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The mutual optical intensity (MOI) model is a partially coherent radiation

propagation tool that can sequentially simulate beamline optics and provide

beam intensity, local degree of coherence and phase distribution at any location

along a beamline. This paper extends the MOI model to non-ideal two-

dimensional (2D) optical systems, such as ellipsoidal and toroidal mirrors

with 2D figure errors. Simulation results show that one can tune the trade-off

between calculation efficiency and accuracy by varying the number of wavefront

elements. The focal spot size of an ellipsoidal mirror calculated with 100 � 100

elements gives less than 0.4% deviation from that with 250 � 250 elements, and

the computation speed is nearly two orders of magnitude faster. Effects of figure

errors on 2D focusing are also demonstrated for a non-ideal ellipsoidal mirror

and by comparing the toroidal and ellipsoidal mirrors. Finally, the MOI model

is benchmarked against the multi-electron Synchrotron Radiation Workshop

(SRW) code showing the model’s high accuracy.

1. Introduction

Free-electron lasers (Barty et al., 2009) and diffraction-limited

storage rings (Eriksson et al., 2014) have been developed

worldwide, with high photon brightness and high coherence

properties. Accurate simulation of partially coherent X-ray

propagation through a beamline can help determine the

optimal detector location and estimate the X-ray intensity

distribution on the detector (Chubar et al., 2011; Canestrari et

al., 2014). Also, experiments (Whitehead et al., 2009; Meng et

al., 2021) exploiting radiation coherence need to obtain the

degree of coherence and flux at the sample location to develop

experimental data processing algorithms and accurately

interpret experimental results.

Several software packages have been developed to calculate

partially coherent radiation propagation through beamlines,

such as Synchrotron Radiation Workshop (SRW) (Samoylova

et al., 2011; Chubar, 2014) and XRT (Khubbutdinov et al.,

2019) using the multi-electron approach, Comsyl (Glass &

Sanchez del Rio, 2017) based on coherence mode decom-

position, and HYBRID (Shi et al., 2014) combining ray-tracing

and wavefront propagation. Recently, we developed a new

model (Meng et al., 2015, 2017), which uses the mutual optical

intensity (MOI) to describe the partially coherent X-ray

radiation following the statistical optics theory. This MOI

model propagates the MOI function through beamline optics

and provides the beam intensity, coherence and phase infor-

mation at a specified beamline position. Unlike the multi-
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electron methods, the MOI model has the advantage of storing

the full MOI functions at any beamline location for sequential

simulation and interpretation of results.

We have already shown that the MOI model can simulate

non-ideal mirrors with one-dimensional (1D) figure error

profiles (Meng et al., 2017), mainly working for cylindrical

mirrors. This paper extends the MOI model to deal with non-

ideal two-dimensional (2D) optical systems, such as ellipsoidal

mirrors, toroidal mirrors and Kirkpatrick–Baez (KB) mirror

pairs. We use the MOI model to demonstrate the partially

coherent light propagation through ellipsoidal and toroidal

mirrors by studying beam intensity, degree of coherence and

phase distribution at the focal plane with and without mirror

figure errors. We also show that the calculation accuracy could

be improved by increasing the number of wavefront elements

at the cost of simulation time. Since the full coherence func-

tion is stored, the fast rough estimation and slow accuracy

calculation can be switched as needed, making the MOI model

a powerful beamline design tool. Finally, the MOI model is

benchmarked against SRW in simulating the focusing property

of a toroidal mirror.

2. Model description

2.1. MOI propagation through free space

The partially coherent beam is described by the MOI,

J(P1, P2), which is a four-dimensional function describing the

electric field distribution and the correlation between any two

points P1 and P2 . The MOI propagation through free space

can be represented by the equation (Mandel & Wolf, 1995,

Goodman, 2015)

J Q1;Q2ð Þ ¼

Z Z
J P1;P2ð Þ exp �i

2�

�
r2 � r1ð Þ

� �

�
� �1ð Þ

�r1

� �2ð Þ

�r2

dS1 dS2; ð1Þ

where J(P1, P2) and J(Q1, Q2) represent the MOI at the object

and image planes, respectively, � is the wavelength, S1 and S2

denote the surface of the object plane, Q1 and Q2 are any two

points at the image plane, r1 and r2 are the P1-to-Q1 and P2-to-

Q2 distances, respectively, and �(�1) and �(�2) are the incli-

nation factors for the inclination angles �1 and �2, respectively.

