolas &

Miron, 2012; Ohno & van Riessen, 2003) and its environment

(Toffoli et al., 2007), e.g. neighboring atoms and electrons.

The photoionization cross-section (Cooper, 1962; Manson

& Cooper, 1968; Hüfner, 2003) depends on the interaction

potential � [eV] in the Hamiltonian, which is a perturbation

approximated as first order in the vector potential A [V s m�1]

(see Fig. 1). The cross-section also depends on the electronic

configuration (Hüfner, 2003) and the non-central nature of

the resulting potential making the eigenvalues of the system

spread around preferred values. The environment of the

electron determines the shape of the cross-section and shifts

relative to well defined elemental (isolated element) binding

energies (Patanen et al., 2013) which are observed experi-

mentally (Werner et al., 2018; Öhrwall et al., 2015; Lin et al.,

2021). The oscillation observed in the total photoionization

cross-section ��(�) in relation to the photon energy (Björne-

holm et al., 2014; Söderström et al., 2012; Mårtensson et al.,

2013; Travnikova et al., 2019) cannot be predicted through

the elemental calculation alone (Yeh & Lindau, 1985).

This granularity can only be simulated by considering the

element environment, such as the neighboring atoms within

a molecule.

The total differential photoionization cross-section ��(�, �)

[m2 sterad�1] represents the sum of the density ��(�, Ke, �)

over the kinetic energy space and exhibits a dependence on

the angle � between the polarization vector of the light and the

direction of the emitted PEs (Seabra et al., 2005). In the dipole

approximation, the angular dependence is determined by

the asymmetry factors (Seabra et al., 2005; Winter & Faubel,

2006; Yeh & Lindau, 1985). At the so-called magic angle,

arccosð1=
ffiffiffi
3
p
Þ ’ 54.7, the dipole approximation becomes

independent of the asymmetry factors (Ottosson et al., 2010;

Thürmer et al., 2013).

research papers

944 Matthew Ozon et al. � PROPHESY inversion model for XPS depth profiles J. Synchrotron Rad. (2023). 30, 941–961

Figure 1
Sketch of the principles of an XPS experiment. A target is irradiated by a
photon beam, some of which interacts with matter. From the interaction,
PEs are being emitted in every direction following a probability
distribution defined by the photoionization cross-section. The cross-
section is defined from the initial �i, N and final �f, N states of the system
made up of the molecules containing the element under investigation.
The notation (Hüfner, 2003) implies that the system has N bounded
electrons before the interaction with the photon and N � 1 after. The
state of the photoelectron before the interaction ’ 1s

i is bounded and after
interaction ’Ke

i is free with kinetic energy Ke. Only one photoelectron
is emitted at a time per molecule. The portion of PEs emitted in the
direction of the aperture can be detected by the kinetic energy analyzer.
The kinetic energy interval covered by the analyzer depends on the
targeted element and the energy of the photon, and it is limited compared
with the energy range of all possible PEs.



The multi-electron wavefunction (�i, N and �f, N) depends

on the momentum and the potential energy determined by the

local environment. The environment can range from a simple

setup such as an isolated atom to a more intricate system like

a molecule. The complexity of the surroundings is responsible

for the kinetic energy spread. In the case of an isolated atom,

the binding energies are sharply distributed, i.e. almost

quantized if the core-hole lifetime is negligible (Nicolas &

Miron, 2012; Ohno & van Riessen, 2003). The difference

between the photon energy h� and the kinetic energy Ke of the

PE is the binding energy. However, in a more complex system,

the binding energies, which are negative eigenvalues of the

Hamiltonian, cover ranges of energy around the discrete

values of each elemental species found in the system.

2.2. Signal of interest: mathematical representation

We model the PE J(�, Ke) [electron s�1] signal emerging

from the sample and reaching the aperture of a spectrometer

using the model from Ozon et al. (2023b),

Jð�;KeÞ ¼ �ð�ÞFð�Þ ��ð�;KeÞ

Z
�V

�ðMÞ

� exp �

Z 	max

0

�tot Msð	Þ
� �

�0�eðKeÞ
d	

� �
dV: ð1Þ

where �(�) [m�2] is the alignment parameter (Ozon et al.,

2023b), F(�) [photon s�1] is the total photon flux at frequency

� [s�1], ��(�, Ke) [m2 eV�1] is the photoionization cross-

section density for a photoelectron with kinetic energy Ke [eV]

(Toffoli et al., 2007; Nicolas & Miron, 2012; Ohno & van

Riessen, 2003) and �(M) [m�3] is the concentration of the

target orbital at the location M in the sample volume �V. The

attenuation of the PE signal is modeled with the exponential

term. In this model, the attenuation occurs along the straight

line parameterized with Ms(	) between M = Ms(0) and the

point P = Msð	maxÞ at the aperture of the spectrometer (	max =

kMPk [m]), and is assumed linear with the distance traveled

by the PEs. The signal attenuation is characterized by the

attenuation length �e(Ke) [m] and by the total concentration

�tot [m�3] whose bulk concentration is �0 [m�3]. We refer to

the integral over the volume of the sample �V as the

geometry factor and denote it H(�, �e).

The alignment parameter � [m�2] mostly accounts for the

non-uniformity of the photon beam profile and attenuation of

the photon flux in the sample volume �V, hence this model is

equivalent to explicitly modeling the photon beam profile. The

parameter � can be interpreted as an average probability

density of interaction between the photon beam and the

sample.

The attenuation length in this model is the EAL which

includes the contributions of elastic and inelastic scattering

(Nguyen-Truong, 2018; Suzuki et al., 2014; Ottosson et al.,

2010). The EAL is a quantity that is not straightforward to

determine either theoretically or experimentally which is a

source of uncertainty for the model. The uncertainty in the

EAL is in part the motivation for quantifying the errors

introduced by the lack of certitude in the EAL. We implicitly

assume that the attenuation of the PE signal is governed by

the solvent, e.g. water, and that it is constant across the sample,

i.e. the scattering properties do not depend on the spatial

location in the sample. This assumption is also a source of

uncertainty, especially in the case of concentrated solutions

and strongly surface-active substances. We choose to remain in

the case for which the total concentration �tot is, in absolute

terms, predominantly that of the solvent. This is motivated

by the fact that for dilute solutions the expected surface

enhancement obtained from MD simulations is still small

compared with the solvent (Werner et al., 2014; Minofar et al.,

2007; Mahiuddin et al., 2008). For instance, in an aqueous

solution with a dilute solute at 0.2 M, assuming surface

enhancement by a factor of ten, the peak concentration is 2 M,

which is still small compared with the solvent concentration.

We believe that a model driven by solvent attenuation can still

yield relevant information. When this assumption fails, the

model must be modified. We propose a resistive model

involving only bulk attenuation lengths in the discussion. The

following simplification assumptions were made to formulate

the model equation (1): (i) the photon beam profile is uniform

and non-attenuated across the sample, (ii) the sample is

observed at the magic angle, (iii) the light is monochromatic

and linearly polarized, and (iv) attenuation governed by

the solvent and the attenuation length is constant across

the sample.

The PE signal from samples with spherical or cylindrical

geometry (nano-particles/droplets or LJ) is more surface-

sensitive compared with the planar case. It is important to

consider the geometry of the sample in the model. We show

that using the averaged mean escape depth for non-planar

geometry does not reflect the modification in the PE signal; in

fact, the compensation is more subtle. The focus of the rest of

this section is the determination of the attenuation integralR 	max

0 f�tot½Msð	Þ�/½�0�eðKeÞ�g d	, in particular the limit
�		 � 	max of the parameter of Ms. We assume that the total

concentration profile can be approximated by

�totðMÞ ¼
�0

1þ exp dðMÞ=�r

� � ; ð2Þ

where d(M) is the signed distance to the surface and �r is the

characteristic transition length associated with the sample. The

value �r determines the thickness of the transition volume,

and in practice the integration domain �V is limited to the

region of space where the distance dðMÞ � 
�r is within


 2 [0, 10]. In the limit case, �r ! 0, the volume has sharp

edges, i.e. the total concentration inside [dðMÞ � 0] the

volume is constant at �0 and 0 outside [d(M) > 0] the volume.

In this case, the integral
R 	max

0 f�tot½Msð	Þ�=�0g d	 is the distance

a photoelectron travels in the sample before leaving the

interface towards the analyzer.

Considering any point M = (xM, yM, zM) in the liquid and

any point P = (x0, y0, z0) outside of the liquid, the straight line

joining M to P can be parameterized as
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MsðsÞ ¼

xðsÞ

yðsÞ

zðsÞ

0
@

1
A ¼ s sin! cos�þ xM

s sin �þ yM

s cos! cos �þ zM

0
@

1
A ¼

s x0�xM

	max
þ xM

s y0�yM

	max
þ yM

s z0�zM

	max
þ zM

0
BB@

1
CCA
ð3Þ

where the direction angles ! and � are depicted in Fig. 2 and

s [m] is the parameter of the curve that represents the signed

distance from point M. The angle ! is between the z-axis and

the projection MP onto the plane zOx, and � is taken as the

angle between the plane zOx and MP.

