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Compound refractive lenses (CRLs) are established X-ray focusing optics, and

are used to focus the beam or image the sample in many beamlines at X-ray

facilities. While CRLs are quite established, the stack of single lens elements

affords a very small numerical aperture because of the thick lens profile, making

them far more difficult to align than classical optical lenses that obey the thin-

lens approximation. This means that the alignment must be very precise and

is highly sensitive to changes to the incident beam, often requiring regular

readjustments. Some groups circumvent the full realignment procedure by using

engineering controls (e.g. mounting optics) that sacrifice some of the beam’s

focusing precision, i.e. spot size, or resolution. While these choices minimize

setup time, there are clear disadvantages. This work presents a new automated

approach to align CRLs using a simple alignment apparatus that is easy to adapt

and install at different types of X-ray experiments or facilities. This approach

builds on recent CRL modeling efforts, using an approach based on the

Stochastic Nelder–Mead (SNM) simplex method. This method is outlined and

its efficacy is demonstrated with numerical simulation that is tested in real

experiments conducted at the Advanced Photon Source to confirm its

performance with a synchrotron beam. This work provides an opportunity to

automate key instrumentation at X-ray facilities.

1. Introduction

Lens-based X-ray imaging and diffraction provide opportu-

nities to measure materials with resolutions � 100 nm with

current technologies. These technologies use either full-field

imaging or scanning nano-probes, both of which require X-ray

focusing optics. Several X-ray lens options have been devel-

oped, including Fresnel zone plates, Kirkpatrick–Baez mirrors

and compound refractive lenses (CRLs), which excel for

different types of experiments. For imaging applications,

CRLs are uniquely versatile, as they have focusing char-

acteristics that can be easily tuned in real time during

experiments. CRLs comprise a stack of n individual lenslets,

where the compounded focusing power from each lens

element can be changed to tune the effective focal length of

the stack. The versatility of CRLs has made them common-

place in synchrotron X-ray experiments, where they are

typically used as upstream beam condensers (Vaughan et al.,

2011; Schroer et al., 2005) or objective lenses in X-ray

microscopes (Lengeler et al., 1999); however, as thick lenses

with small numerical apertures, their accurate alignment is
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rather challenging. Misalignment of CRLs can increase the

width of the focal spot or cause its position to move laterally,

resulting in an overall reduction of the quality and intensity

of the focal point or image. Corresponding astigmatic aber-

rations are also generated by the X-ray beam, causing image

features to blur directionally as the corresponding focal spot

stretches nonuniformly. Together these issues can make the

corresponding experiments difficult to interpret.

To align a CRL stack, it must be carefully positioned along

the two translation directions (y and z) and two rotational

axes (ry and rz) that are normal to the axis of propagation of

the X-ray beam (x), i.e. the principal axis of the lens. Optical

models to describe CRL alignment (Song et al., 2011) use

wavefront simulations to describe the intensity and beam

profile as the beam propagates through a CRL with a pre-

defined orientation {y, z, ry, rz} (positions are typically set by

motorized translation/rotation stages). Optimal alignment of

CRLs is quite challenging, as the translational and rotational

degrees of freedom are coupled, e.g. for each position, y, the

total light transmitted varies as the lens is rotated about the z-

axis, rz. This condition is specific to CRLs, and arises because

of the thickness of the lens, as described fully by Song et al.

(2011). Simons et al. (2017) derived an idealized analytical

form for the optical transmission function through CRLs that

uses ray-optics to express this coupling. For a given CRL

orientation, which we define by the alignment vector p =

(y, z, ry, rz) in the coordinate system described above, the

resulting optical transmission function takes the form of a

four-variate Gaussian, which we simplify as

TðpÞ / exp �pT
� A � p

� �
; ð1Þ

where A is a symmetric 4 � 4 matrix of terms that mostly

depend on the lenslet curvatures and number of lens elements

in the CRL. Physically, equation (1) derives from the parabolic

shape of each lens element and the Beer–Lambert transmis-

sion of X-rays through the lens material.

In practice, CRL alignment is performed in two stages: first,

a rough alignment is carried out to ensure that some amount

of the X-ray beam transmits through the CRL with coarse

motorized scans, or guidance from a reference pinhole on the

CRL mount. Second, an X-ray detector (either a camera or

intensity monitor) is used to finely align the lens based on

the transmitted beam. The fine alignment must be reassessed

periodically to account for beam drift, sample quality, or other

factors over the course of experiments.

A common strategy for fine alignment is to perform two-

dimensional motor scans that measure the transmitted inten-

sity as a function of the CRL’s position and tilt angles by

finding the approximate center of the distribution. Accurate

sampling of this search space typically requires detailed scans

along each independent axis, often necessitating thousands of

individual measurements (samplings) to align a single CRL. A

faster method is to carry out several cycles of alternating scans

between coupled dimensions; however, this still involves

hundreds of samples per iteration. For experiments involving

frequent CRL alignment [e.g. dark-field X-ray microscopy

(Kutsal et al., 2019; Simons et al., 2015)] or that have many

disparate experimental configurations (e.g. transmission X-ray

microscopy, phase-contrast imaging, or ptychography) the

process of aligning, and re-aligning, the CRLs may take a

significant fraction of the experimental time.