The intensity can be extracted from the MOI and can be

expressed as

I P1ð Þ ¼ J P1;P1ð Þ: ð2Þ

In the MOI model, the wavefront is separated into many small

elements to quantitatively solve the MOI propagation through

free space. When the element size is much smaller than the

beam size and the transverse coherence length, the beam

within a single element can be reasonably considered to have

full coherence and constant intensity. However, the beam

between any two elements is partial coherent. Therefore, the

propagation of each element of the MOI can be carried out

using the Fraunhofer or Fresnel approximation (Born & Wolf,

1999). Finally, the MOI at the image plane is obtained by

numerically summing the contributions of all elements.

The source coherence lengths � can be calculated from

(Vartanyants & Singer, 2010)

� ¼
4�2� 0 2

�2
�

1

4�2

� ��1=2

; ð3Þ

where � 0 and � are the r.m.s. divergence angle and r.m.s. size,

respectively. The normalized global degree of coherence of the

2D source can be obtained by using (Vartanyants & Singer,

2010)

C ¼

R R 1
�1

��Jðx1; x2; y1; y2Þ
��2 dx1 dx2 dy1 dy2R R 1

�1
Iðx; yÞ dx dy

� �2 ; ð4Þ

where I(x, y) is the intensity distribution of the 2D source.

The known coherence length � and source r.m.s. size � mean

that the degree of coherence and intensity are both Gaussian

distributions. Therefore, equation (3) is valid only for a

Gaussian Schell model source. The MOI J(x1,x2,y1,y2) is

independent of source type and can describe the degree

of coherence distribution more generally. Therefore, the

global degree of coherence can more accurately define the

coherence property.

2.2. MOI propagation through mirrors

The MOI model uses local ray tracing (Meng et al., 2017) to

analyze the path length distribution caused by the mirror

surface. The path length is the travel distance of a ray from the

incident plane to the exit plane. The incident and exit planes

are at zero distance from the mirror center and perpendicular

to the incident and exit optical axes, respectively, as shown

in Fig. 1. The direction of a ray is defined by the local phase

gradient of the wavefront. The MOI model evaluates the path

length distribution of all rays that impinge on and reflect off

the 2D mirror surface. The spatial coordinates of the incident

and exit planes are defined as P(u, v, w) and Q(x, y, z),

respectively. The transverse axes u, x and v, y define the

horizontal and vertical directions, respectively, while the

longitudinal axes w and z define beam propagation directions.

d1 and d2 are the object-to-mirror and the mirror-to-image

distances, respectively. Using Ji(Q1, Q2) and Je(Q1, Q2) to

represent the MOI at the mirror incident and exit planes,
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Figure 1
Schematic layout of the MOI propagation through a 2D mirror.



respectively, the MOI propagation through a 2D mirror can be

expressed as

Je Q1;Q2ð Þ ¼ Ji
~PP Q1ð Þ; ~PP Q2ð Þ
� �

t ~PP Q1ð Þ
� �

t ~PP Q2ð Þ
� �

ð5Þ

� exp i
2�

�

n
� Q1; ~PP Q1ð Þ
� �

� � Q2; ~PP Q2ð Þ
� �o� �

;

where �(Q, P) is the path length between the incident and

exit planes. ~PP Qð Þ is the coordinate transformation function

mapping the exit plane point to the incident plane through ray

tracing. Since this coordinate transformation is non-linear on

non-regular grids, the amplitude of the wavefront needs to be

scaled accordingly through the complex amplitude transmis-

sion function t½ ~PP Qð Þ� given by

tðx; yÞ ¼

ffiffiffiffiffiffi
du

dx

s
�

ffiffiffiffiffi
dv

dy

s
�

ffiffiffiffiffiffiffiffi
Ref

p
; ð6Þ

where Ref is the intensity reflectivity based on the incident

angle, which is assumed to be 1 in this case due to the small

incident angle. du and dv are local coordinate step sizes at the

incident plane; dx and dy are local coordinate step sizes at

the exit plane.
ffiffiffiffiffiffiffiffiffiffiffiffiffi
du=dx
p

and
ffiffiffiffiffiffiffiffiffiffiffiffi
dv=dy
p

are used to scale the

amplitude of the wavefront from the incident plane element

to the corresponding exit plane element. Finally, the MOI

propagation from the object plane to the image plane can be

carried out by a three-step sequential propagation, including

an object-to-incident plane free-space propagation using

equation (7) in Appendix A, an incident-to-exit plane mirror

propagation based on equation (5), and an exit-to-image plane

free-space propagation using equation (7).