2.2.1. Planar and linear sample. In the planar case, the

sample is located in the semi-infinite volume defined by the

equation z � 
�r. Because the intensity is exponentially

attenuated with the distance, most of the PE signal is coming

from the surface layers, such that �V can be reduced to the

region of space z 2 [�q�e, 
�r] with q � 10. The depth

function is directly d [Ms(s)] = z(s) from equation (3). Hence,

the planar model is

Hð�; �eÞ ¼

Z1
�1

Z1
�1

Z
�r

�q�e

�ðx; y; zÞ

� exp �

Z �		

0

�tot Msð	Þ
� �

�0�eðKeÞ
d	

� �
dz dy dx; ð4Þ

with �		ðx; y; zÞ = ð
�r � zÞ=ðcos! cos�Þ. Note that cos! cos �
> 0 if the analyzer is not located in the sample. Further, if the

illuminated area is pointwise, i.e. the photon beam profile

[see Section 1 of the supporting information (SI)] f ðx; y; zÞ =

�ð~xx� xÞ �ð ~yy� yÞ and z0 � 10�e, then cos! cos� ’
f1þ ½ðx� x0Þ

2
þ ð y� y0Þ

2
�=z2

0g
�1=2 is constant over the

surface layer and the model is

Hð�; �eÞ ¼

Z
�r

�q�e

� ~xx; ~yy; zð Þ exp �

Z �		

0

�tot Msð	Þ
� �

�0�eðKeÞ
d	

� �
dz: ð5Þ

In the limit case, the sharp edge model (�r! 0), the model

simplifies further and the signal takes its usual form,

Hð�; �eÞ ¼

Z0

�q�e

� ~xx; ~yy; zð Þ ð6Þ

exp
z

�eðKeÞ
1þ
ðx0 � ~xxÞ2 þ ðy0 � ~yyÞ2

z2
0

� �1=2
( )

dz;

which we refer to as the pointwise model.

2.2.2. Microjet: cylinder approximation. The cylindrical

geometry is shown in Fig. 2. The influence of the cylindrical

geometry on the apparent PE attenuation length and further

interpretation of XPS data has been rarely addressed (Olivieri

et al., 2017; Dupuy et al., 2021). The attenuation length �e is

determined by the kinetic energy of the PE; however, the

probed depth, or apparent attenuation length, depends on the

attenuation length �e as well as the geometry of the sample.

The propagation direction of the photon beam defines the

z-axis, the axis of symmetry of the LJ defines the y-axis, and

the x-axis is along the polarization vector supposed to be

orthogonal to both other axes. The depth function for the

total concentration profile is d [Ms(s)] = [x2(s) + z2(s)]1/2
� 0,

with the parameterized coordinates from equation (3). The

distance �		 ðr; �; yÞ can be found by seeking the intersections

between the trajectory and the surface of the cylinder

r = 0 + 
�r . By definition of the parameter s, the distance is

the positive root of the polynomial,

0 þ 
�rð Þ
2
¼ xðsÞ2 þ zðsÞ2; ð7Þ

where 0 is the radius of the LJ. Using the canonical polar

coordinates, the distance is

�		 ðr; �; yÞ ¼ ð8Þ

max
a2 f1;2g

r cosð� � !Þ þ ð�1Þa ð0 þ 
�rÞ
2
� r2 sin2

ð� � !Þ
� �1=2

cos�
:

In the extreme case R0 � 0, i.e. ! ’ �0, and R0 � jy0 � yj,

i.e. � ’ 0, the distance simplifies to

�		 ðr; �; yÞ ¼ � r cosð� � �0Þ

þ ð0 þ 
�rÞ
2
� r2 sin2

ð� � �0Þ
� �1=2

: ð9Þ

Then, it is necessary to define the integration domain �V. In

polar coordinates, the whole cylinder including the smooth

transition layer would be �V = ½0; 0 þ 
�r� � ½0; 2�� �
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Figure 2
Visual sketch of the cylindrical model. The sample is represented by the
section of the cylinder irradiated by the beam. Point M is located in the
sample and point P is on the aperture of the lens of the analyzer. The
angular direction (in spherical coordinates) of the line joining M and P is
depicted in the two 2D projections. The complementary polar angle is
denoted � and the azimuthal angle is !. The radial distance R0 is the
projection of the distance between P and the origin O. If the radius of the
sample 0 is such that R0 � 0, then the distance MP is nearly constant.



½ymid � ðLc=2Þ; ymid þ ðLc=2Þ� with Lc the height of the illu-

minated area and ymid its mid-level. The domain can be

reduced because only the near-surface layers contribute

significantly to the signal similarly to the planar case, and only

the side exposed to the analyzer. Indeed, at the surface, the

signal is not attenuated [expð�0=�eÞ = 1], while deeper in the

sample volume the attenuation in strong [expð�q�e=�e) =

expð�qÞ � 1 for q > 2]. Hence, the integration domain

becomes �V = ½0 � q�e; 0 þ 
�r� � ½�0 � ð�=2Þ, �0 þ ð�=2Þ�

� ½ymid � ðLc=2Þ; ymid þ ðLc=2Þ�, where the polar angle domain

is to be interpreted modulo 2�. Assuming that the concen-

tration � is invariant along the y-axis and also independent

of � (due to symmetry), one can write �(x, y, z) = �(r). The

concentration being invariant along the y-axis on the LJ

segment used for the measurement, about 5 mm downstream

from the nozzle, can be attributed to the aqueous surface

stabilizing fast after forming. Using these assumptions, the

acquisition model becomes

Hð�; �eÞ ¼

Zymidþ
L
2

ymid�
L
2

Z�0þ
�
2

�0�
�
2

Z0

0� q�e

r�ðrÞ exp �

Z �		

0

�tot Msð	Þ
� �

�0�e Keð Þ
d	

� �

� dr d� dy: ð10Þ

Note that the multiplication by r comes from the definition of

the infinitesimal volume in polar coordinates dV = rdrd�dy.

Fig. 3(a) shows that the portion of the sample directly facing

the analyzer (� = �0, y = y0) will produce the signal that comes

from the deepest layer of the surface, while the part of the

sample which is at an angle will only give information from the

top layer. This means that, in the cylinder geometry of the

sample, the PE signal is more sensitive to the topmost layer

than the deepest layer. Therefore, the apparent probed depth

is smaller than the attenuation length and it increases with

the radius of the cylinder. As a consequence, the information

carried by the signal is mostly coming from the near-

surface layers.

Figure 3(b) shows the depth discretization of the geometry

factor H(�, �e) for a uniform illumination [ f(r, �, y) constant]

plotted against depth for the attenuation length �e = 2 nm

in three different cases and for the attenuation length �e ’

0.63 � 2 = 1.26 nm corresponding to the average mean escape

depth of the geometry (Winter & Faubel, 2006; Dupuy et al.,

2021). The pointwise model described in Section 2.2.1 is

plotted in blue and in red for the attenuation lengths 2 nm and

1.26 nm, respectively. Two cases for the cylinder model are

plotted in green and in orange, sharp (�r = 0 nm) and smooth

(�r = 0.5 nm) edges, respectively. The difference between the

cases emphasizes the variation in depth-resolved information

obtained from the measurements, even with the same

attenuation length of the PE signal. Comparing the pointwise

model and the cylinder model under the sharp-edge approx-

imation shows that using the pointwise model to interpret

data from a cylindrical sample will lead to an incorrect inter-

pretation of the probing depth that the PE signal comes from,

potentially hindering the reconstruction of the concentration

profile �. Similarly, using the pointwise model with the average

mean escape depth (red curve) does not seem to improve the

model, rather it seems to underestimate the depth of origin of

the PE signal. The reported values for the EAL given by

Suzuki et al. (2014) for the cylinder geometry use the correc-

tion factor, leading to an underestimated EAL. The compar-

ison between the sharp and smooth edge approximations of

the cylinder model shows that a substantial amount of the

PE signal originating from the region of space immediately

outside the sharp edge delineation surface is not attenuated

in the sharp edge approximation. This,

if the smooth-edge approximation is

to be held as a better description of

the liquid–air interface, implies that

the sharp-edge model overestimates the

signal originating from outside the

surface, and hence underestimates

the signal emitted inside the sample.

However, both approximations for the

cylinder model agree on the relative

amount of the PE signal emanating

from deep in the sample d(M) < �e.

Overall, the models are not equivalent;

in particular, the pointwise model

should not be used for quantitative data

analysis of LJ data. This remark is also

valid for planar samples if the illumi-

nation is not pointwise, but the effects

are less pronounced.

2.2.3. Particle and droplet: sphere
approximation. Although no direct XPS

measurements on the atmospherically

relevant droplets were reported to date,

the possibility of the appearance of such
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Figure 3
(a) Gain of the acquisition model in the near-surface region of the cylinder model with the device
set at the magic angle: device far from the sample (R0 > 1000). The center of the plot in panel (a) is
not the center of the cylinder, the near-surface area has been stretched to emphasize the surface
sensitivity of the gain. (b) Cylinder geometry factor with respect to depth for a uniform illumination
( f constant): in blue the pointwise model with sharp edge approximation and attenuation length �e =
2 nm, in green and in orange the cylinder model with the same attenuation length using the sharp
and smooth edge approximations, respectively, and in red the pointwise model with the attenuation
length replaced with the average mean escape depth ’ 0.63�e (Winter & Faubel, 2006; Dupuy et
al., 2021).



experimental stands in the future cannot be ruled out. Here

we consider the spherical sample geometry case most closely

resembling atmospheric aerosol particles and droplets. The

size of the particle or droplet, e.g. nano or micro, is not rele-

vant for the model; however, it does matter for the application

(Patanen et al., 2022).

We use the spherical coordinate to describe the location of

point M in the frame of the particle/droplet,

x

y

z

0
@

1
A ¼ r sin � sin�

r cos �
r cos � sin�

0
@

1
A; ð11Þ

where the azimuth � is the same as in polar coordinates and

� is the polar angle between Oy and OM. Let � be the angle

between MP and OM. Using the same notation as in the

cylindrical case, one has

cos � ¼ sin� cos� cosð� � !Þ þ cos� sin �; ð12Þ

and the distance becomes

�		ðr; �; �Þ ¼ �r cos � þ 0 þ 
�rð Þ
2
� r2 sin2 �

� �1=2
; ð13Þ

and the depth function is d [Ms(s)] = ||Ms(s)|| � 0.

