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Modern X-ray free-electron laser (XFEL) sources can deliver photon pulses

with millijoule pulse energies and megahertz repetition rate. As shown by the

simulations in this work, for particular cases the dynamical heat load effects for

Bragg reflectors could cause problems at these facilities. These problems would

be underestimated if only quasi-static thermoelastic simulations are considered.

Nevertheless, for the sake of simplicity the quasi-static approach is a common

choice for estimating heat load effects. To emphasize the relevance of dynamical

thermoelastic effects, the response to the partial absorption of an X-ray pulse, as

provided by a saturated X-ray free-electron laser oscillator (XFELO) in a single

crystal diamond with a thickness of 100 mm and lateral dimensions in the

millimetre range, is discussed in this work. The outcome of the dynamic

thermoelastic simulations indicates a clear dominance regarding the strain value

reached, which is present for consecutive X-ray matter interactions with

megahertz repetition rate.

1. Introduction

Powerful X-ray sources provide interesting opportunities to

characterize the structure and dynamics of materials and

address fundamental questions in various areas. These

perspectives motivated the development of accelerator facil-

ities which provide X-ray photon sources with extremely high

brilliance and excellent coherence properties.

X-ray free-electron laser (XFEL) sources can achieve

repetition rates in the megahertz range, by using super-

conducting accelerating cavities. The delivered photon pulse

energies can exceed the millijoule range with pulse durations

in the femtosecond range. The European XFEL is the first

operating facility offering megahertz repetition rates with

hard X-rays (Decking et al., 2020). Additional XFEL facilities

with similar photon beam parameters are SHINE (Huang et

al., 2021) and LCLS-II-HE (Schoenlein, 2016), which are

going to be commissioned in the coming years. The unique

X-ray photon beam parameters of these modern XFELs are

a great opportunity for cutting-edge experiments in various

research fields. However, the heat load and accompanied

thermoelastic effects may give rise to new challenges

regarding the stable operation of optical components. In this

work, the dynamic deformation due to a pulsed heat load

will be discussed in the context of a thin crystal diamond

Bragg reflector.

The absorbed energy of a Bragg reflector while undergoing

reflection and transmission of a powerful X-ray pulse can

introduce an absorbed energy of tens of microjoules, which

may be distributed over a volume given by a spot size of tens

of micrometres in the lateral direction and tens of micrometres
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in the thickness direction (Huang & Deng, 2020). These values

have been obtained by simulation of an X-ray free-electron

laser oscillator (XFELO). XFELOs provide a promising

opportunity for modern fourth-generation X-ray facilities to

reach fully coherent photon pulses with stable pulse energy,

when saturation is reached. However, as will be illustrated

in this work, stable operation of an XFELO will be heavily

impeded by thermoelastic effects. While this work focuses on

the thermoelastic effects relevant for an XFELO, it should

be pointed out that other components of modern fourth-

generation X-ray facilities like thin crystal spectrometers

(Boesenberg et al., 2017) and self-seeding setups (Amann et

al., 2012) might also be affected.

The absorbed energy given by a saturated XFELO pulse

can cause a rapid temperature rise, which sets off the propa-

gation of displacement waves inside the crystal. The theore-

tical framework used in this work is based on the

approximation that the investigated diamond crystal can

be considered as a continuum for thermoelastic simulations.

Using Newton’s second law to define the equation of motion

and the laws of thermodynamics in combination with Fourier’s

heat transfer law gives the opportunity to derive equations

of thermoelasticity, defined by coupled partial differential

equations (PDEs). These PDEs have to be solved in terms of

the variables temperature and displacement field.

The investigation of the thermoelastic wave propagation

may be simplified by decoupling the PDEs assuming that the

impact of the displacement field on the temperature profile

can be neglected. In such a case the PDE describing the

temperature field may be solved first. The solution of the

temperature profile can then be used to describe the dynamic

development of the displacement field. An even stronger

simplification may be considered in cases where the

temperature rise is approximated to be instantaneous and

varying only in one spatial dimensional perpendicular to the

surface of a crystal. Such one-dimension cases can be solved

analytically with quite simple expressions. The solution is a

one-dimensional wave propagation. For particular cases it

has been confirmed by pump–probe experiments that those

approximated solutions are indeed in good agreement with

experimental data (Thomsen et al., 1986; Rose-Petruck et al.,

1999; Stoupin et al., 2012). The quasi-static three-dimensional

effect of pulsed heat load in a Bragg reflector has been

investigated in detail for low temperatures (Qu et al., 2021).

Dynamic three-dimensional wave propagation has been

investigated theoretically by Yang et al. (2018) and Qu (2020)

using numerical approaches. Three-dimensional wave propa-

gation at low temperatures has been investigated experimen-

tally and theoretically in the context of a PhD project (Bahns,

2021), which is related to the topic of this paper.