While experienced researchers may have experiments with

minimal drift in the alignment or source, an automated algo-

rithm presents additional benefits to the alignment speed,

repeatability, and scalability to multiple simultaneous imaging

directions. As X-ray facilities such as synchrotrons and X-ray

free-electron lasers (XFELs) often run in continuous opera-

tion for weeks or months, a reliable automated method can

simplify experimental modifications between users and allow

non-expert users to easily realign the experiment if drift or

reconfiguration is necessary. This also presents the opportu-

nity in the long term to develop remotely operated or

autonomous experimental setups. Automated alignment can

also enable facilities to add complexity to their experiments

such as multiple probes, smaller incident beam sizes, larger

magnifications, or improved spatial resolution depending on

the type of experiment. Finally, the repeatability of such an

algorithm allows the opportunity to quantify the misalignment

and corresponding astigmatism or uncertainty in a measure-

ment – even when substantial jitter or beam-drift is present.

The task of automating the alignment of optics using

detection hardware is generally not uncommon, though less

common with X-ray lenses at optical facilities. The approach

to automating such a task is largely a function of the control

hardware, the required accuracy, and the noise levels of the

detectors and hardware. One such example is the fine align-

ment and focus of a camera lens in a wide-field astronomical

surveying apparatus. The Robotilter device aligns by opti-

mizing a ‘combo’ score; a positive figure of merit that incor-

porates both alignment and focus by sampling the four-

dimensional search space then performs regression analyses to

identify optimal motor positions (Ratzloff et al., 2020). Fang

& Savransky (2016) demonstrate the alignment of two inde-

pendent lens assemblies along the same laser beam. Their

procedure searches an eight-dimensional parameter space,

determining alignment through a fast study of the spatial

distribution of light on a near-field camera sensor. For a given

position, the resulting image is decomposed into principal

components, which provides feedback for an unscented

Kalman filter to determine the next position within the search

space to evaluate.

In this work we present an alignment method utilizing a

variation of the stochastic Nelder–Mead (SNM) online opti-

mization procedure. Nelder–Mead methods, often referred

to as simplex methods, are a class of direct search algorithms

that iteratively seek to identify parameters that minimize

a prescribed real-valued, nonlinear cost function. In our

settings, however, we discuss optimization in terms of maxi-

mizing a figure of merit (FOM). The classical formulation of

Nelder–Mead presumes an unconstrained search space, and a

cost function that is strictly convex. These conditions guar-

antee that a single ‘best’ solution exists, and is unique. If this

condition is not met, e.g. because of noise, classical Nelder–

Mead often fails to locate an optimal solution. In the litera-
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ture, SNM overcomes these difficulties by mollifying noise

through increased sampling, and the occasional use of an

adaptive randomized search technique when the path toward

an optimal solution is not obvious (Lagarias et al., 1998). Our

implementation slightly deviates from the literature, opting

instead to use a procedural local search based on the Sobol

sampling technique (Fox, 1986).

Our description of our method is as follows. We begin in

Section 2 by introducing our approach, describing the neces-

sary alignment hardware, and assigning mathematical notation

for our methods. In Section 3 we assemble the FOM, which

evaluates images from an alignment camera, and returns a

transmission estimate akin to (1). We then study this FOM by

scanning a 4D space within the limits of motorized stages that

position the CRL. These scans are used to provide context for

choices made in our algorithm, which is also contained therein.

Section 4 reports testing with a series of executions of the

algorithm on our apparatus at Advanced Photon Source

(APS) (Argonne National Laboratory, USA) as well as

several numerical simulations based on data collected there.

From the results of collected data, and the numerical simu-

lations, we present a case for improvements and further study

of the method in Section 5, and conclude in Section 6.

2. Experiment apparatus and mathematical settings

Our apparatus includes the motorized stages that control the

position and orientation of the CRL, as well as a simple, self-

contained detector assembly (scintillator crystal, imaged onto

a camera). We note that the simplicity of the detector and

acquisition modes utilized in this work simplifies its imple-

mentation in a wide range of experimental settings, allowing

versatile and easily customizable configurations. We provide

details of our hardware settings and implementation below.

We formulated and tested this method at the Sector 16-ID-

D hutch at the APS. This beamline was configured with a

double-crystal Si (111) monochromator, and aperture slits to

the size of the beam entering the CRL assembly with no

additional upstream focusing optics. As such, the beam

was nearly collimated and monochromatic with �E/E of

1.0 � 10�4. We operated with the monochromator tuned to

9 keV but with the second crystal in the Si (111) mono-

chromator mis-aligned to preferentially remove the third

harmonic.

We used a CRL comprising 30 2D Be lenses, each of which

has parabolic radii of curvature of R = 50 mm and a nominal

frame thickness of 2 mm, as purchased from RXOptics GmbH

(Lengeler et al., 1999) with an effective focal length of f =

205 mm. The lenses were held in a custom-built V-block and

purged with nitrogen to prevent damage via oxidation. The

full width at half-maximum (FWHM) of the intensity profile

immediately downstream of the CRL stack was 0.30 mm.