The integration domain �V = [0, 0 + 
�r] � [0, 2�] �

[0, �] reduces to �V = ½0 � q�e, 0 + 
�r� � ½�0 � ð�=2Þ,

�0 + ð�=2Þ� � ½�0 � �ð�Þ, �0 + �ð�Þ]; the polar angle must be

parameterized with the azimuth �. The angle domains must

account for the definition domains, i.e. the azimuth is modulo

2� and the polar angle is in [0, �] which involves potential

axial symmetry, in turn modifying the azimuth, hence the

parameterization of the polar angle depends on the azimuth.

The infinitesimal volume in spherical coordinates is dV =

r2 sin� dr d� d�, then,

Hð�; �eÞ ¼

Z�0þ
�
2

�0�
�
2

Z�0þ�ð�Þ

�0��ð�Þ

Z0

0� q�e

r2 sin��ðrÞ ð14Þ

� exp �

Z �		

0

�tot Msð	Þ
� �

�0�eðKeÞ
d	

� �
dr d� d�:

Figure 4(a) shows the geometry factor described in equation

(14) with a uniform illumination [ f(r, �, �) constant] and

Fig. 4(b) shows the gain with respect to depth for a sphere of

diameter 20 mm and attenuation length �e = 2 nm. Overall, the

sphere model is similar to the cylinder model; however, the PE

signal is even more surface sensitive than its cylinder coun-

terpart. The green and orange curves in Fig. 4(b) represent

the sphere geometry factors, with sharp and smooth edge

approximation, respectively, which is decreasing faster with

respect to depth than the pointwise (and cylinder) model.

Similarly to the cylinder model, the sharp-edge model over-

estimates the signal originating from outside the limit of the

sample [d(M) > 0] compared with the smooth-edge model.

However, both approximations lead to very similar models of

the signal emanating from the depth below �3 nm. The blue

and red curves both show the pointwise model, respectively,

for the same attenuation length �e = 2 nm as the sphere model

and for the average mean escape depth �e ’ 0.41 � 2 =

0.82 nm. Neither pointwise model is a good approximation for

the sphere model. The blue curve is above the green curve at

depths in the interval [�3, 0], overestimating the signal

originating from these depths. The red curve overcompensates

the exacerbation of the surface sensitivity of spherical samples

in the range [�6, 0]. Hence, neither pointwise model should be

used for quantitative data interpretation of spherical samples.

The probed depth for spherical geometry is even smaller

than that of the cylindrical case, making it less favorable

for density profile reconstruction. How-

ever, the model does not account for the

effect of curvature on the density of

water at the interface. For the same bulk

solution, the transition length �r may

be different between a cylindrical and

spherical sample. The lower density of

water at the interface implies a smaller

attenuation, which may counterbalance

the loss of the PE signal in small

samples such as nanodroplets. The

water density at the liquid–air interface

depends on the size of the liquid

particle.

2.3. Analyzer

In the XPS experiment, the kinetic

energy analyzer measures a fraction of

the PE signal in equation (1) for L

predefined kinetic energies ðKk
e‘
Þ1� ‘�L.

The resolution of the device is finite,

and, for a given kinetic energy, neigh-

boring energies contribute to the
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Figure 4
(a) Gain of the acquisition model in the near-surface region of the spherical model with the device
set at the magic angle: device far from the sample (R0 > 1000). The center of the plot in panel (a) is
not the center of the sphere, the near-surface area has been stretched to emphasize the surface
sensitivity of the gain. (b) Sphere geometry factor with respect to depth in the case of uniform
illumination ( f constant): in blue the pointwise model with sharp edge approximation and
attenuation length �e = 2 nm, in green and in orange the sphere model with the same attenuation
length using the sharp and smooth edge approximations, respectively, and in red the pointwise
model with the attenuation length replaced with the average mean escape depth’ 0.41�e (Winter &
Faubel, 2006; Dupuy et al., 2021).



measurement which is well approximated by convolution with

an efficiency function ’ k
‘ (Popović et al., 2017; Dupuy et al.,

2021). The expected measurement is

Ið�k;Kk
e‘
Þ ¼

Z
�

k;�
Ke

’ k
‘ Keð Þ�k Fð�kÞ ��ð�k;KeÞH �; �eðKeÞ

� �
dKe;

ð15Þ

where �k = �(�k) and � k;�
Ke

is the kinetic energy interval that

covers the support of the photoionization cross-section density

��(�k, Ke). In the most simplistic approximation the spectral

blurring effect of the kinetic energy analyzer can be modeled

by a rectangle efficiency function with height Tk [s] and width

�Tk
[eV] as depicted in Fig. 1. More realistic efficiency func-

tions (e.g. Gaussian kernel) can be considered; however, this

is beyond the scope of this work, and the conclusion is not

affected by the choice of efficiency functions. We consider a

kinetic energy width �Tk
of the same order of magnitude as

the distance �Ke
[eV] between two consecutive elements of

the collection ðKk
e‘
Þ1� ‘�L. Furthermore, we assume that the

efficiency function ’ k
‘ is sufficiently narrow (�Tk

� 0:1 eV)

compared with the signal (width ’ 1 eV), i.e.

�(�k, Ke)H [�, �e(Ke)] does not vary much over a kinetic

energy range of length �Tk
(see SI Section 2.2 for technical

details). Therefore the approximate measurement model

becomes

Ið�k;K k
e‘
Þ ’ �kTk�Tk

Fð�kÞ ��ð�k;K k
e‘
ÞH �; �eðK

k
e‘
Þ

h i
; ð16Þ

where Tk [s] is the transmission function (Wicks & Ingle, 2009;

Dupuy et al., 2021), which depends on the kinetic energy, the

setup pass energy and the acquisition integration time. The PE

signal Ið�k;K k
e‘
Þ is a count of PEs which is a dimensionless

quantity. The formulation (16) is the same as equation (1) in

the work of Ottosson et al. (2010); therefore, it introduces the

same modeling errors due to the simplifications. Some of the

uncertainties can be accounted for during the inversion, either

by sampling or marginalizing. In Section 4, we have focused on

the uncertainties related to the attenuation length.

2.4. Measurement

2.4.1. Spectrum point. By nature, counting PEs is a

stochastic process that is achieved with, for example, charged

coupled devices (CCDs) or channel electron multipliers

(CEMs). A realistic model for the measurement noise is a

Poisson distribution either in CCD (Healey & Kondepudy,

1994; Konnik & Welsh, 2014) or in CEM (Seah, 1990; Choi

& Kim, 2000). Here, we consider simulated experiments with

electron yields that are sufficiently strong that the Poisson

noise distribution can be approximated by an equivalent

Gaussian distribution. The photoelectric signal is decomposed

into three terms,

Itotð�k;K k
e‘
Þ

one point spectrum

¼ Ið�k;K k
e‘
Þ

signal of interest

þ Ibgð�k;K k
e‘
Þ

background

þ " k
‘

stochastic term

ð17Þ

where the noise " k
‘ is characterized byN ½0; ð� k

‘ Þ
2
� with ð� k

‘ Þ
2 =

Ið�k;K k
e‘
Þ + Ibgð�k;K k

e‘
Þ. The cross-section density in this model

gives a measure of the probability of a photon interacting with

the core-level electrons of chemical species and resulting from

different intramolecular interactions (Patanen et al., 2013).

The remaining unknown for ��(�k, Ke) is the kinetic energy

dependence, but adding all the contributions from the

different kinetic energies leads to the total cross-section

��ð�kÞ ¼

Z1
0

��ð�k;KeÞ dKe: ð18Þ

The background signal Ibg and measurement noise " k
‘ are

perturbations of the signal of interest in this study. The

background signal stems from other electron interactions,

while the noise can be from any source, even external. The

background does not contain relevant information for XPS

depth profiling and should be removed from the PE signal for

data analysis.

2.4.2. Peak area model. For a typical sample system, the

XPS spectra show several peaks that can be explained mostly

by the different chemical states of the observed element,

e.g. C–C, C=C, C–O, and the multiplet splitting (Stevie &

Donley, 2020; Major et al., 2020; Werner et al., 2018). Each

peak in a spectrum thus contains quantitative information on

the probability of interaction. For instance, for a system with

two chemical states, two peaks are present in the spectrum,

and the cross-section density can be written as the sum

��ð�k;KeÞ ¼ � 1;k
� Keð Þ þ �

2;k
� Keð Þ: ð19Þ

From here, we define the probabilities (pm, k)m of interaction

photon/chemical-state-m with

pm;k ¼

R
�

k;�
Ke

�m;k
� ðKeÞ dKeR

�
k;�
Ke

��ð�k;KeÞ dKe

: ð20Þ

Then we define the probability densities,

~��m;k
� ðKeÞ ¼

�m;k
� ðKeÞR

� k;�
Ke

��ð�k;KeÞ dKe

¼
�m;k
� ðKeÞ

��ð�kÞ
: ð21Þ

Extending this formulation to the case withM 	 2 chemical

states, the photoionization cross-section density assumes the

form

��ð�k;KeÞ ¼ ��ð�kÞ
XM
m¼ 1

~��m;k
� Keð Þ ¼ ��ð�kÞ ~�� k

� Keð Þ: ð22Þ

From this definition, the mth peak area can be modeled by

adding the contribution from each channel,

I m
k ¼ �kFð�kÞ ��ð�kÞ

XL

‘¼ 1

Z
�

k;�
Ke

’ k
‘ ðKeÞ ~��m;k

� Keð ÞH �; �eðKeÞ
� �

dKe:

ð23Þ

From the spectral data, the peak area can be estimated by

peak fitting techniques which are well documented (Kukk et

al., 2001, 2005; Gengenbach et al., 2021).
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2.5. Discretized forward model

From here on, we consider that the cross-section densities

have been estimated for each selected peak m and for each

frequency �k, i.e. the discretization coefficients �m;k
‘ of the

photionization cross-section density [see SI equation (7)] are

known for each measurement. By compiling the discretized

peak area models [see SI equation (14) derived from equation

(23)] in a single operator Am, we get

y m
¼

I m
1

	
�1T1Fð�1Þ ��ð�1Þ
� �

I m
2

	
�2T2Fð�2Þ ��ð�2Þ
� �

..