In this paper the three-dimensional wave propagation will

be investigated, not only numerically but also by a detailed

comparison with simplified analytical solutions, to assess the

reliability of the numerical simulation. The described simula-

tions presented in this work may be useful to investigate the

thermoelastic interaction caused by the heat load of pulsed

X-ray radiation in general. Nevertheless, for the sake of clarity

only one example of a particular case relevant for a saturated

XFELO will be discussed in detail in this work.

2. Material properties of diamond Bragg reflectors

Owing to its outstanding physical properties regarding stabi-

lity under heat load, diamond is a preferred choice (Shvyd’ko

et al., 2017) for Bragg reflectors that are interacting with

powerful X-ray photon pulses.

The elastic properties of diamond are nearly temperature

independent in the range between near zero Kelvin and 400 K

(Shao et al., 2012) and will therefore be considered constant

in the context of this work. It should be mentioned that the

elastic properties, even of a perfect single crystalline Bragg

reflector with a cubic lattice, are not isotropic (Hopcroft et al.,

2010). However, by analyzing the anisotropic elastic proper-

ties of diamond in various orientations, it may be concluded

that the isotropic elasticity is a reasonable approximation

which introduces acceptable systematic errors (Bahns, 2021).

In this work a mean value for Young’s modulus of E =

1125 GPa and a Poisson ratio � = 0.076 will be used. For the

temperature-dependent specific heat capacity c, values can

be calculated by ab initio simulations. The results of such a

simulation, using the exciting code version nitrogen (Gulans et

al., 2014), are illustrated in Fig. 1(c). Even if a real diamond
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Figure 1
Temperature-dependent material constants of diamond: (a) thermal
conductivity, (b) thermal expansion coefficient, (c) specific heat capacity
and (d) phonon mean free path, where the highlighted values at 1 mm and
100 mm can be considered as characteristic length scales for the
simulations carried out in this work.



with lateral dimensions in the millimetre range always

contains some kind of defect due to non-perfect manu-

facturing processes, the material properties of single crystals

with diamond structure calculated by ab initio simulations,

assuming a perfect lattice, are in very good agreement with

measured values of real crystals (DeSorbo, 1953). For the

temperature-dependent thermal expansion coefficient �, a fit

of experimental data obtained by Jacobson & Stoupin (2019)

is considered as shown in Fig. 1(b). For the mass density, a

value of � = 3516 kg m�3 is used.

The value of the thermal conductivity of single-crystalline

diamond with a 13C isotope content of 1.1%, measured by Wei

et al. (1993), is illustrated in Fig. 1(a). It is important to note

that the thermal conductivity is, in contrast to the thermal

expansion coefficient and the heat capacity, a non-equilibrium

property. The thermal conductivity may be referred to as the

empirical Fourier law of heat conduction. This empirical law

can also be derived from solid state physics, by considering

phonons to be the dominant heat carriers in a diamond crystal.

However, in this context, Fourier’s law of heat conduction is

only a valid assumption if the mean free path of the phonons is

sufficiently smaller than the length scales of interest and if the

mean scattering time is sufficiently shorter than the timescales

of interest. Only then can a meaningful local thermodynamic

equilibrium be assumed due to scattering processes (Gross &

Marx, 2012). The mean free path lmfp as illustrated in Fig. 1(d)

can be estimated by lmfp = 3�/(c�v) and the related mean

scattering time by � = l /vs, where vs is the mean phonon speed.

For the calculation of the mean free path the mean velocity

v = 11144.6 m s�1, derived from the Debye temperature TD =

1861 K, has been used for the calculation.

3. Thermoelastic PDEs

This section presents a short overview of the derivation for the

PDE which can be used to investigate thermoelastic problems.

Further information regarding a detailed derivation of the

formulae introduced in this section are given by Nowacki

(1968), Banerjee (2006) and Bahns (2021).

Starting with the first law of thermodynamics and consid-

ering balance of energy, a local principle of energy conserva-

tion can be derived,

_UU � r : rrrvð Þ þ rrr � q�Q ¼ 0: ð1Þ

Here, U is the internal energy per unit volume, r the Cauchy

stress tensor, v the particle velocity, q the heat flux vector and

Q is an external heat source. All quantities in equation (1) are

a function of space and time. Considering further the Clau-

sius–Duhem inequality, which is connected to the second law

of thermodynamics, equation (1) may be expressed in terms of

an equation describing the local entropy,

T _SS ¼ �rrr � q þQ: ð2Þ

Here, T is the absolute temperature and S is the entropy per

unit volume. Both quantities are functions of space and time.

Considering the balance of linear momentum, an equation

of motion, connected to Newton’s second law, can be derived,

rrr � r ¼ � _vv; ð3Þ

where � is the mass density, which is assumed to be a constant

quantity in the context of this work. In the presented formu-

lation of equation (3), the term for body forces is neglected.