Assuming ray optics, the 0.30 mm aperture and 60 mm length

of the CRL stack dictate that the CRL tilt must be within

�2.5 mrad (0.14�) from the beam axis for some of the colli-

mated incident beam to transmit unobstructed. The CRL

assembly itself is mounted on a stage stack, where we make

use of four degrees of freedom (two translational and two

rotational) in our alignment procedure. We formally denote

the translation axes as y and z, and the rotations about those

axes as ry, and rz, respectively; thus, the incident beam axis is

defined as x. Given that each motor’s position is bounded by

travel limits, which are set through software to define the

range of the stage’s travel, we denote each limiting interval as

I½�	 and define our full search space (the set of all permissible

CRL orientations) as �, the 4D hyper-rectangle of those

motor limits is

� :¼ I y � I z � I ry
� I rz

:

Alignment images were collected in the near field with a YAG

scintillator screen of 10 mm diameter and 50 mm thickness,

which was placed 200 mm from the CRL, slightly before the

X-ray focus. The YAG scintillator absorbs 65% of the incident

X-rays, and a pellicle beam-splitter (ThorLabs BP145B1) was

used as a dichroic mirror to separate the X-ray and optical

beams. A 7.5� Mitutoyo long-working-distance objective was

then used to image the fluorescence from the scintillator

crystal onto a Prosilica GC1380 CCD camera. We include a

schematic of the apparatus in Fig. 1.

We note that our implementation used the 2D CCD because

this allowed the operator the most flexibility in performing

the initial alignment and determining best focus manually. It

is important to note that spatially resolved intensity is not

required for this algorithm and an energy monitor, such as a

photo-diode, could be used in place of the imaging detector, as

long as it captures the full transmitted beam.

In our formalism, the beam intensity fluctuates in time, and

the exposure time of the camera is user-selected, so we define t

as the clock time, and �t as the camera’s exposure time. For a

given motor position p 2 �, and distance from the camera

to the CRL focal plane along the beam axis xd, we express

the raw image collected from the near-field CCD camera as
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Figure 1
Schematic of the basic layout for the alignment detector, detailed in the
blue box labeled Removable Alignment Camera, showing how it fits into
a synchrotron experiment. We note that most of the detector optics can
be customized based on the availability and beam parameters to set the
magnification and field of view for the alignment system.



Ji, j(xd, �t, t, p), where i and j represent pixel indices. An

upstream ion chamber records a number proportional to the

number of photons s�1 incident on the CRL, which is inte-

grated over �t . We denote the recorded incident beam count-

rate as !(�t, t), and use it to normalize the fluctuations

inherent to the source from our measured transmission, i.e.

Ii; j ðxd;�t; t; pÞ :¼
Ji; j ðxd;�t; t; pÞ

!ð�t; tÞ
: ð2Þ

Our intensity measurements do not vary significantly with

respect to xd . Additionally, normalizing with the beam energy

!(�t, t) substantially reduces intensity variation in time t .

Given that we maintain a fixed exposure time �t , in an effort

to aid in readability, we simplify our notation in (2) to Ii, j (p),

or Ii, j when referring to individual pixels on the normalized

image, or simply I(p) or I when discussing the entire image is

prudent and convenient.

The initial rough alignment of the CRL to the beam was

performed manually. First, the CRLs were removed comple-

tely from the beamline and the position of the X-ray beam on

the scintillator was recorded. Next, the CRLs were replaced.

The CRL is considered aligned to the X-ray beam when the

spot centroid after the CRL falls on the same detector location

as when the CRL is not used. Additionally, limits to transla-

tional and rotational degrees of freedom were determined by

locating the edges of the CRL as shadows in the X-ray beam.

The algorithm presented below was tested once the beam and

CRL positions were located.

3. Building and solving the optimization problem

In this section we use the notation from Section 2 to construct

an FOM that, when evaluated on our search space �, behaves

sufficiently convex in the presence of standard synchrotron

noise. It is the apparent convexity and noise that motivated

our choice of the SNM direct-search algorithm, which is

presented in a modified form below in Algorithm A.1 in

Appendix A.

3.1. Camera-based FOM

The function we develop below is constructed to mathe-

matically discriminate well alignment from misalignment of

the CRL using an imaging sensor placed on the beam. When

the CRL is well aligned, we expect to see a small, intense spot

at the detector plane. When less well aligned, we should see

less intense light spread across a larger region of the camera’s

sensor. Examples are presented in Fig. 2. Here, we develop

a robust function that, for a given position p, considers the

image I(p) and returns a positive number that quantifies the

alignment quality for this system.

For a given motor position p, let �(I) and �(I) denote the

median and standard deviation of the resulting detector image

I(p), respectively. With these terms, we identify a region of

interest (ROI) within the image as

ÎIM :¼ Ii; j 2 I
�� jIi; j � �ðIÞj > M � �ðIÞ

� �
;

where M is a positive, user-selected threshold parameter. We

define our FOM as the median value of the pixels within the

ROI, i.e.