3. Partially coherent light propagation through 2D
mirrors

3.1. Mutual optical intensity propagation through an
ellipsoidal mirror

The BL08U1B beamline at the Shanghai Synchrotron

Radiation Facility (SSRF) generates high coherent X-rays

for the soft X-ray interference lithography (XIL) experiment

(Xue et al., 2018). The beamline uses two cylindrical mirrors to

focus the beam at the exit slit plane at 26 m. An elliptically

polarized undulator (EPU) with a length of 4.2 m and a period

of 100 mm is used to generate the high-brilliance and partially

coherent beam.

The MOI of the source is described by the Gaussian Schell

model (Vartanyants & Singer, 2010). At 92.5 eV, the photon

source has r.m.s. sizes of �x = 155 mm and �y = 54.4 mm and

r.m.s. divergence angles of �0x = 51.7 mrad and �0y = 40.2 mrad,

calculated using SPECTRA (Tanaka & Kitamura, 2001),

with x and y denoting the horizontal and vertical directions,

respectively. The source coherence lengths are �x = 41.6 mm

and �y = 60.8 mm, calculated by using equation (3).

The normalized global degree of coherence of the 2D

source is obtained to be C = 0.067 by using equation (4). In this

section, a horizontally deflecting ellipsoidal mirror is designed

to replace the two cylinder mirrors at 22 m downstream of the

EPU source. The length and width of the ellipsoidal mirror

are 88 mm and 1.8 mm, respectively, with a grazing-incident

angle of 1.5�. The source (object)-to-mirror and mirror-to-

focus (image) distances are d1 = 22 m and d2 = 4 m, respec-

tively. The semi-major axis, the semi-minor axis and the pole

angle of the ellipsoid mirror are 13 m, 0.2456 m and 1.1275�,

respectively. The beam is focused horizontally (in the meri-

dional direction of the mirror) and vertically (in the sagittal

direction of the mirror) into the exit slit location (image plane)

at 26 m from the source.

The MOI propagation through the ellipsoidal mirror is

carried out using the MOI model, with a wavefront element

number of 150 � 150. The extracted beam intensity, local

degree of coherence and phase distributions at the mirror

incident plane are shown in Fig. 2. The beam intensity profile

[Fig. 2(a)] at the incident plane is approximately a Gaussian

distribution with r.m.s. sizes of �x = 1147.3 mm and �y =

893.9 mm. The local degree of coherence distribution between

any points and the central point is approximately a Gaussian

distribution as well, as shown in Fig. 2(b). The coherence

lengths are �x = 308.5 mm and �y = 993.2 mm obtained by

Gaussian fitting of the degree of coherence distribution rela-

tive to the center point on the x and y axes, respectively.

The global degree of coherence obtained from equation (4)

remains the same value (0.067) as the source since the free-
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Figure 2
(a) Intensity, (b) degree of coherence between any point and the central point and (c) phase distributions shift relative to the center point at the mirror
incident plane.



space propagation does not alter the beam coherence. Note

that the MOI model can also give the local degree of coher-

ence value between any two points. The phase distribution

[Fig. 2(c)] at the mirror incident plane is a divergent spherical

wave with a spherical wave radius of 22 m. The phase distri-

bution is shifted relative to the center point. The concentric

feature is from the phase wrapping.