However, it should be mentioned that, in the context of

interactions of powerful X-ray pulses with Bragg reflectors,

the radiation pressure may be considered a kind of body force,

but this effect appears to be orders of magnitude smaller than

thermoelastic effects (Bahns et al., 2018) and therefore will not

be further discussed in this work.

The connection between stress tensor r and the strain

tensor ��� can be expressed by the stiffness tensor C. Assuming

elastic isotropic material constants, the stiffness tensor can be

expressed in terms of just two elastic constants given by

Young’s modulus E and the Poisson ratio �. In the context

of this paper, only small deformations are considered, which

means that the gradient of each displacement component is

sufficiently smaller than 1, so that higher-order terms can be

neglected. Considering small temperature changes, such that

�(T0 + �T) ’ �(T0), the Duhamel–Neumann relation for an

axisymmetric case may be expressed, using matrix notation, by

��r�r

�		

�zz

��rz

2
6664

3
7775¼

E

1þ vð Þ 1� 2vð Þ

1� v v v 0

v 1� v 1 0

v v 1 0

o 0 0 1�2v
2

2
6664

3
7775

��r�r

�		

�zz

2��rz

2
6664

3
7775

�
E

1� 2�
��T

1

1

1

0

2
6664

3
7775: ð4Þ

Here, �r is the radial distance, 	 the azimuth and z the height

of the cylindrical coordinate system. The thermal expansion

coefficient � is an isotopic quantity for a cubic single-crystal-

line material. The temperature rise �T is a function of space

and time and can be defined with respect to an initial

temperature value T0. The non-zero strain components are for

an axisymmetric case,

��r�r
¼
@u

@�r

; �		 ¼
u

�r

; �zz ¼
@w

@z
; ��rz ¼

1

2

@u

@z
�
@w

@�r

� �
;

where u is the displacement in the �r-direction and w the

displacement in the z-direction. The value �th = ��T expresses

the thermal strain. If a transient thermoelastic problem

is investigated where the temperature dependence of the

thermal expansion coefficient has to be considered, the

thermal strain can be calculated, under the assumption

� T 0ð Þ � 1, by the integral �th =
R T

T0
�ðT 0Þ dT 0, where T = T0 +

�T is the value of the absolute temperature. Using the secant

thermal coefficient

�s ¼

R T

T0
� T 0ð Þ dT 0

T � T0

;
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equation (4) may also be used in the same form, also for

investigating transient thermoelastic problems with tempera-

ture-dependent thermal expansion coefficient.

In case of axisymmetry, equation (3) can be expressed as

@��r�r

@�r

þ
@��rz

@z
þ

1

�r

��r�r
� �		

� �
¼ � €uu;

@��rz

@�r

þ
@�zz

@z
þ

1

�r

��rz ¼ � €ww:

ð5Þ

Using Fourier’s law of heat conduction, q = � krrrT, and the

constitutive relation for the entropy, equation (2) can be

expressed for the axisymmetric case by

1

�r

@

@�r

�r ��r�r

@�T

@�r

� �
þ
@

@z
�zz

@�T

@z

� �
¼ �c _�T�T �Q; ð6Þ

where �zz and ��r�r
are the only non-zero components of the

thermal conductivity tensor k and c is the heat capacity

per unit mass, also called the specific heat capacity. For the

interpretation of equation (6), considering the thermal diffu-

sivity given by a = �=�c may help. A phenomenological

explanation of the diffusivity a can be given by noticing that

@�T=@�r and @�T=@z are connected to the gradient of a scalar

field, in this case the temperature field, and thus a is related to

the capability of the material to change a spatial temperature

difference in a finite time span. Since the diffusivity is

proportional to the value of the mean path, the plot in Fig. 1(d)

represents, apart from a constant factor, also the temperature

dependence of the diffusivity. Therefore, it can be directly

seen from Fig. 1(d) that the diffusivity at low temperatures is

orders of magnitude higher compared with room temperature.

In equation (6), a term has been neglected which may be

referred to as thermoelastic damping. It should be mentioned

that in this work damping effects are not further discussed.

Including damping may be the next step regarding an exten-

sion of the simulations presented in this work. However,

including damping effects is quite challenging because several

other damping effects (Rodriguez et al., 2019), apart from

thermoelastic damping, may have an important impact on the

total damping and should therefore be included in the theo-

retical framework of such a proceeding work. Nevertheless,

measurements (Bahns, 2021) under comparable circumstances

as investigated here have revealed that thermoelastic wave

propagation caused by pulsed laser heating can be properly

approximated without any damping effects on a timescale of

about 222 ns after photon–matter interaction. Hence, the

presented formulation of this work may be a good starting

point to investigate thermoelastic effects relevant for modern

FEL facilities with MHz repetition rate.