Fðp; MÞ :¼ � ÎIMðpÞ
� �

: ð3Þ

In our apparatus, for any given CRL alignment p, the total

number of pixels illuminated on the detector plane is

substantially lower than half the total number of pixels

available. For a well selected threshold M, the ROI effectively

selects, exclusively, for only those illuminated pixels. There-

fore, by selecting the median value of the ROI, our

FOM (3) returns a larger number for Fig. 2(a) than either

Figs. 2(b) or 2(c).

To evaluate the behavior of (3), and to ensure that our

model appropriately captures the details of the system, we

performed samplings of the full 4D search space �. While a

full, high-resolution 4D scan of � would have been ideal,

given the time-constaints inherent to the beamline experi-

ments required we limit our scans to: (1) two independent,

high-resolution, uniform scans in 2D, and (2) one lower-

resolution quasi-uniform scan in 4D.

To capture the character of F(�) in 2D raster scans, we first

manually aligned the CRL to establish a ground truth well

aligned position, which we shall define as p
 = ðy
; z
; r
y; r
zÞ.

From this position, we performed two raster scans of the

y � rz and z � ry axes, fixing the two off-axis parameters

to their optimal coordinates, as defined in p
. Using p
 as a

central position, we selected sampling intervals for each

independent axis. Each interval was then discretized as 60

uniformly distributed positions. We present one of the

resulting 2D, 60 � 60-sample raster scan plots in Fig. 3(a).

Collecting a 4D raster scan of F(p; M = 2) at the spatial

resolution seen in Fig. 3(a) would require an impractical

amount of time. In order to collect as much 4D data during

the window of time available, we used a space-filling Sobol

sequence of positions in �, as implemented in the

csobol seq Python package (Fox, 1986). Given that a Sobol

scan does not conform to a grid, we perform a Gaussian
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Figure 2
Three examples of positions in the search space with the corresponding
conditions for alignment and noise issues. Image (a) shows the spot from
a well aligned CRL, producing a tight and bright spot, while (b) shows a
diffuse tail demonstrating its misalignment, and (c) shows only a diffuse
streak from worse alignment still.



regression on the results from which a pixel grid can be

evaluated. This regression is implemented in the form

TGaussðpÞ ¼ a exp �ðp� p̂pÞT � A � ðp� p̂pÞ
� �

þ b; ð4Þ

where a and b are real-valued scalars, p̂p is the position of the

peak, and A is a symmetric 4 � 4 matrix – a total of 16 vari-

ables. One corresponding 2D slice from this regression is

depicted in Fig. 3(b).

3.2. Optimizing with SNM

In the absence of noise we would formulate the optimiza-

tion problem in terms of the idealized model (1) such that the

optimal solution p
 2 � is given by

p
 :¼ argmax p2� TðpÞ:

However, since synchrotron experiments are always subject to

some type of noise, we constructed our FOM F [I(p)] such that

the expectation E {F [I(p)]} is a convex function. Based on this

assumption, we formulate the problem in stochastic settings

such that

p
 :¼ argmax p2� E F I pð Þ; M½ 	
� �

: ð5Þ

As long as the character of the noise does not cause the FOM

to exhibit errant, problematic local maxima, a direct search

method is well suited to solve (5).

Nelder–Mead is a direct-search method that is widely used

in nonlinear programming problems where derivatives of the

associated cost function are not readily available (Nelder &

Mead, 1965; Wright, 1996). The method works by keeping

track of a sample set (or simplex) of n + 1 points within the

search space, where n is the spatial dimension of your search

space. The simplex is sorted from ‘best’ to ‘worst’, and

proceeds by systematically searching for better positions

within the search space. New positions are selected as a

function of the spatial orientation of the simplex points, and

three real, positive parameters: �, �, and �, known, respec-

tively, as the reflection, expansion, and contraction values. An

implementation of the classic method is packaged within a

number of popular scientific computing platforms, namely as

fmin within scipy:optimize (Virtanen et al., 2020).

Direct-search methods of this variety are rarely robust to

noise. While our FOM (3) is effective at mitigating a

substantial degree of the latent measurement noise, it is not

entirely eliminated. To account for this, we implemented a

modified variety of the SNM method (Chang, 2012; Li &

Zhan, 2014).

The algorithm we present below deviates from the literature

in four major ways. First, we fix the simplex size to 5, since our

search space � has four dimensions. Second, we formulate our

optimization problem to seek a maximal transmission from the

detector. The third and fourth modifications both simplify and

expedite the FOM sampling criteria seen in the classic versions

of SNM, and are detailed below. We enumerate each major

step of the SNM procedure with the index k, beginning with

k = 0. For each k, when the procedure calls for the FOM to be

evaluated, we average Nk evaluations of (3), where

Nk ¼ max b
ffiffiffi
k
p
c; 2

n o
;

and b�c returns the nearest lower integer. For a particular

position p, sample count Nk , and noise-floor threshold M, we

thus describe the sample-averaged FOM as

Fðp;M; kÞ :¼
1

Nk

XNk

i¼ 1

F I i
ðpÞ; M

� �
; ð6Þ

where I i is the ith image returned from the detector. We

determined that the minimum sample of 2 was sufficient, given

the noise levels present within the data in our characterization

of (3) in Section 3.1. These additional evaluations of (3) come

with a minimal time penalty, given that the largest contributor

to the wait time per major step k is the time required to move

the motorized stages.