.

I m
K

	
�KTKFð�KÞ ��ð�KÞ
� �

2
66664

3
77775 ¼ Am�þ ~""m; ð24Þ

where � = [�1, �2, . . . , �N]t is the vector of the discretization

coefficient of the profile concentration [see SI Section 2,

equation (7)], and ~""m = ½ ~""m
1 ; ~""m

2 ; . . . ; ~""m
K �

t is a 0-mean Gaus-

sian noise vector whose covariance matrix � has for diagonal

entries the variance of the normalized peak area measure-

ments f�k=½�kTkFð�kÞ ��ð�kÞ�g
2. The variance of the (non-

normalized) peak area measurement is ð�kÞ
2 =

PL
‘¼ 1ð�

k
‘ Þ

2. It

is implicitly assumed that the discretization and approxima-

tion errors "m, k [see SI equation (14)] are negligible compared

with the measurement noise. The noise level can be deter-

mined from the spectra, e.g. using the left singular vector of

the model to project the data onto (Ozon et al., 2023b). The

normalized measurement operator for the mth peak and all

photon energies ðh�kÞ1� k�K is

Am
¼

c1 p m;1 ½Hðe1; �1Þ; Hðe2; �1Þ; . . . ;HðeN; �1Þ�

c2 p m;2 ½Hðe1; �2Þ; Hðe2; �2Þ; . . . ;HðeN; �2Þ�

..

.

cK p m;K ½Hðe1; �KÞ; Hðe2; �KÞ; . . . ;HðeN; �KÞ�

2
66664

3
77775;

ð25Þ

where Tk ck is the discretization coefficient of the analyzer

kernel functions [see SI Section 2.2, equation (13)], and

depends on the transmission coefficient Tk, the kinetic energy

discretization step �Ke
as well as the bandwidth �Tk

of the

kernel functions.

3. Numerical methods

An inverse problem (Kaipio & Somersalo, 2006; Rudin et al.,

1992; Gelb, 1974) is the opposite of a forward model – it is a

model that aims at finding the state � of the system knowing

the measurements y (e.g. peak areas) and the forward model

Am of the experiment and measurement device. In this case,

the state � is the concentration profile. The measurement

model Am may refer to either the operator acting on the

function � or the matrix acting on the vector �. The problem of

finding the state � that leads to the measurement y does not

have a unique solution; here, many concentration profiles

(plausible or not) produce the same data, i.e. y = Am�A = Am�B

does not imply that �A = �B. Therefore, we must formulate

the problem to restrict the number of possible solutions. We

choose the Bayesian framework because of its versatility and

write the probability density Pð�jAm; yÞ of the state � knowing

the data y and the measurement model Am. The a posteriori

Pð�jAm; yÞ is a measure of how well a concentration profile �
describes the system – the greater the value Pð�jAm; yÞ, the

better � describes the observed system – hence, we seek to

maximize the a posteriori. Here, the a posteriori is modeled

as the product of two Gaussian distributions. For counting

measurements, or sum of counts, the likelihood Pð yjAm; �Þ is

well modeled by a Poisson distribution, but since the peak

area, i.e. the parameter (�2
k) of the distribution, is in practice

greater than a count of 30, the likelihood is approximated by a

Gaussian distribution with variance �2
k, i.e. �kTkFð�kÞ ��ð�kÞyk

’ NðI m
k ; �

2
kÞ. The a priori PðAm; �Þ models the knowledge

that we have of the system regardless of the data, and it is also

modeled as a Gaussian. Since the optimization only seeks

for the values of the state �, one does not need the data

distribution to find the maximum a posteriori (MAP) estimate

�̂�jAm; y. Overall, the optimization problem can be written as

the argument (arg) that maximizes (max) the a posteriori

distribution, formally,

�̂�jAm; y 2 arg max
�	 0

Pð�jAm; yÞ ¼

arg min
�	 0

kAm�� yk2
� þ kD�k

2
�D
; ð26Þ

where the positivity constraint is added because, by

definition, the concentration is a positive quantity. The

formulation (26) implies that we seek the solution (i.e. the

argument �) that maximizes the a posteriori probability

density [/ Pð yjAm; �Þ PðAm; �Þ], earning �̂�jAm; y the name

Maximum a posteriori. The equity between arg max (‘argu-

ment that maximizes’) and arg min (‘argument that mini-

mizes’) can be shown using the strictly decreasing property of

the � log-function which transforms the maximization of the

a posteriori into a regularized least-squares problem in the

case of a Gaussian approximation. The data covariance matrix

� is diagonal because the noise from the different measure-

ments, i.e. peak area, is stochastically independent and the

diagonal entries are �k;k = f�k=½�kTkFð�kÞ ��ð�kÞ�g
2. The

variance of the peak area of the kth photon energy is �2
k =PL

‘¼ 1 Ið�k;K k
e‘
Þ + Ibgð�k;K k

e‘
Þ [see SI Section 3, equation (19)].

The regularization operator D is the second-order difference

operator of order nd that makes the sought solution smooth by

promoting piecewise linear profiles. The covariance matrix �D

defines the strength and correlation related to the regularizing

a priori [see SI Section (4), equation (27), for numerical

definition]. In this form, the optimization problem is not

numerically advantageous because it implies reconstructing

the profile at each depth of the discretized profile, even though

it is expected to be constant below a few nanometres deep, and

the boundary value (far out away from the sample) is 0 m�3.

Therefore, we separate the matrices Am, D and the vector �
into blocks mapping different depth intervals, i.e. bulk,

boundary and surface depth, and reorganize the problem

to solve only for the surface depth profile. We refer to the

rearranged formulation as the truncated model and the tech-
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nical details are presented in SI Section 5. The boundary �1

and the bulk values �B are treated as random variables so as to

reflect uncertainty in their values. We solve the optimization

problem (26) using an algorithm described in the paper by

Chambolle & Pock (2011) because of its convergence prop-

erties and its ease of implementation (see SI Section 6.1 for

implementation details).

The MAP estimate �̂�jAm; y depends on the measurement

model and the noise in the data, so, for applicability to

experimental data (as opposed to simulated data), it is

important to know how much it is affected by these quantities

and show that the method is robust enough against

measurement noise and attenuation length uncertainty. We

define the variability as the covariance with respect to either

Am or y, respectively, ��̂�jAm
0
;y and ��̂�jAm;y0

. These two covar-

iances can be estimated by sampling the noise space and the

measurement operator space and computing the estimates

for each sample,

�̂�jAm;y0
¼

Z
�y

�̂�jAm; yPðyjy0Þ dy; ð27Þ

��̂�jAm;y0
¼

Z
�y

ð�̂�jAm; y� �̂�jAm;y0
Þð�̂�jAm; y� �̂�jAm;y0

Þ
t
Pðyjy0Þdy;

ð28Þ

�̂�jAm
0
;y ¼

Z
�Am

�̂�jAm; yPðAm
jAm

0 Þ dAm; ð29Þ

��̂�jAm
0
;y ¼

Z
�Am

ð�̂�jAm; y� �̂�jAm
0
;yÞð�̂�jA

m; y� �̂�jAm
0
;yÞ

t

� PðAm
jAm

0 Þ dAm; ð30Þ

where PðAmjAm
0 Þ is the probability distribution of the

measurement operator knowing the true model Am
0 – it reflects

the modeling uncertainties. The probability distribution

Pðyjy0Þ is chosen as the measurement noise distribution

instead of the uniform distribution over all possible values of y

which would be uninformative. Detailed definitions of the

probability distributions PðAmjAm
0 Þ and Pðyjy0Þ are given in SI

Section 4. The integrals are evaluated by means of sampling

[from PðAmjAm
0 Þ and Pðyjy0Þ] because of the low dimension-

ality of the data space and the parameter space of the

measurement model.

In addition to the variability of the state estimates �̂�jAm; y,

the model has uncertainties inherent to the posterior distri-

bution. We choose to estimate the a posteriori covariance as a

proxy for the inverse model uncertainty

��jAm;y ¼ E �� �jAm;y


 �
�� �jAm;y


 �t
jAm; y

h i
ð31Þ

with the a posteriori mean �jAm;y = E½�jAm; y�. The covariance

matrix is estimated with the Metropolis–Hastings (MH)

algorithm that has been described several times

independently – Metropolis in 1949 (Metropolis & Ulam,

1949) and Hastings in 1970 (Hastings, 1970) (see SI

Section 6.2). The uncertainties tied to the noise and

measurement models are estimated by the marginalization

over the respective spaces. We denote �jAm
0
;y = E½ �jAm

0 ; y�

and ��jAm
0
;y = E ½ð���jAm

0
;yÞð���jAm

0
;yÞ

t
jAm

0 ; y� the marginal

mean and covariance over the measurement operator

space, and �jAm;y0
= E ½�jAm; y0� and ��jAm;y0

=

E ½ð���jAm;y0
Þð���jAm;y0

Þ
t
jAm; y0� the marginal mean and

covariance over the measurement noise space. The covariance

��jAm
0
;y represents the uncertainty due to the uncertainty in the

measurement model and ��jAm;y0
is the uncertainty due to the

measurement noise.