From the MOI at the focal plane, the intensity, degree of

coherence and phase distributions are extracted and shown

in Figs. 3(a)–3(e). The intensity profile [Fig. 3(a)] at the focal

plane is still Gaussian with an r.m.s. spot size of �x = 33.9 mm

and �y = 13.9 mm. Due to the diffraction effect from the finite

size of the ellipsoidal mirror, one can find apparent oscillations

in the degree of coherence image in Fig. 3(b). For simplicity

and relative comparison only, we define the coherence length

as FWHM/2.35 of the central peak of the degree of coherence

distribution and extract the global degree of coherence value

using equation (4). Then the coherence lengths at the focal

plane are �x = 10.7 mm and �y = 23.5 mm, and the corre-

sponding global degree of coherence is 0.17. This increase

in the global degree of coherence compared with the value

(0.067) at the mirror incident plane is a result of the finite

aperture of the mirror acceptance. The degree of coherence

has high value in the edge regions where the intensity is almost

zero, as shown in Fig. 3(b). The regions with high coherence

but low intensity have no interest to us. Therefore, the degree

of coherence weighted by intensity is used to describe the

available degree of coherence distribution. The degree of

coherence distribution with the intensity-weighted transpar-

ency in Fig. 3(c) shows a smaller central region in the y-axis

direction compared with Fig. 3(b), indicating that the beam

is nearly fully coherent in the vertical direction. The phase

distribution in Fig. 3(d) shows the cosine of the phase shift

relative to the center point. We define the flat plane wave

size as where the cos(phase) value is larger than 0.98 for

comparison only. The flat plane wave size is 81.1 mm (H) �

107.7 mm (V), indicating the excellent point-to-point focusing

property of the ideal ellipsoidal mirror. Like the degree of

coherence distribution with intensity-weighted transparency,

the region with low intensity has no interest to us, so we added

the cos[’(Q1)] weighted with intensity where ’(Q1) is the

phase at the point Q1. Due to the flat plane wave size being

larger than the spot size, the cos(phase) distribution with

the intensity weighted transparency shown in Fig. 3(e) has a

similar profile to the intensity distribution [Fig. 3(a)].

Since the efficiency and accuracy of the numerical simula-

tion are crucial for the beamline design, we use the above

case to study the effects of wavefront element numbers. The

intensity spot size (black square line) in the vertical direction

at the image plane and simulation time (blue circle line) from

source to focus are plotted as a function of the element

number in Fig. 3( f). Increasing the element number improves

the simulation accuracy at a cost of calculation time. The

calculation with 100 � 100 elements gives less than 0.4%

deviation from the saturation value obtained with 250 � 250

elements, which is acceptable for most beamline design cases.
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Figure 3
(a) Intensity, (b) degree of coherence between any point and the central point, (c) intensity-weighted degree of coherence distribution, (d) phase
distributions at the focal plane and (e) intensity-weighted cos(phase). ( f ) Intensity spot size �y (black square line) in the vertical direction at the image
plane and calculation time (blue circle line) as a function of the wavefront element number (in each x and y direction) used in the MOI model.



The computation time is 1.5 min with 100 � 100 elements

compared with 1.8 h with 250 � 250 elements. More impor-

tantly, one can choose the balance between the accuracy and

efficiency of the MOI model by changing the element number

at each calculation plane, which is very user-friendly for

beamline designers. All MOI simulations shown here were

performed on a single NVIDIA A100 Tesla GPU (80 GB

RAM). The calculation efficiency can be further improved by

adding more GPUs or algorithm optimization.

3.2. MOI propagation through non-ideal 2D mirrors

Using geometric ray tracing to directly calculate the path

length for the mirror with figure error, the MOI model can

analyze the MOI propagation through a non-ideal mirror as

shown for a 1D system (Meng et al., 2017). Here, we extend the

MOI model and demonstrate the model capability by simu-

lating a non-ideal 2D mirror. The 2D figure error profile with

an r.m.s. height error of 20 nm was generated using the height

profile simulator module in OASYS (Rebuffi & Sanchez del

Rio, 2017) and shown in Fig. 4(a). The corresponding slope

errors in the x (meridional) and y (sagittal) directions are

2 mrad and 10 mrad, respectively.

The MOI propagation was then carried out with the figure

error added to the ellipsoidal mirror in Section 3.1. The

extracted intensity distribution at the focal plane is shown

in Fig. 4(b). The r.m.s. spot sizes are �x = 35.6 mm and �y =

14.0 mm. Compared with the spot sizes of �x = 33.9 mm and

�y = 13.9 mm for the ideal mirror case in Fig. 3(a), the figure

error has a larger effect on the beam focus in the mirror

meridional direction, as expected for the grazing incident

optics. Fig. 4(c) shows the degree of coherence between any

point and the central point. The coherence lengths at the focal

plane are �x = 11.6 mm and �y = 23.9 mm, and the corre-

sponding global degree of coherence is still 0.17. Thus the

figure error can change the degree of coherence distribution at

the focal plane but not the global degree of coherence. The

degree of coherence distribution with the intensity-weighted

transparency shown in Fig. 4(d) again shows a smaller central

region in the y direction. Fig. 4(e) shows the phase distribution

at the focal plane. The plane wave part has a size of

61.5 mm (H) � 71.5 mm (V), noticeably smaller than that in

Fig. 3(d) for the ideal mirror, which indicates that the figure

error can distort the wavefront and reduce the plane wave size.