Our main deviation from the SNM formulation described in

the literature is our local Sobol search procedure for situations

where simplex contraction fails (e.g. the final contingency

step in Algorithm A.1). In the non-stochastic formulation of

Nelder–Mead, this situation is equivalent to deducing that the

simplex spans a spatial region too large to effectively continue

improving. There, the algorithm performs a ‘shrinkage’ step,

which selectively shrinks the region while keeping the ‘best’

positions. In the stochastic formulations seen in the literature,

in lieu of shrinking the simplex, a randomized local or global

search is performed (Chang, 2012; Li & Zhan, 2014). In these

instances, positions within the search space are sampled at

random until a new position is found that improves upon the

current simplex. In such situations, these SNM formulations

utilize an adaptive random search procedure, which poten-

tially performs a global random search of �. Our proposed

alternative to the randomized search procedure is presented

in Algorithm A.2.

This deviation was necessary for three reasons. First, while

a global random search is a prudent technique to eventually
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Figure 3
Here we directly compare (a) a high-resolution 2D raster scan of the
FOM intensity F(p, M = 2) and (b) a Gaussian regressions of a lower-
resolution 4D raster scan. Both scans depict a feature-scaled scan over
(z, ry), fixing the remaining variables at ðy
; r
zÞ:



guarantee mathematical convergence of the SNM procedure

on paper, in our use case it comes with a potentially un-

acceptable time penalty. We first note that the global limits of

the motorized stages are substantially larger than the aspect

ratio depicted in Fig. 3, thus a full 4D scan is very unlikely to

yield successful improvements. Second, note that we have a

strong understanding of the character of our FOM F(p, M): a

solitary, convex peak that is sufficiently wide in four dimen-

sions. It is unlikely that this FOM would present errant peaks

on a similarly configured apparatus. Finally, after a rough

alignment of the optics, enough light is present on the detector

to initialize the algorithm. The net consequence is that, in

these settings, SNM is unlikely to stray far from a very direct

path to an acceptable alignment, precluding the necessity of a

global search or highly randomized search.

The final step of any successful execution of an optimization

algorithm is the stopping condition. We do not formally

specify such a condition in our presentation below, but good

choices in our use case could be based on the diameter or

volume of the current simplex, the total variation of the FOM

on the current simplex, by utilizing a measurement from a far-

field detector, or by simply enforcing a maximal iteration tally.

3.3. Local Sobol search

Sobol sequences are a low-discrepancy, space-filling

sampling technique (Sobol, 1967). When each point in a low-

discrepancy, space-filling sampling is enumerated, and ordered

sufficiently well, we find it to be an efficient method to search

a bounded region. In our implementations presented below,

we find our Sobol sequences using the csobol seq Python

package (Fox, 1986).

To effectively perform a local Sobol sampling during an

execution of Algorithm A.1, we need to first identify a suitably

local region to explore. Given the current motor position p

we simply select a rectangular region containing p determined

by two parameters: k, the current SNM iteration index, and

� a positive (small) cooling parameter. Our 4D rectangular

region �̂� is then determined to be the region between the two

following corner positions,

pþ ¼ pþ ð1þ "Þ�k d; ð7Þ

p� ¼ p� ð1þ "Þ�k d: ð8Þ

Some care is required when selecting d and ". If d and " are

poorly selected, users run the risk of selecting regions too

large or too small to search effectively. We found in our

implementation that d = dh1.0, 1.0, 1.0, 1.0i, where d is the

longest diameter of the initial simplex to be an effective

choice, when " is selected such that ð1þ "Þ�kmax ’ 1/10, where

kmax is the largest index expected to occur.

When Algorithm A.2 is called from within Algorithm A.1,

the local search space �̂� is immediately established by (7) and

(8). We then identify an N-point Sobol sampling of �̂�, which

we denote as S = fps
i g

N
i¼ 1. With the motor positions pi estab-

lished, an expeditious route visiting each position is identified

using the nearest-neighbor method, discussed further below.

Selecting N too large creates a situation where the local Sobol

search might take a long time to arrive at a region within �̂�
containing an improvement to SNM simplex. Select N too

small, and the Sobol procedure would likely need to be

repeated several times, also causing unnecessary delays. For

our implementation discussed below, we found choices of N

varying between 10 and 50 to be an effective range.

Remark 3.1. A Python implementation and demonstration of

Algorithm A.2 can be found online (Breckling, 2022).