The peak area model equation (23) is discretized assuming

that the attenuation length is constant over the kinetic energy

interval � k;�
Ke

for each photon energy measurement. The

discretization is made by projecting the concentration profile �
and the photoionization cross-section density ��(�k, Ke)

onto linear basis functions in their respective spaces. The

details of the discretization are given in SI Section 2. The

measurement model is discretized over the surface depth

�2 � 0 � r � 20 nm; however, the profile reconstruction is

carried out over the depth of the truncated model from �0 [nm]

to the threshold value �B [nm] whose values depend on the

profile. Beyond the threshold depth �B, the concentration

is assumed to be that of the bulk solution �B, and the

concentration at the edge r = 0 + �0 of the sample is 0.

The resulting reconstruction is based on the truncated model,

i.e. the values of the concentration profile are estimated for

r 2 [0 � �B, 0 + �0) (see SI Section 5 for more details).

4. Results

We show the performance of the PROPHESY framework,

first introduced for estimating the alignment parameter �k,

and completed in Section 3 using the measurement model

described in Section 2. As a proof of concept, we simulated

data so that the results can be compared with the true profiles

– the ground truth (GT). The geometry factor is the main

focus because it is the part of the model that bears depth

information. Parameters that do not carry depth information

are normalized. Hence, �kTk F(�k)�C 1s(�k)�B is used as a

normalizing factor for the peak area data. Furthermore, the

alignment parameter �k or the multiplicative factor �kTk can

be estimated from raw data (Ozon et al., 2023b), supporting

the use of absolute peak area, instead of relative peak area

ratio such as C 1s/O 1s. The APE method (part of

PROPHESY) can be used to estimate the multiplicative factor

�kTkF(�k)�C 1s(�k)�B which includes the photoionization

cross-section of C 1s in the chemical state of interest, i.e. the

cross-section including the oscillations (Björneholm et al.,

2014; Söderström et al., 2012; Mårtensson et al., 2013; Trav-

nikova et al., 2019). Four plausible concentration profiles

(Krisch et al., 2007; Jungwirth & Winter, 2008; Winter et al.,

2004; Winter & Faubel, 2006) are considered: one that is

completely depleted at the surface,

�ðrÞ ¼
�B

1þ ð1=10Þ exp ðr� 0Þ=�
�
r

� � ; ð32Þ

with ��
r = 0.1 nm, and three that show surface enhancement,
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�ðrÞ ¼
�B

1þ ð1=10Þ exp ðr� 0Þ=�
�
r

� �þ 6�B exp �
ðr� 0Þ

2

2� 0:12

� �
;

ð33Þ

�ðrÞ ¼
�B

1þ ð1=10Þ exp ðr� 0Þ=�
�
r

� �þ 2�B exp �
ðr� 0Þ

2

2� 0:52

� �
;

ð34Þ

�ðrÞ ¼ �B exp �
ðr� 0Þ

2

2� 0:42

� �
: ð35Þ

We investigate three aspects of the model that affect the

profile reconstruction: (i) the accessible range of attenuation

lengths, (ii) uncertainty in the attenuation length and

(iii) measurement noise. We choose the transition length

parameter �r = 0.25 nm for the total concentration �tot,

equation (2).

To prevent the inverse ‘crime’ (Kaipio & Somersalo, 2006)

and avoid unrealistically good reconstructions, the measure-

ment model used for the profile reconstruction is not the same

as the one used for generating the data. The measurement

model Am used for the inversion is computed with different

discretization than that used for data simulation.

The characterization of the MAP reconstruction equation

(26) with respect to the model uncertainty is carried out by

randomly sampling the measurement model from the distri-

bution P½ð�kÞ1� k�Kjð�
0
kÞ1� k�K� (see SI Section 4) where

ð�0
kÞ1� k�K are the attenuation lengths used for simulating the

data and computing the reconstruction for each model sample.

The marginalization (estimate �̂�jAm
0; y and covariance matrix

��̂�jAm
0
;y) are computed from the reconstructions obtained with

the model samples. Similarly, the marginalization (estimate

�̂�jAm; y0 and covariance matrix ��̂�jAm;y0
) over the measurement

noise space is computed from reconstructions obtained with

data samples drawn from Pðyjy0Þ (see SI Section 4).

Here, we focus on PEs with kinetic energy in the interval

[200,1600] eV for which plausible EAL is in the interval

[1.28, 5.5] nm. The distribution P½ð�kÞ1� k�Kjð�
0
kÞ1� k�K�

reflects the uncertainty in the current knowledge of EAL. For

instance, the EAL and IMFP reported in several studies show

that their predicted values agree within some uncertainty

range which can be used to build P½ð�kÞ1� k�Kjð�
0
kÞ1� k�K�

(Suzuki et al., 2014; Shinotsuka et al., 2017; Nguyen-Truong,

2018; Emfietzoglou & Nikjoo, 2007; Garcia-Molina et al.,

2017). In the case of a semi-empirical model (Emfietzoglou &

Nikjoo, 2007), the distribution can be built upon the para-

meters used for fitting the model to the data. The support, i.e.

the interval where the function is not null, of the attenuation

length distribution is the interval ½�0
kð1� 	�Þ; �

0
kð1þ 	�Þ�

where 	� is the uncertainty rate.

The amplitude of the a priori in the optimization problem

(26), i.e. the norm of the covariance matrix �D, is controlled by

a scalar value �D (see SI Section 4). The values for �D can be

determined from criteria such as the L-curve (Stolzenburg et

al., 2022) so that the choice is more objective than ours.

Throughout the numerical experiments we use the regular-

ization parameter listed in Table 1. The correlation length �D

controlling the amplitude of the off-diagonal elements of �D

is 0.22 nm which corresponds to the depth discretization step.

4.1. Attenuation length sampling domain

Figure 5 shows the results of the inversion model using the

framework PROPHESY applied to simulated data using the

density profile plotted in green. In this example, the GT profile

[equation (34)] vanishes 1.5 nm away from the surface and

reaches bulk concentration before 1.5 nm into the sample. For

the sake of characterization of the methodology, we consider a

wide interval of attenuation length from 1.28 nm to 5.5 nm,

even though it does not correspond to technologically acces-

sible values. The reason for this choice of interval is to show
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Table 1
Regularization parameters: normalized standard deviation �D=�B of the
amplitude of the second order difference D� as defined in equation (27)
of the supporting information.

�

Sampling case Eqn (32) Eqn (33) Eqn (34) Eqn (35)

N5 1 10 1 1
W5 1 10 1 1
W10 1 10 1 1

Figure 5
Reconstruction of concentration profile for three different simulated
experimental acquisition setups: (a) and (b) five attenuation lengths over
the range [1.62, 1.95] nm (N5); (c) and (d) five attenuation lengths over
the range [1.28, 5.5] nm (W5); and (e) and ( f ) ten attenuation lengths over
the range [1.28, 5.5] nm (W10). The panels (a), (c) and (e) show the
estimates and the different variability, with respect to the measurement
noise in orange (��̂�jAm;y0

), and with respect to the measurement model
error in red (��̂�jAm

0
y). The panels (b), (d) and ( f ) show the conditional

posterior probability Pð�jAm; yÞ (blue), and the marginals Pð�jAm; y0Þ

(orange) and Pð�jAm
0 ; yÞ (red).



what can be gained (or not) by measuring at attenuation

lengths that might not be considered. Three probing cases are

considered, simulating three possible acquisition setups, one

using ten attenuation lengths and two using only five. The

attenuation lengths are regularly sampled in the ranges

[1.62, 1.95] nm, case N5, and [1.28, 5.5] nm, case W5, for the

cases with five attenuation lengths, and in the range

[1.28, 5.5] nm for the case with ten, case W10. The case W10 is

used as the default setup in the remainder. In the three cases,

the noise level is representative of experiments (see Section

4.3), and the uncertainty in the attenuation length is low

(independent error level 	� = 0.5%, see Section 4.2.1).

In the left column of Fig. 5, the estimates resulting from

the optimization problem (26) are depicted in blue and the

variability with respect to the measurement operator and

acquisition noise are shown in red and orange, respectively. As

expected, the profile reconstruction is better in the case W10

than in the cases N5 and W5: more information and denser

sampling are better than less information and sparser

sampling.

The MAP estimates �̂�jAm; y (blue curves) obtained from the

inversion model equation (26) and the marginalizations

�̂�jAm
0 ; y (red curves) and �̂�jAm; y0 (orange curves) capture the

structure of the concentration profile in the cases W5 and W10

contrary to the case N5. This is visible for profile equation (34)

as well as other profiles shown in SI Section 7.1. In all cases

(N5, W5 and W10) the variabilities ��̂�jAm
0
;y (red shaded areas) of

the estimates reflect the low level 	� = 0.5% of uncertainty in

the attenuation length – the red shaded areas are small. The

noise level is also reflected in the variabilities ��̂�jAm;y0
(orange

shaded areas), in particular for the cases W5 and W10. In

the case N5, the depth information in the data is very

little, therefore most of the reconstruction is carried out

by the a priori.

For both variabilities (��̂�jAm;y0
and ��̂�jAm

0
;y), nodes appear,

which seems to indicate that the concentration at some depths

is reconstructed better than in others depending on the choice

of probed attenuation lengths. Depending on the concentra-

tion profile, the node locations vary; however, in the cases W5

and W10, they are located just before and after the structure

(peak or step) of the profile. The reason for this is not clear,

but the information is not uniformly sampled even though the

attenuation length is.