Using equation (6), a solution for the temperature field can

be calculated directly without considering the impact of a

displacement field. This solution of the temperature field

may then be used to solve the dynamic development of the

displacement field, which can be calculated by solving the

PDE given by inserting equation (4) into equation (5).

4. Solutions for thermoelastic PDEs

It is assumed that the heat load Q as provided by the absorbed

X-ray pulse can be described by an exponentially decaying

function in depth and an axisymmetric Gaussian function

along the lateral direction,

Q z; �r; tð Þ ¼ T tð Þ
2Qtot


�W2 exp �
2�2

r

W2

� �
exp �z=
ð Þ; ð7Þ

where T tð Þ ¼
1

2��2
0

� �1=2
exp �

t � 5�0ð Þ
2

2�2
0

� �

and tp ¼ 2
ffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

�0:

Here, W is the spot size in the lateral direction, 
 is a measure

of a characteristic length on which the value of Q decreases

exponentially, and Qtot is the total absorbed pulse energy. For

the above formula it is approximated that the crystal dimen-

sions are much larger than the characteristic length scales W

and 
. It is further assumed that the entire absorbed energy

is converted into heat. For the simulations carried out in this

work the values Qtot = 10 mJ, 
 = 20 mm and W = 50 mm are

considered. These values are similar to the heat load given

by a saturated XFELO pulse calculated by Huang & Deng

(2020). The crystal geometry is assumed to be cylindrical with

radius in the lateral dimension R0 = 1000 mm and thickness d =

100 mm, and the heat profile given by equation (7) is assumed

to be located in the center of the crystal. In the temporal

domain, the heat load is modeled by a function T tð Þ, which is

chosen to have a Gaussian profile with standard deviation �0 .

It represents a temporal profile of the heat load, that may be

interpreted as a thermalization time which is followed by the

absorption of an X-ray photon pulse with femtosecond pulse

duration. The value of t p represents the full width at half-

maximum value of T tð Þ. The center position of the Gaussian

profile is shifted by 5�0 . With this choice the values t < 0

become negligibly small such that the approximationR1
0 T tð Þ dt ’ 1 can be used.

For the temporal profile two values off t p, i.e. t p = 200 ps

and t p = 600 ps, are considered in this work. The choice of

these particular values will be explained in the next sections.

Considering the absorption of an X-ray pulse with femto-

second pulse duration it may be expected that thermalization

takes place on the timescale of a few picoseconds (Ziaja et al.,

2015) and therefore the chosen values for t p may be expected

to underestimate the rapid dynamics of the thermalization

effect. However, as will be discussed below, this possible

systematic error seems to have a neglectable impact on the

simulation results in terms of predicting the order of magni-

tude of the investigated thermoelastic deformation.

In this work, two different initial temperature values, T0 =

70 K and T0 = 300 K, for the crystal will be considered. Due

to the strong temperature dependence of the material para-

meters (Fig. 1), the choice of the initial temperature value

has a significant impact on the thermoelastic problem under

consideration. It should be mentioned that the value of the

phonon mean free path at T0 = 70 K is about 200 mm. This
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value is larger than the crystal thickness and the length 
.
Therefore, the assumption of a local thermodynamic equili-

brium, which has been assumed for the derivation of the PDEs

in Section 3, seems to be violated. Nevertheless, measure-

ments (Bahns, 2021) for similar cases, as investigated in this

work, revealed that the PDEs derived in Section 3 seem to be

still applicable also for initial temperatures in the range of T0 =

70 K. However, it must be admitted that systematical errors

cannot be excluded for the simulations presented in the

following sections. Further, it should be mentioned that when

the mean free path exceeds the value of the characteristic

thermal transport length, this can have a significant impact on

the thermal conductivity. Studies revealed that a reduction

of the effective thermal conductivity could be observed for

diamond Bragg reflectors under cryogenic cooling (Qu et al.,

2021). Therefore, the diffusivity at temperatures in the range

of T0 = 70 K may actually be lower than expected by the

theoretical framework used in this paper.

Using the above-mentioned assumptions, a two-dimen-

sional axisymmetric case can be simulated to investigate a

symmetric three-dimensional wave propagation. However,

before presenting the simulation results of the three-dimen-

sional wave propagation, some simplified cases will be

presented. These simulations represent important pre-

considerations for the quite complicate three-dimensional

wave propagation.