Practical implementations of Algorithm A.2 require an

efficient way to visit each point in the sample space, given the

cumulative time required to move the stepper motors. Let R

denote a particular course visiting each position within the

finite list of coordinates {p1, p2, . . . pN } = S. The time-cost

required to move from any one position pi to another pj can

be estimated by the Euclidean distance |�i � �j |. The optimal

route R̂R through S minimizes the total Euclidean distance

required to travel to each position. While optimal solutions

to this variant of the ‘traveling salesman problem’ cannot be

practically identified, a nearest-neighbor solution can, and

sufficiently approximates R̂R for our use case.

4. Implementation results

In this section we present the results of a study to gauge the

efficacy of our automated alignment procedure. In Section 4.1

we highlight the results of a single successful alignment

outcome. In Section 4.2 we discuss a collection of results,

wherein we attempt to quantify the repeatability of

Algorithm A.1.

4.1. Results of a single alignment procedure

In this section we take a qualitative look at the results of a

single execution of Algorithm A.1. Upon manually finding a

position p0 such that light is visible on the near-field sensor,

we randomly generate an initial five-position simplex �0 . This

is done by generating random four-vectors, rk = ri

� �4

i¼ 1
, where

each term is sampled from the a uniform distribution on the

interval [�0.05, 0.05] (in mm or �, where appropriate), then

adding such that

pk ¼ p0 þ rk

for k = 1, . . . , 4. The sampling interval was selected ad hoc,

but was large enough to see a substantial perturbation of

light present on the near-field camera in each of the four

dimensions.

The initial simplex �0 is then used to initialize Algorithm

A.1. During initialization, the FOM (6) is evaluated for each

position within the initial simplex. We select the Sobol

sampling count N to be 10, the cooling parameter " =

2.0 � 10�2, and the local search region to be determined by

the vector d = 2.5 � 10�2
h1.0, 1.0, 1.0, 1.0i (in mm or �, where

appropriate).
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Upon initializing Algorithm A.1, each position in �0 is

evaluated and sorted. The initial ‘best’ position is denoted as

p0 , with the corresponding near-field camera image I0 . As the

algorithm proceeded to ascend the FOM, we recorded each

step, and present the sixth and final ‘best’ positions as p6 and

p62 with images I6 and I62 , respectively, in Fig. 4.

This execution ceased to present any apparent improve-

ments upon arriving at the position p62 . A signal to end the

procedure was then sent. This particular ascent taken by

Algorithm A.1 was, with rare exception, a direct one. From

initialization to quit, the full procedure required only 62

evaluations of F . The incremental improvements seen at most

steps appear to be conservatively small. Of those 62 evalua-

tions, there were 16 ‘new bests’, which are presented in Fig. 5.

4.2. A repeatability study

Given that our proposed alignment procedure is inherently

stochastic, we performed a Monte Carlo study to evaluate its

reproduceability, initializing and executing Algorithm A.1 to a

satisfactory alignment 30 times. Our goal was to quantify the

spread of the final ‘best’ motor positions. Each execution was

initialized in the same way as was done in Section 4.1, i.e. given

a fixed motor position resulting from a rough initial alignment

p0, complete the initial simplex �0 by sampling randomly

within the same fixed rectangular region about p0. In each

case, the execution was halted when the resulting spot visible

on the alignment camera was sufficiently symmetric and

intense.

Over the 30 executions of Algorithm A.1, the average tally

of evaluations of the sampling-averaged FOM F is 63.67, with

a median tally of 62, and standard deviation of 4.84 evalua-

tions. This tally is not to be confused with the index k, which

enumerates the steps within Algorithm A.1. The total number

of evaluations of F varies from step to step, depending on the

location of the simplex. The total-evaluations tally therefore

better represents the total time required to fully execute

the procedure.

Upon sending the stopping command to end the execution,

the final ‘best’ position was recorded. Scatter plots of these

‘best’ results are seen in Fig. 6. We used the spatial statistics

of the ‘best’ positions recorded in 30 executions of Algorithm

A.1 to generate the two-dimensional projections of the 4D

elliptical uncertainty regions presented in Fig. 6. We found

that, when the algorithm is manually terminated, 95% of the

‘best’ transmission measurement results were within 90% of

the ground truth intensity.

4.3. Simulated repeatability study

The principal goals of our simulated studies are to provide

validation for the results presented in the previous section.

Second, we intend to demonstrate the efficacy of Algorithm

A.1 in terms of noise. We begin by developing a mathematical

model of the FOM (3), accounting for estimates of beam jitter

and a paramaterizable additive noise term. We then test the

performance of Algorithm A.1 using the same settings, while

prescribing varying amounts of additive noise.
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Figure 5
We present the route taken by Algorithm A.1 ascending the FOM (6). We
overlaid the 16 sequential ‘best’ positions upon a surface plot of the raster
scans. Panel (a) depicts the z and ry axes, and the y and rz axes can be seen
in panel (b). The opacity of the surface was decreased so the full paths
remain visible.