In the right-hand columns in Fig. 5, the mean and variance

of the different probability distributions are depicted:

Pð�jAm; yÞ in blue, the marginalization over the noise space

Pð�jAm; y0Þ in orange, and the marginalization over the

measurement operator space Pð�jAm
0 ; yÞ in red. The condi-

tional means �|* and covariances ��|* do not need to coincide

with the true profile since the estimate corresponds to the

maximum of the conditional, not the mean. The two marginals

are broader than Pð�jAm; yÞ, but the effect is striking for the

marginalization over the measurement operator space. The

strong broadening of Pð�jAm
0 ; yÞ shows that the measurement

model is highly sensitive to the values of the attenuation

length, while the weak broadening of Pð�jAm; y0Þ shows that

the model is not too sensitive to the noise in the data. This

means that a small deviation in the data can easily be

accommodated by the model since the a posteriori is built

upon the statistical model of the measurement noise, whereas

a small error in the model parameters is not straightforwardly

accounted for and might compromise the reconstruction

process. However, and contrary to the model, the estimate

�̂�jAm
0 ; y sampled with respect to the attenuation lengths does

not exhibit strong variability, and the sensitivity of the inver-

sion model is decreased by increasing the number of sampled

attenuation lengths.

Overall, Fig. 5 shows that more numerous attenuation

lengths probed over a wider range is better than few probed �e

over a narrow range. These results hold for all the tested

concentration profile equations (32), (33) and (35) (see SI

Section 7.1, Figs. 2, 3 and 4, respectively, therein). We advise

probing as many attenuation lengths as possible in the widest

range for depth profiling.

4.2. Model error: ke uncertainty

In the forward model, the attenuation length is the EAL of

the solvent, assuming that the attenuation is governed by the

solvent and that the boundary effects at the interface are

negligible. We assume this to be representative of dilute

solutions, even though it does not capture the whole

complexity of the signal formation at the interface. For pure

water, the EAL and IMFP are still under investigation and

their values are subject to debate (Suzuki et al., 2014; Nguyen-

Truong, 2018). Furthermore, the values of predicted and

measured EAL and IMFP suggest that they depend on the

composition of the solution (Garcia-Molina et al., 2017).

Therefore, for the reconstruction of depth profiles, it is not

clear what values should be used, which is a source of uncer-

tainty. As a consequence, we suggest using plausible values as

well as their uncertainty range as a starting point to char-

acterize the effect on the reconstruction. In this section, we

consider two types of errors, (i) small independent errors

representing the granularity not captured by current models,

and (ii) a large global error accounting for the disagreement

between models, i.e. the slope of the EAL model. More

refined error models could be investigated, such as that

proposed in SI Section 4 based on a semi-empirical model;

however, for the sake of clarity we choose to focus on these

two limit cases.

4.2.1. Independent errors. We consider the case of small

independent perturbations in the values of the attenuation

lengths, to reflect the small variations of values not captured

by current EAL (and IMFP) models, e.g. experimental fit

using smooth exponential-polynomial functions (Emfietzo-

glou & Nikjoo, 2007). The model error probability for levels

	� 2 f0:5%; 1%; 2:5%g are modeled using

�k ¼ ð1þ 
kÞ �
0
k with 
k ’ U ð½�	�; 	��Þ; ð36Þ

where the random variables ð
kÞ1� k�K are independent and

uniformly distributed.

Figure 6 shows two profile reconstructions in the case of W10

with higher levels (	� 2 f1%; 2:5%g) of uncertainty in the
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attenuation length �e than in Fig. 5. The MAP estimates

�̂�jAm; y (blue curves) and the measurement noise marginal

estimates �̂�jAm; y0 (orange curve) and their variabilities

��̂�jAm;y0
(orange shaded area) are the same as for the W10 case

in Fig. 5 because these quantities were evaluated with the true

value of the attenuation length. The quality of the margin-

alization �̂�jAm
0 ; y of the estimates is the same across the

different uncertainty levels despite minor fluctuations.

However, the variabilities ��̂�jAm
0
;y are different for each

uncertainty level, and the norm of the variability increases

with the level of uncertainty [k��̂�jAm
0
;yð	� = 0:5%Þk1 �

k��̂�jAm
0
;yð	� ¼ 1%Þk1 � k��̂�jAm

0
;yð	� ¼ 2:5%Þk]. The width of

Pð�jAm
0 ; yÞ is not affected by the level of uncertainty 	� even

though fluctuation is observed due to the sampling nature of

the estimation of the covariance matrices ��jAm
0
;y. The sensi-

tivity of the inversion model does not increase with 	�, but the

variability does. The same results are observed for all the

tested profiles (see SI Section 7.2.1).

4.2.2. Global error. In this section, we consider a different

type of uncertainty in the model parameter compared with

Section 4.2.1. Contrary to independent errors, the global error

represents the possible disagreement between two attenuation

length models, e.g. model derived from IXS-D2 and IXS-D3

(Emfietzoglou & Nikjoo, 2007). The purpose of investigating

this level of uncertainty is to show that it is still possible to use

the inversion model even though large errors in the attenua-

tion lengths are to be expected or if the interpretation of the

attenuation length is not clear. We model the global uncer-

tainty with attenuation length generated from

�k ¼ ð1þ 
�Þ �
0
k with 
� ’ U ð½�	�; 	��Þ; ð37Þ

where the same error factor 
� applies to all K attenuation

lengths. We consider three levels of uncertainty,

	� 2 f10%; 20%; 30%g

Figure 7 show the results in the case of W10 for different

uncertainty levels. The estimates �̂�jAm; y (blue curve) and

�̂�jAm; y0 (orange curve) are the same as in Fig. 5 for the same

case. The quantities of interest are the estimates �̂�jAm
0 ; y (red

curve) and their variabilities ��̂�jAm
0
;y (red shaded area). Simi-

larly to the independent error results, the quality of estimates

for each uncertainty level is the same even though some

fluctuations appear. The variability increases in norm with 	�
and stays acceptable for surface depths. The probability

model Pð�jAm
0 ; yÞ is broad compared with Pð�jAm; yÞ and

Pð�jAm; y0Þ; however, it does not vary with the uncertainty

level 	�. Again, the model is sensitive to the error in the

attenuation length values, but the estimates do not vary

substantially. The same observation is made for the other

profiles (see SI Section 7.2.2).

4.3. Data noise

Figure 8 shows reconstructions for two acquisition noise

levels, one lower (�k = 0.01, peak area signal-to-noise ratio

(SNR, E ½I m
k �

2=�2
k) 2 [654 � 103, 43 � 106]) and one higher

(�k = 0.5, SNR 2 [262, 17 � 103]) than that of the reference

case W10 (�k = 0.1, SNR 2 [6544, 427 � 103]) in Section 4.1

(see Fig 5). The MAP estimate �̂�jAm; y is slightly better at low

noise level than at high noise level, and the variability ��̂�jAm;y0

with respect to the measurement noise indicates the same – it

is growing with respect to the noise level. On the contrary, the
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Figure 6
Profile reconstruction in the case of W10 for two levels of attenuation
length uncertainty: (a) and (b) 	� = 1 and (c) and (d) 	� = 2.5%. The green
curves represent the GT. In panels (a) and (c), the profile reconstructions
are plotted in blue (�̂�jAm; y), orange (�̂�jAm; y0) and red (�̂�jAm

0 ; y) with
their respective variabilities as shaded areas. In panels (b) and (d), the
a posteriori [Pð�jAm; yÞ] is represented in blue, and the marginals in
orange [Pð�jAm; y0Þ] and red [Pð�jAm

0 ; yÞ].

Figure 7
Profile reconstruction in the case of W10 for three levels of global
attenuation length uncertainty: (a) and (b) 	� = 10%, (c) and (d) 	� =
20%, and (e) and ( f ) 	� = 30%. The green curves represent the GT. In
panels (a), (c) and (e) the profile reconstructions are plotted in blue
(�̂�jAm; y), orange (�̂�jAm; y0) and red (�̂�jAm

0 ; y) with their respective
variabilities as shaded areas. In panels (b), (d) and ( f ) the a posteriori
[Pð�jAm; yÞ] is represented in blue and the marginals in orange
[Pð�jAm; y0Þ] and red [Pð�jAm

0 ; yÞ].



variability ��̂�jAm
0
;y is decreasing with respect to the noise level.

This can be explained by a ratio, akin to the SNR, between

the error in the model and in the data, e.g. � t �Am
k
�=�2

k, where

�Am
k

is the covariance matrix of the peak area model for the kth

measurement, � the GT profile and � 2
k the variance of the

noise. The model covariance matrix is defined by

�Am
k
¼

Z
��k

ðAm
k � Am

k
Þ

t
ðAm

k � Am
k
Þ Pð�kj�

0
kÞ d�k

with Am
k
¼

Z
��k

Am
k Pð�kj�

0
kÞ d�k: ð38Þ

Since the model error level �Am
k

is the same across the cases,

and the noise level �k varies, this ratio decreases with respect

to the noise level. This means that the contribution to the

overall uncertainty in the reconstruction transits from being

mostly due to the noise to coming mostly from errors in

the model.

The ratio � t�Am
k
�=�2

k is a proxy for directing our effort for

improving the quality of information that can be retrieved

from such experiments. At some point, the quality of the

data is sufficiently good compared with the quality of the

measurement model, and so any improvement in the data

quality will not result in any improvement in the reconstruc-

tion. For XPS data inversion, the measurement model must be

precise to allow for high-quality depth profile reconstruction.