4.1. Temperature development

If heat conduction is neglected, equation (6) reduces to

0 = �c _�T�T �Q. Further, assuming an instantaneous heating

yields, by using the spatial profile of equation (7),

2Qtot


�W2
exp �

2�2
r

W2

� �
exp �z=
ð Þ ¼ �

Z T0þ�T

T0

c T 0ð Þ dT 0: ð8Þ

Since the function of c(T 0) and all other values apart from �T

are known in equation (8), it can be solved numerically. By

using Gaussian quadrature for numerical integration and from

the SciPy module (Virtanen et al., 2020), scipy.optimize.fsolve

gives, for the above-mentioned values, Qtot = 10 mJ, 
 = 20 mm

and W = 50 mm, a maximum temperature rise, located at (�r =

0, z = 0), of �T = 57.22 K for an initial temperature of T0 =

300 K, and a value of �T = 209.94 K for T0 = 70 K.

Including heat conduction, equation (6) and the heat load

function given by equation (7) may be solved by using a finite-

element method (FEM). In this work the Heat Transfer

Module from the software COMSOL Multiphysics 6.0 is used

for this purpose. To check the reliability of the FEM simula-

tion the heat conductivity may first be set to zero to check if

the mesh resolution and time stepping is accurate enough to

reproduce the temperature rise, given by the solution of

equation (8). This procedure has been carried out for all

simulations presented in the following and revealed that for

the chosen parameters the error is much less than 1%. For the

calculation a mesh with quadratic elements with a uniform

spacing of 2 mm has been used. For the time solver a backward

differentiation formula solver with variable time stepping is

chosen and the temperature dependency of the material is

taken into account by Newton–Raphson iterations.

Considering now a periodic heat load for the above-

mentioned cylindrical diamond crystal geometry (d = 100 mm,

R0 = 1000 mm), the temperature development for the first 40

pulses of a pulse train with a repetition rate of 4.5 MHz will be

investigated. Each pulse gives, as defined by equation (7), a

heat load with Qtot = 10 mJ, 
 = 20 mm, W = 50 mm and tp =

200 ps. The initial temperature of the crystal is assumed to be

T0 = 70 K. To investigate the impact of the thermal boundary

conditions, three different cases are investigated. First, a

crystal with insulated boundaries; second, a crystal with a

fixed temperature of the lateral side boundaries at �r = R0,

which have the value of the initial temperature; and,

third, lateral boundaries with a heat transfer coefficient of

3 � 106 W m�2 K�1 connected to a heat reservoir with the

initial temperature are considered. The results for the

temperature development of the maximum temperature

located at (�r = 0, z = 0) are illustrated in Fig. 2. It can be seen

that the temperature rise peak value for the first pulse is about

276 K, which is, owing to the strong diffusivity, slightly smaller

than the maximum reachable value of 279.94 K given by the

solution of equation (8). Choosing a value smaller than tp =

200 ps would bring the value introduced by the first pulse

nearer to the maximum reachable value. However, this would

significantly increase the computation time and would give no

new insights regarding the simulation results.

It can be seen in Fig. 2 that compared with insulated

boundaries the final temperature rise is significantly smaller

when the lateral boundaries have a fixed temperature value.

However, even for the quite high heat transfer coefficient of

3 � 106 W m�2 K�1 the temperature development is only

slightly different compared with a case with insulated

boundaries. Copper is a common choice for a Bragg reflector

holder and the coefficient for copper to copper is in the range

of a few thousand W m�2 K�1 (Mykhaylyk et al., 2012). Hence,

for simulations investigating the heat transfer to a copper
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Figure 2
Development of the maximum temperature for a periodic heat load with repetition rate of 4.5 MHz, considering different thermal boundary conditions.
The initial temperature of the cylindrical diamond crystal is T0 = 70 K.



holder on time spans as illustrated in Fig. 2 the temperature

development would be similar to the insulated boundaries

case. Therefore, the common choice for heat load simulations

to assume fixed temperature boundaries should better be

changed to thermal insulating boundary conditions for parti-

cular cases. Nevertheless, the problem with the low heat

transfer coefficient and connected temperature stack up may

be overcome by choosing a larger crystal volume and a larger

contact area for the heat transfer to the holder.

4.2. Quasi-static heat bump effect

Now the deformation caused by a static temperature profile

will be discussed by neglecting dynamical mechanical effects.

Using the temperature profile from Section 4.1 and applying

equations (4) and (5), one can obtain the deformation in a

diamond crystal with fixed constraints at �r = R0. The

numerical calculation has been carried out in this work with

the Heat Transfer Module and the Structural Mechanics

Module from the software COMSOL Multiphysics 6.0 by

using a uniform quad mesh with an element spacing of 2 mm.

Since dynamic effects are neglected, the terms �€uu and � €ww in

equation (5) are set to zero and the solution is no longer time

dependent. Therefore, the calculated temperature profile at

an arbitrary time step of the temperature solution can be used

to calculated a static deformation at this exact time. Such a

solution would correspond to a case where the time needed

for building up a temperature profile, and the change due to

diffusion of the temperature profile, takes place on such long

timescales that dynamic effects are secondary. It should be

clarified already at this point that, as will be shown in the

following, for the dynamic problem considered in this work,

such an assumption is not valid and would cause significant

systematic errors. However, the quasi-static solution is very

helpful for understanding particular aspects of the dynamic

solution.