Figure 6
Together, these scatter plots depict the best motor position recorded prior
to manual termination of 30 executions of Algorithm A.1 (blue dots). The
cross (red) represents the average of these recorded positions. We further
illustrate the 68, 95, and 99.7% uncertainty regions as concentric ellipses
centered at the mean. Panel (a) presents the z and ry axes, while the y and
rz axes are in given in panel (b). Each execution was initialized from
the same region in �, but the initial simplex was selected randomly
(distributed uniformly) about p0.

Figure 4
Panels (a), (b), and (c) depict I0 , I6 , and I62, respectively, which
correspond to p0, p6, and p62, the initial, sixth, and final ‘best’ position
recorded during one execution of Algorithm A.1. Evaluating each image
with the FOM (3), we see that Fðp0;MÞ and Fðp6;MÞ correspond,
respectively, to 14.03% and 48.29% of Fðp62;MÞ when M = 2.0.



The modeled FOM FGauss (9) utilizes

the 4D Gaussian fit, TGauss (4), and

includes a normally distributed additive

noise term, � 2 N ð0; &Þ, where & is a

user-selected parameter. A baseline

estimate of & is computed as

5.12 � 10�3. This was accomplished by

selecting a region of � far away from the

positions corresponding to well align-

ment. Additionally, given a beam

divergence of 6.5 � 10�3 rad, we

consider the possibility of random

pointing jitter in the beam itself. Thus,

we include normally distributed random

perturbations on the ry and rz axes with

a standard deviation of 10% of the beam

divergence.

For each Monte Carlo study, we

execute Algorithm A.1 a total of 30

times, using the model FOM,

FGaussðpÞ ¼ T 
Gauss pþ�	ð Þ þ �; ð9Þ

where T 
Gauss is unit normalized from

TGauss. Each initial simplex is generated

around a fixed position p0, then popu-

lated by selecting nearby positions at

random, as was done in the beamline

study in Section 4.2. The number of

Sobol sampling positions N remains

set to 10, as with the cooling parameter "
= 2.0 � 10�2.

Unlike the synchrotron implementa-

tion, which was manually exited by the

user, an automatic stopping condition

within Algorithm A.1 is required. In the

synchrotron study, on average, 63.67

evaluations of (6) were required. In an

effort to make a fair comparison, we

forced the automated method to exit upon reaching 64

evaluations.

We performed three Monte Carlo experiments, each fixing

the value for the noise parameter & to be 5.0 � 10�n, for n = 2,

3, and 4. The results are presented as scatter plots of the final

‘best’ alignment position in Fig. 7. We observe that, for noise

levels comparable with those seen at APS (& = 5.0 � 10�3),

the spatial distribution of alignment results of the numerical

Monte Carlo simulation qualitatively agree with those seen at

the synchrotron Monte Carlo. As expected, we also see that

the corresponding confidence regions appear to grow

proportionally with &.

5. Discussion and outlooks

Further exploration of this technique will likely lead to

improvements in speed, accuracy, and precision. In particular,

we look forward to identifying reliable choices of the para-

meters required to initialize Algorithm A.1. For example, in

the settings established for the simulated study in Section 4.3,

reducing the reflection parameter to � = 0.75, or further to � =

0.5, in Algorithm A.1 results in substantial improvements to

the spatial statistics. These results are seen in Fig. 8. Whether

or not these changes improve performance on a beamline is an

open question.

Second, since an attractive application of this technique is

a reliable unsupervised re-alignment procedure, an investi-

gation into automated stopping conditions is required. We

anticipate any such condition to be determined by three

conditions: a prescribed maximum tally of motor motions, a

processing of image data from near or far-field camera sensors,

and a time-series study of all evaluations of the FOM.

A robust sensitivity study of the input parameters of

Algorithm A.1 on the modeled FOM (9) is unlikely to identify

optimal parameter settings in real experimental configura-

tions. However, we suspect that efficient and effective para-

meter selections can be identified with moderate calibration

time.
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Figure 7
Depicted are the spatial results of three Monte Carlo simulations, in two of the four total
dimensions. We varied the additive noise parameter & between each sampling. Panel (a) depicts the
case where & = 5.0 � 10�4, (b) shows the case where & = 5.0 � 10�3, and (c) shows the & =
5.0 � 10�2 case. All results are depicted as blue scatter points above three blue confidence regions.
The mean result is presented as a red cross.

Figure 8
Depicted are the spatial results of three Monte Carlo simulations, in two of the four total
dimensions. We included the simulated beam jitter, and fix the additive noise parameter & =
5.0 � 10�3, varying the reflection parameter within Algorithm A.1. Panel (a) shows our default
choice, � = 1.0, panels (b) and (c) decrease the parameter to � = 0.75 and 0.5, respectively. The
results are depicted as blue scatter points above three confidence regions, and a red cross depicting
the mean result.



6. Conclusions

In this paper we presented a technique to automate the

alignment of CRLs. The technique was implemented and

tested at the Advanced Photon Source at Argonne National

Laboratory. The complete algorithm was presented, along

with a study of its efficacy in synchrotron applications using

nominal settings. Additionally, we verify and reproduce the

experimental tests in a simulated repeatability study. Lastly,

we propose a number of improvements which can be verified

with more time at an X-ray light source.