This knowledge of local coherence and phase distribution can

be helpful for beamline experiment design and optimization.

The cos(phase) distribution with the intensity-weighted

transparency is shown in Fig. 4( f), which has apparent asym-

metry in the x direction resulting from the figure error effects.

3.3. Focusing properties of ellipsoidal and toroidal mirrors

This section compares intensity distributions at the focal

plane of an ellipsoidal mirror and a toroidal mirror using

the MOI model with two mirror-to-image distances, d2 = 1 m

and 11 m. A layout sketch describing the beam propagation

through the ellipsoidal or toroidal mirrors is shown in Fig. 1.

For the toroidal mirror with d2 = 11 m, the major and minor

research papers

906 Xiangyu Meng et al. � Mutual optical intensity propagation J. Synchrotron Rad. (2023). 30, 902–909

Figure 4
(a) Figure error of the ellipsoidal mirror, (b) intensity, (c) degree of coherence between any point and the central point, (d) intensity-weighted degree of
coherence distribution, (e) phase distributions at the focal plane and ( f ) intensity-weighted cos(phase).



radii are 560.2894 m and 0.3839 m, respectively. For the

toroidal mirror with d2 = 1 m, the major and minor radii

are 73.0812 m and 0.050 m, respectively. The induced phase

difference between the ellipsoidal and toroidal mirrors is

given by ’ = 2�/�(�ell � �tor), where �ell and �tor are the path

lengths between the incident and exit planes for the ellipsoidal

and toroidal mirrors, respectively. Figures 5(a) and 5(b) show

the phase difference between the two mirrors for d2 = 1 m and

11 m, respectively. The ellipsoidal mirror is considered the

ideal shape for point-to-point focusing with any magnification

factor. On the other hand, the toroidal mirror can only provide

perfect focusing with a 1:1 magnification, or d2 = d1. The larger

the difference between d1 and d2, the more prominent aber-

ration (deviation from the ideal ellipsoidal shape) the toroidal

mirror suffers from. Thus the phase difference for the d2 = 1 m

case in Fig. 5(a) is much bigger than the d2 = 11 m case in

Fig. 5(b). Figures 5(c) and 5(d) show the intensity distribution

at the focal plane of the ellipsoidal mirror for the mirror-to-

image distances d2 = 1 m and 11 m, respectively, while Figs. 5(e)

and 5( f) show the results of the toroidal mirror. For the d2 =

1 m case, the r.m.s. spot size is 8.4 mm (H)� 3.6 mm (V) for the

ellipsoidal mirror [Fig. 5(c)], compared with 12.5 mm (H) �

4.3 mm (V) for the toroidal mirror [Fig. 5(e)]. The focal spot

of the toroidal mirror shows apparent coma aberration in

the meridional (horizontal) direction. The broadening effect

in the sagittal direction is less but still notable. Thus, the

capability of simulating in 2D is essential for these 2D focusing

mirrors, especially for evaluating the effect of 2D figure errors.

For the d2 = 11 m case, both mirrors provide a similar spot size

of 92.3 mm (H) � 38.2 mm (V) [cf. Figs. 5(d) and 5( f)]. These

simulation results are consistent with the geometric-optics

description. Furthermore, the MOI propagation captures all

the wave-optics phenomena, such as predicting a larger spot

size than the demagnified source size by including the

diffraction effect of the finite mirror acceptance aperture.

3.4. Benchmarking the MOI model against SRW

We use the toroidal mirror as an example to benchmark

the MOI model against multi-electron SRW simulation. The

toroidal mirror has a grazing-incident angle of 1.5� with object

distance of 22 m and image distance of 4 m. In SRW, the

partial coherence of the beam is taken into account by

propagating the radiation from individual micro-electrons

and sums up intensities at a given observation plane (Chubar,

2014). In the MOI case, 150 � 150 wavefront elements were

considered. In the SRW case, 5000 electrons were considered.