Using the maximum temperature profile given by the

solution of equation (8) to calculate the deformation yields a

heat bump shape as illustrated in Fig. 3. In Fig. 3(a) an initial

temperature of T0 = 70 K and in Fig. 3(b) an initial tempera-

ture T0 = 300 K is considered. The color bar illustrates the

magnitude of the displacement field and the arrows illustrate

the direction of the local displacements vector at particular

points. In Fig. 3 it can be observed that the temperature rise is

much larger for the initial temperature of T0 = 70 K compared

with of T0 = 300 K. Nevertheless, the resulting displacement

field is quite similar. This can be explained by considering that

the functional shape of the heat capacity, Fig. 1(c), and the

thermal expansion coefficient, Fig. 1(b), are very similar.

The ratio �(T) /c(T) is approximately a constant value of

2 � 10�9 kg J�1. Considering equation (8) and the definition

of the thermal strain, given in Section 3, it can be concluded

that the value of the thermal strain is determined dominantly

by the energy density of the heat load profile, since the mass

density is nearly temperature independent and the tempera-

ture dependence of the ratio �(T) /c(T) is quite small (<10%).

Therefore, the resulting deformation shape illustrated in Fig. 3

is very similar for both illustrated initial temperature values.

Due to the high temperature rise region located near the point

(�r = 0, z = 0) and a significantly lower temperature rise at the

boundaries located at �r = R0 and z = d, and due to the fixed

constraint at �r = R0, the crystal bends in the direction as

illustrated by the arrows in Fig. 3.

4.3. One-dimensional displacement waves

A strongly simplified case for thermoelastic wave propa-

gation may be applied if the region of interest, located in the

center of the crystal, is much smaller than the lateral dimen-

sion of the heat source and the lateral crystal dimension, given

by the beam radius W and the radius of the cylindrical crystal

R0, respectively. For such a case, inserting equation (4) into

equation (5) and assuming the Poisson ratio can be neglected,

which is a reasonable assumption for material with a small

Poisson ratio like diamond (Stoupin et al., 2012), a one-

dimensional PDE can be derived,

@2w

@z2
�
�

E
€ww ¼ �

@�T

@z
: ð9Þ

Considering a free-standing crystal in a vacuum chamber with

traction-free boundary conditions imposes zero stress at z = 0

and z = d. Under such conditions equation (9) may be solved

analytically. For the analytic solution used in this work, a

time-independent temperature profile after an instantaneous

temperature rise will be assumed, given by

�T ¼ �Tmax exp �z=
ð Þ for t> 0; else �T ¼ 0: ð10Þ

Furthermore, for the analytic solution the material constants

are assumed to have constant values, which is a reasonable

assumption if only a small maximum temperature rise �Tmax

in the range of 1 K is considered. Detailed derivations for an

analytical solution to equations (9) and (10) can be found in
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Figure 3
Comparing the heat bump profile and temperature rise for different
initial temperature values for a cylindrical diamond crystal. In (a) the
initial temperature is T0 = 70 K and in (b) it is T0 = 300 K.



several publications (Thomsen et al., 1986; Stoupin et al., 2012;

Matsuda et al., 2015; Bahns, 2021). The solution is given by a

function which describes a wave propagation. If boundary

conditions at z = 0 and z = d are considered, the function

becomes periodic in time. The periodicity of this function is

given by Tround = 2d=vs, defined by the crystal thickness d and

the speed of sound which for equation (9) is given by vs =

E=�ð Þ
1=2. In Fig. 4 the analytic solution for �Tmax = 1 K is

compared with numerical simulations, which have been

carried out by using the Coefficient Form PDE module of the

software COMSOL Multiphysics 6.0. The chosen mesh

elements have a uniform spacing of 2 mm, and a constant time

stepping of 5 ps has been used. For the analytical solution,

illustrated in Fig. 4, there is a knickpoint discontinuity present

for the displacement, which causes a jump discontinuity for

the strain. The propagation of the discontinuity corresponds to

high-frequency components which are problematic to handle

within the chosen framework of the FEM simulation used

in this work. In Fig. 4(a) the temporal Gaussian function

presented in equation (7) is used with t p = 600 ps and the

energy density is chosen such that a maximum temperature of

�Tmax = 1 K is reached; heat conduction has been neglected.

Due to the finite time for the temperature development, the

significant amplitudes of high-frequency components occur-

ring for the analytical solution are not present. This helps to

strongly reduce numerical errors as is evident from compar-

ison with Fig. 4(b) where the FEM results for an instantaneous

temperature rise are shown. It can be seen in Fig. 4(a) that

even after 20 round-trips (224 ns) the numerical errors are

very low and are neglectable regarding the requirements of

this work. It should be mentioned that choosing smaller values

for the pulse duration like t p = 200 ps would introduce a higher

amount of high-frequency components, which would cause

significant numerical errors with the chosen mesh and time

stepping of the simulation. The numerical error regarding the

high-frequency components may be reduced by choosing a

smaller mesh size in combination with shorter time steps.