As much as repeating the acquisitions many times is

conceptually very simple, in practice it is not always possible to

dedicate the time needed for improving the data quality to the

point where noise becomes negligible. However, since the

likelihood model is based on the stochastic acquisition nature

of the measurements (e.g. Poisson for counting processes), the

inversion model can handle reasonably noisy data. Further-

more, sampling the parameters of the model is also (experi-

mentally) time-consuming. For instance, sampling the

attenuation length means changing the acquisition setup so

that many values (	10) are probed over the range of interest.

However, it is possible to numerically account for model

uncertainties. Nevertheless, it is still necessary to estimate

the true level of error (Suzuki et al., 2014; Nguyen-

Truong, 2018).

5. Discussion

5.1. Model assumptions

5.1.1. Light. The model devised in equation (1) relies on and

reflects a set of assumptions. First, it is assumed that the illu-

mination is monochromatic. It is a good approximation as long

as the bandwidth of the photon beam f(�, M) is sufficiently

smaller than the length-dependent variation of the cross-

section density ��(�k, Ke), i.e. the range of kinetic energy over

which the variation starts being significant. The light band-

width depends on the setup of the source, but for the sources

of interest at synchrotron facilities in the framework of XPS

the bandwidths are expected to be in the range between

0.01 eV (low energy) and 0.2 eV (high energy) (Weiss et al.,

2001; Kachel, 2016). An important parameter that controls the

bandwidth is the exit slit opening. For instance, at the HIPPIE

beamline (Zhu et al., 2021), the spectral resolution of the light

for a central photon energy h� = 867 eV goes from 15000 to

5000 for exit slit openings of 20 mm and 100 mm, respectively.

In this case, the energy spread ranges from 0.06 eV to 0.17 eV.

Therefore, for O 1s the cross-section density �O 1s(867, Ke)

can be resolved with high fidelity. However, for C 1s the

exit slit opening is wider. Hence, the cross-section density

�C 1s(867, Ke) cannot be resolved with the same resolution as

for O 1s. The resolution can be numerically enhanced using a

deconvolution algorithm (see Fister et al., 2007) provided that

the photon beam spectrum is known. For typical C 1s, the

peak width is of the order of 1 eV, therefore even with a

spectral resolution of 0.2 eV the peak can be resolved with

high precision, and will not severely impact the reconstruction.

The light is assumed to be spatially uniform and non-atte-

nuated by the sample (Berger, 1998). For instance, a profile

example can be found in the work of Fedoseenko et al. (2003)

that would make the uniformity assumption hold in one

direction (horizontal) and not in the other dimension

(vertical). Contrary to the previous assumption, these ones are

easily handled by the model, provided that the profile ( f) of

the photon beam is known everywhere in space. For instance,

the profile could be acquired with a camera, assuming the

absorption by the sample is negligible. However, the uniform

light assumption does not hinder the reconstruction process as

long as the spot size is comparable with or larger than the

diameter of the sample. Under these conditions the model

assuming uniform illumination is equivalent to the model

including the beam profile (Ozon et al., 2023b).
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Figure 8
Reconstruction of concentration profiles for two levels of acquisition
noise: panels (a) and (b) very low (�k = 0.01, SNR =
E ½I m

k �
2=� 2

k 2 ½250� 103; 16� 106�), and panels (c) and (d) very high
(�k = 0.5, SNR 2 [100, 6400]). In panels (a) and (c) the profile
reconstructions are plotted in blue (�̂�jAm; y), orange (�̂�jAm; y0) and
red (�̂�jAm

0 ; y) with their respective variabilities as shaded areas. In
panels (b) and (d) the a posteriori [Pð�jAm; yÞ] is represented in blue and
the marginals in orange [Pð�jAm; y0Þ] and red [Pð�jAm

0 ; yÞ]. For the
noise variability �|Am, y0 and the noise marginal Pð�jAm; y0Þ, the true
values of �e have been used to emphasize the effect of uncertain
attenuation lengths.



Furthermore, the source is supposed to be perfectly linearly

polarized; however, this assumption depends on the quality of

the source. The consequence of the degree of linear polar-

ization (Petrova et al., 2019) is that, even at the magic angle,

the cross-section depends on the asymmetry factors. Indeed,

the magic angle is defined with respect to the polarization

vector (see Fig. 1), assumed to be unique. Hence, if the

polarization is distributed, then so is the magic angle.

However, the analyzer is at one location in space, therefore it

cannot measure at the magic angle for all polarizations. As a

consequence, the cross-section depends on the asymmetry

factor of the dipole model. The effect of the imperfection of

linearity is expected to be minor because, while the light is not

perfectly linearly polarized, the quality is very high (Weiss et

al., 2001; Petrova et al., 2019; Cant et al., 2023). Furthermore,

the forward model can be modified to accommodate for non-

polarized light by substituting the differential cross-section

density ��(�, Ke, �) by its angular average.

5.1.2. Core orbitals. For core orbitals, the cross-section is

considered to be well modeled by the dipole approximation.

Since the acquisition setup takes advantage of the magic angle

for which the asymmetry factor does not play a role, then

this assumption is weak. However, if photon energy higher

than 2000 eV is considered, the dipole approximation starts

deviating from measurements (Cant et al., 2023), which

introduces modeling errors. Note that if the acquisition setup

changes, then it is possible to change the model to account for

asymmetry. The modifications are straightforward to account

for the angular dependence if the asymmetry coefficients

are known (multiplicative factor depending on the angular

direction). Hence, the model is not limited to the core orbitals,

although it has here been presented for this specific applica-

tion. However, the asymmetry coefficients are in practice

not well known, in particular for non-isolated non-elemental

cross-sections.

In practice, the aperture of the analyzer is not pointwise,

rather it covers a range of solid angles, and the magic angle

cannot be exactly achieved (or may not be an optimal

choice for the experiment). Hence, using the elemental

photoionization cross-section at the magic angle inherently

adds uncertainty to the forward model. Furthermore, the

elemental photoionization cross-section does not exhibit

oscillatory behavior contrary to what is observed (Björne-

holm et al., 2014; Söderström et al., 2012; Mårtensson et al.,

2013; Travnikova et al., 2019) for the target orbitals in

complex systems (e.g. molecules), which is another source

of uncertainty. These modeling errors can be lumped

together in the multiplicative factor of the model equation

(23) which can be estimated as a whole from raw data (Ozon

et al., 2023b). Hence, the asymmetry coefficient and oscil-

lation of the photoionization cross-section do not need to

be known for practical application of the reconstruction

profile.

5.1.3. Geometry. The geometry of the sample is approxi-

mated by simple shapes, such as a plane, cylinder or sphere,

which allows for invariant assumptions. For instance, in the

cylinder case, the concentration is assumed to be invariant

along the y-axis (microjet symmetry axis) and �-axis (angle in

polar coordinates). To verify these geometry invariances, it is

possible to simulate the system. For instance, the invariances

can appear out of the simulation of the LJ with fluid mechanics

equations, instead of being stated as an assumption based

on the symmetry of the sample. However, using the fluid

mechanics equations in the canonical frame of reference,

i.e. cylindrical coordinates, these invariances appear if the

diffusion is negligible. These invariances are especially

important to make the problem tractable since they reduce

the species density � to a one-dimensional profile which is a

statistical average over the other dimensions.

The smooth-edge model relies on a parametric form of the

total concentration profile �tot whose shape is an approxima-

tion. The only parameter of interest for the forward model in

this parametric profile is the width �r . This approximation

brings errors to the forward model which translates to

potential discrepancies in the reconstruction, particularly if

the liquid–air transition length is not well modeled by the

parameter �r .

Implicitly, with the forward model we assume that the PE

signal is attenuated only due to interactions with water.

Furthermore, for dilute solutions, water is assumed to be

overwhelmingly predominant, even at the edge. For instance,

with a concentration of 200 mM of solute in the bulk solution

and ten times that at the interface, and considering the peak

located where water is half its bulk concentration, water

concentration is still much larger (55.5/2� 0.2 � 10) than the

solute. This means that the total concentration in the model

is well approximated by the water concentration. If the bulk

solution is not dilute, then this approximation may no longer

hold and the total concentration should account for the solute

concentration. For instance, in some cases of atmospheric

nano-particles, the dilute assumption would fail (Karadima

et al., 2017). Under this assumption, the forward model

would be substantially modified, and not only the attenuation

length in water should intervene in the model. Additionally,

the inversion model would also be modified, and multiple

target elements should be used to make the reconstruction

possible.

The last significant geometrical assumption pertains to the

orientation of the analyzer. It is assumed that the center of the

sample, i.e. the symmetry axis for a cylinder or center for a

sphere, is on the optical axis of the analyzer lens. Failure to

meet this assumption means that the distance function is

offset, and the analyzer does not see an aligned symmetrical

object. From the current model point of view the distance

function �		 already accounts for potential misalignment, but

the analyzer model must now account for the loss of symmetry.

The proportional coefficient Tk in equation (16) cannot

translate this change, neither can equation (15) since it

implicitly assumes (optical) axial symmetry by omitting the

angular dependence and spread of the imaged object; in

equation (15) the incoming signal is concentrated in a ray

on the optical axis. A more comprehensive analyzer model

(Guilet et al., 2022; Wicks & Ingle, 2009; Seah, 1990) would

account for the different angles.
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5.1.4. Inverse model. The measurement model is very low

rank because of the very limited number of measurements.