The comparison results of the two methods are shown in Fig. 6.

The intensity distribution at the focal plane extracted from the

MOI model in Fig. 6(a) has an r.m.s. spot size of 33.8 mm (H)�

14.0 mm (V), while the focal spot size from SRW calculation in

Fig. 6(b) is 32.6 mm (H) � 12.6 mm (V). Figures 6(c) and 6(d)

compare the integrated intensity profiles from the two

methods in the horizontal and vertical directions, respectively.

The MOI model and SRW calculation generally give intensity

profiles in close agreement. The slight difference between
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Figure 5
Phase difference between the ellipsoidal and toroidal mirrors for two mirror-to-image distances (a) d2 = 1 m and (b) d2 = 11 m. Intensity distribution of
the focal spot for the ellipsoidal mirror for two mirror-to-image distances d2 = 1 m (c) and d2 = 11 m (d). Intensity distribution of the focal spot for the
toroidal mirror for two mirror-to-image distances (e) d2 = 1 m and ( f ) d2 = 11 m.



their results is insignificant for most beamline design and

simulation applications. The deviation is acceptable consid-

ering that the two models use very different approaches in

simulating the undulator source, propagating through free

space and optics, and extracting results. The simulation times

for the MOI model and the multi-electron SRW are 10.4 min

and 172 min, respectively.

4. Conclusions

As an advanced mutual coherence simulation tool, the MOI

model aims to provide complete information on the partially

coherent radiation, including intensity, degree of coherence

and wavefront phase, with high accuracy and reasonable

computation efficiency. Modern computer development

makes it possible to numerically integrate the four-dimen-

sional MOI. Since the MOI is stored at any calculated plane,

beamline simulation can be conducted stepwise with opti-

mized parameters for each step. Changing the number of

wavefront elements allows switching between fast estimation

and accurate simulation, making the MOI model a user-

friendly beamline design tool.

In this paper, the MOI model is extended to include non-

ideal two-dimensional optics, where the robustness and effi-

ciency are even more critical due to the large data volume. It is

thus essential to show that simulation with 100 � 100 elements

can provide sufficiently accurate results (<0.4% deviation

from the saturation value with 250 � 250 elements) with

nearly two orders of magnitude higher speed. Using the MOI

model, we simulated the beam propagation through ellipsoidal

and toroidal mirrors with and without figure errors. The MOI

model can successfully describe the effects of 2D mirror

figures and height errors by calculating the path length

through local ray tracing. Finally, the MOI model is bench-

marked against SRW with good agreement. With the exten-

sion to 2D mirrors, the MOI model covers an extensive range

of advanced beamline optics and is a powerful tool for

coherence-related beamline simulation.

APPENDIX A
The MOI at the image plane is obtained by numerically

summing the contributions of all elements and can be

expressed as

J Q1;Q2ð Þ ¼
X
mn

Amn Q2ð Þ
�
X

jk

J P1;P2ð ÞAjk Q1ð Þ

" #( )
; ð7Þ

where j, k, m and n are the element indexes at the object plane,

and with

Ajk Q1ð Þ ¼

Z
exp i

2�

�
r Sjk;Q1


 �
þ i’ Sjk


 �� �
� �1ð Þ

�r Sjk;Q1


 � dSjk;

ð8Þ

where ’(Sjk) is the phase distribution within the element

surface Sjk.

The MOI can be expressed as

J P1;P2ð Þ ¼
�
I P1ð Þ I P2ð Þ

�1=2
�12 P1;P2ð Þ
�� �� exp i’12ð Þ; ð9Þ
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Figure 6
Intensity distribution at the focal plane of a toroidal mirror obtained from (a) the MOI model and (b) the SRW simulation. Integrated intensity profiles
in (c) the horizontal direction and (d) the vertical direction using the MOI model (black curves) and SRW (red curves).



where I(P1) and I(P2) are the intensities at the points P1 and

P2, respectively, |�12(P1, P2)| is the degree of coherence

between the two points P1 and P2, and ’12 is the phase

difference between the two points. One can extract the

intensity, local degree of coherence and phase distribution

from the MOI.
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