However, this would result in a significant increase of

computation time. Therefore, choosing t p = 600 ps may be

considered a good compromise between computation time

and accuracy of resolving the dynamical thermoelastic effects

caused by a thermalization time in the picosecond range.

Nevertheless, due to this choice the amplitude given by a

propagating strain wave may be underestimated by a few

percent.

4.4. Three-dimensional wave propagation

The Heat Transfer Module and the Structural Mechanics

Module from the software COMSOL Multiphysics 6.0 are

used to simulate the propagation of a three-dimensional

wave by considering a two-dimensional axisymmetric case.

The coupled PDEs, to be solved, are presented in Section 3, as

well as the geometry of the diamond crystal and the heat load

profile. The used mesh has quad elements with a uniform

element size of 2 mm, and time steps of 5 ps are considered by

a generalized alpha time solver. For the temperature calcula-

tion, isolating boundary conditions are assumed. For the

calculation of the displacement field, fixed lateral side

boundaries at �r = R0 are considered; the remaining surface is

assumed to have a zero stress boundary condition (absence of

confinement). The chosen value of t p = 600 ps for the heat load

profile is motivated by the discussion in Section 4.3 to keep

numerical errors small. Newton–Raphson iterations are used

to consider the temperature-dependent material parameters

(Fig. 1). The time span considered for the simulation is

222.22 ns which is connected to the repetition rate of 4.5 MHz.

Two different initial temperature values of T0 = 70 K and

T0 = 300 K are considered to investigate the influence of the

temperature-dependent material parameters regarding the

resulting thermoelastic wave propagation.

As discussed for the one-dimensional case in the previous

section, the rapid development of the temperature profile

can cause a deformation wave. To discuss a three-dimensional

deformation wave the development of the heat bump may be

addressed. In this context it is important to notice that a heat

bump like that illustrated in Fig. 3 will need a finite time to

develop. If due to very high diffusivity the temperature rise

profile decreases faster than the time span needed for the heat

bump to develop, this can have a significant impact on the

maximum reached magnitude of the displacement wave. In

this context it should be noted that the magnitude for the

static heat bump illustrated in Fig. 3 is nearly independent of

the initial temperature T0 . Nevertheless, due to the strong

temperature dependence of the material parameters and,

correspondingly, of the diffusivity, the resulting magnitude

and shape of the three-dimensional deformation wave may

significantly depend on the initial temperature. The three-

dimensional wave can have quite a complicated shape and the
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Figure 4
Comparison of analytic solution and FEM solution for displacement w
and strain �zz of a one-dimensional wave at time t = 3.5 ns after photon–
matter interaction and after t = 3.5 ns + 20Tround . (a) Using a temporal
Gaussian profile with t p = 600 ps for the FEM simulation. (b) Considering
an instantaneously temperature rise at t = 0 ns.



wave propagation is affected by the crystal geometry, the

spatial and temporal profile of the heat load and the

mechanical boundary conditions. Also, it has to be admitted

that the simulation of this work only considers radial-

symmetric wave propagation and neglects that non-radial-

symmetric heat load profiles or non-radial-symmetric crystal

geometries can cause even more complicated three-dimen-

sional wave propagation. Nevertheless, in cases where the

development of the heat bump starts in the center of a crystal,

sufficiently far away from the lateral boundaries of the crystal,

the subsequent wave propagation may be considered nearly

independent of the lateral boundary geometry, for a time span

where effects connected to reflection at the lateral boundary

can be ignored to good approximation. For crystals with

lateral dimension in the millimetre range it may need a time of

a few tens to hundreds of nanoseconds to affect the displa-

cement development in the center of the crystal. Therefore,

radial symmetric simulation can give a quite accurate predic-

tion also for non-radial-symmetric crystal geometries consid-

ering the startup range of the three-dimensional wave

propagation (Bahns, 2021).

Contrary to the longitudinal waves described in Section 4.3,

the three-dimensional wave propagation does not generally

show a simple periodic behavior. Instead of a detailed

description of the wave propagation, in this work we focus on

the development of the kinetic and elastic energy in the crystal

which illustrates the relevance of thermoelastic effects. The

kinetic energy may be calculated by

Ekin ¼

Z
V

1

2
� v � v dV; ð11Þ

and the elastic energy by

Eel ¼

Z
V

1

2

h
��r�r
ð��r�r

� �thÞ þ �		ð�		 � �thÞ

þ �zzð�zz � �thÞ þ 2��rz��rz

i
dV: ð12Þ

In Fig. 5, the development of the energy values is illustrated.