However, the inversion is stabilized by assuming that the

sought concentration profile belongs to a category of well

behaved functions. This is introduced by the smoothness

assumption to create an a priori that helps to stabilize the

numerical process. It entails that if the true concentration

profile does exhibit a sharp peak or if it is chaotic (with

variations that seem as if they are random), then the method

cannot retrieve such a profile. When comparing Fig. 5 and SI

Fig. 3, despite the difference in height and width of the peak,

the two retrieved profiles are alike and correspond to a

smooth version of the true profile. The smoothness assump-

tion makes inversion problems become numerically stable and

it is fairly easy to deploy; however, it also eliminates fine

details such as sharp peaks in the concentration profile. One

way to overcome the over-smoothing issue would be to have

more data and more informative data. For XPS data, this

means finding a way to obtain data from different locations

in the sample instead of attenuation data. Ideally, make the

attenuation {exp½�dpðrÞ=�e�} change in favor of a local exci-

tation, e.g. localized light source f ½ðr� r0Þ=�r� exp½�dpðrÞ=�e�,

where the beam profile can be controlled in localization r0 in

the surface layers and spread �r � 0. Note that the locali-

zation can either be done by focusing the beam light or

using the analyzer lens in a mode that selects a small spot at

the surface of the sample. In either case, the number of elec-

tron counts would decrease, hence the signal-to-noise ratio

would deteriorate.

The strongest assumption in the optimization problem is the

known values for certain depths, i.e. in the bulk and at the

boundary. The difficulty for the bulk concentration �B is not its

value but rather knowing where the bulk starts r = 0 � �B ,

i.e. determining the thickness value �B. In the examples, we

chose the value �B 2 {1, 1.5} nm depending on the profile,

which seems a good cut-off since the concentrations are almost

constant from this depth on, and it is still close to the surface

layer (region of interest). Similarly, the boundary condition

away from the sample, r = 0 + 
�r, is almost surely 0 for non-

volatile compounds, however, the location of the boundary is

not clear. Although, it is fair to assume that at 1 nm or 1.5 nm

away from the surface the concentration has vanished,

depending on the profile.

In the Bayesian model, the likelihood is Gaussian, which is

fairly acceptable because of the sources of the noise (Stevie &

Donley, 2020; Wicks & Ingle, 2009; Watts & Wolstenholme,

2019) (mixture of several sources, e.g. CCD sensor, analyzer,

etc). However, the probability density for the sparsity in the

second-order-difference space has been chosen arbitrarily as

Gaussian. Other distributions are acceptable, such as expo-

nential. Another possible regularization would be a learned

a priori (Lunz et al., 2018; Li et al., 2020; Leong et al., 2023),

possibly trained on a set of simulated profiles.

Overall, the strongest assumptions for the design of

PROPHESY are:

(i) The geometry approximation of the sample (smooth

edge parametric model).

(ii) The values for the attenuation lengths.

However, it is not immediately clear which has the strongest

impact on the estimated density profiles.

5.2. Investigated uncertainty: attenuation length

Another less direct assumption is the knowledge of the

uncertainty in the attenuation length. We only investigated the

attenuation length uncertainty effect because it is the most

nested and relevant parameter in the model for depth

profiling, and also because its value is still an open question.

To some extent, the attenuation length can be considered the

most meaningful parameter for depth profiling using XPS and

similar direct probing. For the parameters �k, Tk, F(�k) and

��(�k) the uncertainty model is straightforward and can be

handled as only one (multiplicative) parameter.

The peak area data are normalized by the estimated values

of factors such as the photon flux, in order to make the data

independent of the measurement setup. However, the reduced

data still bear the uncertainty associated with the normalizing

factors. Indeed, while normalizing the data, e.g. dividing by the

product �kTk F(�k)��(�k), the values of the parameters are

only known within a range; therefore, the normalization only

changes the sources of the uncertainty but does not cancel it.

In the non-normalized case the uncertainty is coming from the

parameters in the model directly, and in the normalized case

these parameters are the true ones (by definition) but the

normalized factor is uncertain, hence it introduces the same

overall uncertainty. The application to experimental XPS data

using relative spectral peak areas is outside the scope of this

presentation, but is the topic of ongoing work.

Here, we assumed a distribution for the attenuation length,

but the problem is in the parameters of the parameter distri-

bution. For instance, the mean is assumed to be the value at

hand while it is actually a value drawn from the true distri-

bution. This has a strong impact on the interpretation of the

results. The oscillatory behavior of the concentration profile is,

in part, due to the fact that the attenuation lengths are not the

right ones, and so the inversion method tries to make the

profile fit the data in an (by definition) incorrect way. This

setup using the incorrect parameters was willingly chosen in

order to observe the effect on reconstructions.

5.3. Limitation of the study

The noise is assumed to have the same level �k for each

photon energy h�k, but this is not necessarily the case because

of the nature of the counting noise. However, the noise level is

representative of the average noise level. In the experimental

setup, the noise level in the spectrum can vary considerably

between photon energy levels, which translates into different

noise levels in the peak area. This trend may impact the

quality of reconstruction. However, it is not expected to be

significant as long as the noise levels still allow for peak area

estimation. The errors in background removal and peak fitting

result in errors in the values of the peak areas. These errors are

treated as additional noise to the data in the inverse model

because they are the results of uncontrolled processes during
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the fits or errors in the model. In both cases, the errors are

random, therefore they are represented by noise and are

expected to have the same effect as measurement noise.

We investigated two intervals of error, i.e. 	� 2
f0:5%; 1%; 2:5%g and 	� 2 f10%; 20%; 30%g, the first with

an error model assuming independence of the errors and the

other assuming a global factor in the slope of the EAL model.

In both cases the smallest values of 	� still allow for recon-

struction, but for the largest values (	� = 2.5% and 	� = 30%)

the reconstruction shows large variabilities. A more detailed

error model for the attenuation length such as that devised in

SI Section 4 should be used in order to characterize more

precisely the effect on depth profile reconstruction, and we

believe this should be the focus of more investigation.

In the forward model, we assume the attenuation length to

be a known and well defined quantity, and that it is indepen-

dent of the composition of the sample. In cases of interest,

even though the bulk solution is dilute, for surface-enhanced

species the interface might no longer be considered dilute.

Therefore, the attenuation length depends on the chemical

compounds involved in the experiment. We propose a modi-

fication to the attenuation coefficient to account for the

attenuation due to the different chemical compounds where

the integral in the exponential function becomes

Z	max

0

X
�

��
�0��

d	; ð39Þ

with �� the attenuation length in a solution or solid made up

of the pure compound �, and �� the profile concentration of �.

This model is equivalent to a resistive model for the

attenuation length 1=�e =
P

� ��=�0 ��, and in the limit case of

dilute solution it is equivalent to the model investigated in this

work. A similar formulation was introduced in earlier works

(Baschenko, 1991; Eschen et al., 1995).

The influence of the total concentration profile is not

investigated because in the forward model it plays a similar

role as the attenuation length. However, since the model for

the total concentration is a simplification of reality, its effect

on profile reconstruction should also be the subject of further

investigation.

6. Conclusions

Throughout this work, we have shown that it is possible to

reconstruct absolute, quantitative concentration depth profiles

for individual target chemical states in aqueous solutions via

their XPS spectra. Hence, the concentration profiles of solu-

tion components can be inferred, paving the way for an

improved understanding of mechanisms and processes at the

liquid–air interface. We focused on reconstructing the depth

profile in the depth range [�1.5, 1.5] nm and [�1, 1] nm using

attenuation lengths either in the interval [1.62, 1.95] nm or

[1.28, 5.5] nm, and showed that the wider interval is more

favorable. The quality of the profiles strongly depends on both

the quality of the model and the quality of the data. Improving

the quality of the data is intrinsically limited by the physics of

the experiments and the resources; however, the uncertainty

of the measurement model can be considerably reduced by

narrowing the uncertainty in the values of the parameters, in

particular the values of the attenuation length. A relatively

low measurement noise level is favorable for profile recon-

struction, but it is not a critical issue because the inversion

model is built upon the statistical description of the noise.

Hence, for reasonably good signal quality, and assuming that

the peak fitting and background removal are of reasonably

good quality, improving the SNR is not of the highest priority.

The knowledge of the attenuation lengths in the model is

more critical than the SNR. However, the level of uncertainty

investigated in this work shows that current knowledge of

attenuation length should allow for depth profile reconstruc-

tion and that the quality and uncertainty of reconstruction are

conditional to the attenuation length uncertainty. The number

of probed attenuation lengths and their interval do matter

for depth profile reconstruction and should be considered as

critical parameters determining the accessible depth recon-

structions. The wide attenuation length was chosen to show-

case the possible gain for the inversion method when applied

to reconstruction over the interval [�1.5, 1.5] nm.

Furthermore, the geometry factor H is built upon a smooth

edge volume approximation of the sample. The approximation

of the total concentration �tot is chosen arbitrarily to represent

the smooth transition between the solution bulk and the

outside of the sample. Even though the parametric total

concentration is plausible, it remains an approximation of

reality that carries errors. Moreover, the transition length

parameter �r has to be defined for each sample, possibly

from MD simulations, and the reconstruction is conditional

to this value.

The a posteriori model (26) is sharp, however only if the

parameters of the model are precisely known. We have shown

that the MAP estimate of the profile is robust against uncer-

tainty in the attenuation length values and that profiles of

interest can be reconstructed, except if the variations are too

sharp. Moreover, the marginalization over the measurement

operator space is wider than the a posteriori model. Besides,

the variation in the estimation shows that, despite the ampli-

tude of covariance of the posterior models, the variability in

the estimates does not show such variability due to the regu-

larization. Therefore, we conclude that the inversion of XPS

data with PROPHESY is possible; however, the reconstruc-

tions should be reported along with the uncertainty level

in the attenuation length. Finally, for depth profiling XPS

experiments, we advocate for more attenuation lengths to be

probed and over a wider range.
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