APPENDIX A
Full details of the algorithms mentioned in the paper are

discussed herein, and are enumerated in the order they were

introduced above. We again note that examples of the

following methods have been provided online (Breckling,

2022).

A1. Algorithm A.1. Stochastic Nelder–Mead for CRL
alignment

Each major step of the SNM method is indexed by k, and

considers a simplex of positions �k = {p1, k , . . . , p5, k }. The

reflection, expansion, and contraction parameters �, �, and �
are required; nominal values are often assigned to be � = 1,

� = 2, and � = 1/2. We additionally require the diameters of the

local 4D region d, and the cooling parameter ".

Step 0. Determine a valid initial simplex of five, non co-linear

positions; i.e. no more than two points within the simplex

should fall on the same straight line in �. Additionally, ensure

light passing through the CRL is present on at least one of the

positions in the initial simplex �0, though preferably all posi-

tions. Lastly, evaluate all points in �0 using (6).

Step 1. Sort the current simplex �k from ‘best’ to ‘worst’.

Denote the best and worst as pmax
k and pmin

k , respectively.

If the stopping criteria is satisfied, then exit the procedure.

Else let p2min
k denote the second lowest-ranked position,

then

If the number of points in �k exceeds 4, then remove pmin
k

from �k .

Else proceed to Step 2.

Step 2. Compute a centroid pc
k of all remaining points in �k .

Generate a new point pref
k by reflecting pmin

k through pc
k such

that

pref
k ¼ ð1þ �Þ p

c
k � � pworst

k :

Evaluate Fðpref
k Þ:

If Fðp2min
k Þ < Fðp

ref
k Þ � Fðp

max
k Þ, then add pref

k to the

simplex; i.e.

�kþ1  �k [ fp
ref
k g;

and return to Step 1.

Else-If Fðpref
k Þ > Fðp

max
k Þ, then expand the reflection point

as

p
exp
k ¼ � pref

k þ ð1� �Þ p
c
k:

Evaluate Fðpexp
k Þ; then

If Fðpref
k Þ < Fðp

exp
k Þ, then add p

exp
k to the simplex; i.e.

�kþ1  �k [ fp
exp
k g;

and return to Step 1.

Else add pref
k to the simplex; i.e.

�kþ1  �k [ fp
ref
k g;

then return to Step 1.

Else-If Fðpmin
k Þ < Fðp

ref
k Þ � Fðp

2min
k Þ, then we compute an

outside contraction point, i.e.

pcont
k ¼ � pref

k � ð1� �Þ p
c
k;

then evaluate Fðpcont
k Þ:

If Fðpref
k Þ < Fðp

cont
k Þ, then add pcont

k to the simplex; i.e.

�kþ1  �k [ fp
cont
k g;

then return to Step 1.

Else perform the local Sobol search (Algorithm A.2) to

find pLSS
k ; and update the simplex

�kþ1  �k [ fp
LSS
k g;

then return to Step 1.

Else Fðpref
k Þ � Fðp

min
k Þ, then we compute an internal

contraction point, i.e.

pcont
k ¼ � pref

k þ ð1� �Þ p
c
k;

and evaluate Fðpcont
k Þ:

If Fðpref
k Þ < Fðp

cont
k Þ, then add pcont

k to the simplex; i.e.

�kþ1  �k [ fp
cont
k g;

then return to Step 1.

Else perform the local Sobol search (Algorithm A.2) to

find pLSS
k ; and update the simplex

�kþ1  �k [ fp
LSS
k g;

then return to Step 1.

A2. Algorithm A.2. Local Sobol search

Given a maximal sample count N 2 N, the current SNM

iteration k, a given cooling parameter ", the initial box-width

estimate d, the simplex �, and known evaluations of FðpiÞ for

all pi 2 �, we identify a local region �̂� and perform space-

filling sample.

Step 1. Generate the local search region by creating the box �̂�
around the current motor position p by identifying the corners

(7), and (8). Create an N-point Sobol sampling of �̂�, denoted

as S = fps
i g

N
i¼ 1.

Step 2. From the current position of all four stepper motors,

compute an approximate shortest path through each untested

point of S using the nearest-neighbor method.

Step 3. Begin evaluating each point within the Sobol sampling

sequentially, according to the ordering established in Step 2,

using the sample-averaged FOM (6)

If at any point Fðps
i Þ > Fðp

minÞ, then return ps
i .
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Else proceed to Step 4.

Step 4. If no position within S improves the simplex �, then

extend the Sobol sample by N additional points, and return

to Step 2.

A3. Algorithm A.3. Nearest neighbor

Given a list of spatial coordinates S in � � R4:

Step 0. Denote the nearest-neighbor solution as the setR, and

initialize as the empty set ;. Given the initial position of the

motors p0, determine the nearest position within S to p0, and

denote that point as p
.

Step 1. Remove p
 from the set S: Let m denote the number of

positions contained in R. Enumerate p
 as pm+1, and add

it to R:

Step 2. If any positions remain in S; determine the nearest

position in S to pm + 1. Denote that position as p
, and return

to Step 1.
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