Comparing the development of the temperature profile with

the energy development, it can be seen that a significant

change of the temperature profile is accompanied by a change

of the energy quantity given by the sum of the kinetic and

elastic energy Esum = Eel + Ekin. However, after diffusion has

taken place for a sufficiently long time a nearly homogeneous

temperature profile is reached and Esum reaches a constant

value. It can be seen that in Fig. 5(a) for T0 = 70 K this state

is reached after about 50 ns. However, for T0 = 300 K, due to

the much lower diffusivity at this temperature, this state is

not reached within the time span of 222.22 ns considered in

this work. Since in this investigation no damping effects are

considered, this finally constant Esum value does not decrease

with time and may be considered as a remaining mechanical

energy quantity inside the crystal caused by thermoelastic

effects. In this context it should also be noted that the

conversion of mechanical wave energy into thermal energy,

which must physically take place due to damping effects,

cannot be simulated in the presented theoretical framework.

This stems from the approximation that the impact of the

displacement field in equation (6) can be neglected.

Fig. 6(a) illustrates the strain in the z-direction, reached

after 222.22 ns. In Fig. 6(b) this solution is compared with a

quasi-static solution. It can be seen that for T0 = 70 K the

strain values are in the range of about 2.5 � 10�6 and are

about two order of magnitude higher than the values

predicted by the quasi-static solution. For T0 = 300 K the static

part is still the dominating strain value; however, this would

change for a longer time span for the simulation, where a

nearly homogeneous temperature profile would be reached.
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Figure 5
Temporal development of the maximum temperature value and the
kinetic and elastic energy, calculated for an initial temperature of (a) T0 =
70 K and (b) T0 = 300 K.

Figure 6
Normal strain in the z-direction after 222.22 ns. (a) Thermoelastic
simulation. (b) Quasi-static simulation using the temperature profile
given after 222.22 ns.



For such a case the remaining strain value given by the

deformation wave would also be the dominating strain value.

We now consider the impact of thermoelastic effects on the

performance of Bragg crystals within an XFELO arrange-

ment. As an example, we consider an X-ray photon energy of

14.33 keV and the (3 3 7) diffracting planes for an XFELO as

proposed by Huang & Deng (2020). The calculated strain due

to the thermoelastic effect, being presented by Fig. 6(a), is in

the range of 2.5 � 10�6. Using Braggs law for the calculation,

this would result in a shift in the phonon energy of about

35 meV which is larger than the Darwin width of 11 meV

(Huang & Deng, 2020). Therefore, thermoelastic effects would

clearly affect the stability of the Bragg reflector in this parti-

cular case. Also, it should be noted that in this work only the

effect of a single saturated XFELO pulse has been investi-

gated and it is assumed that the initial condition is an

unstrained crystal. As shown by the simulation in this work,

already one pulse would cause a critical thermoelastic strain

value. Therefore, saturation with the outstanding character-

istics as described for the case above can probably not be

reached. Also, it should be noted that damping effects are

presumably quite low, regarding the time span of a few

hundreds of nanoseconds. Thus, there will be interaction

between strain fields created by previously absorbed pulses,

which may even increase the strain values significantly.

Perspective ways to possibly overcome these limitations,

such as reduction of the electron bunch repetition rate and the

use of crystals of much larger dimension, require additional

research. For the former, a reduction of the repetition rate

may come with a significantly stronger impact of the damping

in the crystal. However, the magnitude of this damping may

be strongly dependent on the actual crystal geometry, the

clamping conditions and defect concentration. Hence, an

estimate on the effectiveness of this method requires a much

more involved analysis and is outside the scope of this paper.

The second mentioned method, which is the use of larger

crystals, is also very promising, as it allows for the reduction of

the thermoelastic effects by distributing the elastic energy of

the deformation wave in a larger volume. Yet, also quantita-

tive assessment of an increased crystal volume requires addi-

tional simulations and is a possible subject of a future work.

5. Conclusion and outlook

The simulation results of this work have shown that heat load

effects may have a strong impact on the stability of XFELOs,

which are planned to be built at modern XFEL facilities in

the near future. This is especially true if thin diamond Bragg

reflectors are used with lateral dimensions in the millimetre

range. One problem addressed in this work is that, due to the

finite heat transfer between crystal and holder, the increase of

the crystal temperature may be much higher, compared with a

situation where a constant fixed temperature value is assumed

at the boundaries. Another problem addressed in this work is

that thermoelastic effects can cause strain values which have

a significant impact on the stability of an XFELO. In both

situations, increasing the crystal dimensions may be an option

to provide functional XFELO operation, which is an inter-

esting perspective for upcoming investigations. In this work,

damping effects have, for the sake of simplicity, not been

investigated. However, a detail investigation of this topic is

also interesting for upcoming projects, since the impact of

interacting strain fields by several pulses and the timescales of

damping might also be critical even for much larger diamond

crystal structures.
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