
research papers

664 https://doi.org/10.1107/S1600577522002697 J. Synchrotron Rad. (2022). 29, 664–669

Received 30 November 2021

Accepted 9 March 2022

Edited by M. Yamamoto, RIKEN SPring-8

Center, Japan

Keywords: Bluesky; experiment control;

fly scans; high-throughput experiments;

software architecture.

Mamba: a systematic software solution for
beamline experiments at HEPS

Yu Liu,a* Yan-Da Geng,b Xiao-Xue Bi,a Xiang Li,a,c Ye Tao,a,c Jian-She Cao,a,c

Yu-Hui Donga,c and Yi Zhanga,c*

aInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China,
bKuang Yaming Honors School, Nanjing University, Nanjing 210093, People’s Republic of China, and
cUniversity of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China.

*Correspondence e-mail: liuyu91@ihep.ac.cn, zhangyi88@ihep.ac.cn

To cater for the diverse experiment requirements at the High Energy Photon

Source (HEPS) with often limited human resources, Bluesky was chosen as the

basis for our software framework, Mamba. In our attempt to address Bluesky’s

lack of integrated graphical user interfaces (GUIs), command injection with

feedback was chosen as the main way for the GUIs to cooperate with the

command line interface; a remote-procedure-call service is also provided, which

covers functionalities unsuitable for command injection, as well as pushing

of status updates. In order to fully support high-frequency applications like

fly scans, Bluesky’s support for asynchronous control is being improved;

furthermore, to support high-throughput experiments, Mamba Data Worker is

being developed to cover the complexity in asynchronous online data processing

for these experiments. To systematically simplify the specification of metadata,

scan parameters and data-processing graphs for each type of experiment,

an experiment parameter generator will be developed; experiment-specific

modules to automate preparation steps will also be made. The integration of off-

the-shelf code in Mamba for domain-specific needs is under investigation, and

Mamba GUI Studio is being developed to simplify the implementation and

integration of GUIs.

1. Introduction

With the upgrade of synchrotron radiation facilities across the

world, great progress is being continously made in providing

X-ray beams with better emittance and coherence, as well

as employing optical components and detectors with higher

performance. Experiments with high communication

frequencies or high data throughputs, as well as experiments

involving multiple modes, complex in situ environments or

automated changing of samples, are becoming increasingly

prevalent. While allowing for multi-scale, multi-feature and

in situ characterization of samples, this also poses fundamental

challenges to experiment control and data acquisition/

processing, both in experiments themselves and in the

preparation steps before them. The large numbers of

beamlines at many facilities, especially new facilities under

construction, also result in the hard demand to implement

diverse experiment requirements with a manageable code-

base. At the High Energy Photon Source (HEPS) (Jiao et

al., 2018), a fourth-generation synchrotron radiation facility,

where 14 beamlines will be provided in 2025 in its Phase I and

up to 90 beamlines in total can be served in further phases, all

issues above are to be expected. In order to address these

issues, while keeping our codebase maintainable with often

limited human resources, proper architecture design must be

carried out for the software components involved.

ISSN 1600-5775

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577522002697&domain=pdf&date_stamp=2022-04-05


The foundation of Mamba, our software framework, is the

Python-based Bluesky (Allan et al., 2019); before making the

choice, we researched multiple well known alternatives for

similar applications, like GDA (Gibbons et al., 2011), Sardana

(Coutinho et al., 2011), Karabo (Hauf et al., 2019) and Py4Syn

(Slepicka et al., 2015). Here we avoid discussing the details of

our choice and instead note that the choice is not based on the

availability of readily usable features but based on the total

efforts needed to adapt the publicly available codebase to our

applications. When saying ‘total efforts’, we not only include

the efforts in development and maintenance of our own

codebase but also include those in understanding, fixing and

customizing the provided codebase. After our research, we

concluded that, because of the quite well designed device

interfaces (classes from the ophyd component of Bluesky) in

conjunction with the simple yet relatively powerful mechanism

to combine them in interlocked actions (RunEngine from

Bluesky’s bluesky component) and represent extracted data

in a friendly format (the ‘documents’) in real time, Bluesky is

likely to fulfill a satisfactory fraction of the requirements at

HEPS with the best cost-to-effect ratio. The first issue with

Bluesky is the lack of integrated graphical user interfaces

(GUIs); we discuss our approach to this issue in Section 2.

For other challenges we note in the above, we give our plan of

ongoing development in Section 3.

2. Mamba’s backend and frontend

The first issue we observe with Bluesky, in comparison with

its easily composable programming interfaces, is the lack of

integrated GUIs. For some experiment tasks, this is more like

just an obstacle to users with a relatively weak background in

programming, but there are also tasks that are fundamentally

easier with GUIs than only with keyboards. One good

example is a requirement from the hard X-ray high-resolution

spectroscopy beamline (B5) at HEPS [cf. also Huotari et al.

(2017)], where many regions of interest (ROIs) need to be

specified that properly cover individual light spots in sample

images taken from area detectors (and light spots in images

that will follow); another example is the manipulation of data-

pipe graphs for Mamba Data Worker (MDW) (cf. Section 3).

Since Bluesky recommends the IPython (Pérez & Granger,

2007) interactive command line interface (CLI) of Python for

its regular use on beamlines, we designed Mamba with coop-

eration between the CLI (Mamba backend) and our GUIs

(Mamba frontend) in mind; inspired by AutoCAD-like soft-

ware (called ‘parametric modeling software’ in its industry),

we extensively use what we call ‘command injection’ (Fig. 1) to

implement this cooperation. Before discussing the commu-

nication architecture of Mamba in detail, we note that its

frontend is still very immature in terms of internal structure

and robustness; however, the architecture between the

backend and frontend, which is the subject of this section, has

been tested successfully in a real tomography experiment on a

testbed for HEPS.

With command injection, we basically treat GUIs as ‘code

generators’: most user operations with GUIs are translated

into equivalent commands that get injected into the CLI,

where they are actually executed. This design is beneficial in

many ways, in terms of both user friendliness and architectural

soundness. Users can naturally learn to use the CLI from using

GUIs, and those more proficient in programming may abstract

repeated tasks into succinct yet reusable CLI snippets.

Sometimes, in order to perform some tasks that are not yet

implemented or simply inflexible with GUIs, developers may

even ask users to execute a few lines of code in the CLI; this is

particularly meaningful when considering that developing the

GUI for an application is typically much more complex than

developing its CLI counterpart. The emphasis of GUIs as code

generators also helps developers to naturally design optimal

interfaces when implementing requirements, which increases

modularity and consequently facilitates maintenance (espe-

research papers

J. Synchrotron Rad. (2022). 29, 664–669 Yu Liu et al. � Mamba: a systematic software solution for beamline experiments at HEPS 665

Figure 1
Command injection in Mamba, showing an error caused by attempting to log out twice after a successful experiment session; we explicitly note that the
appearance of the GUIs may vary in the future due to ongoing frontend refactoring.



cially automated testing). To summarize the above, command

injection allows the CLI and GUIs to complement each

other constructively, reducing workload for both users

and developers.

The actual communication architecture between the

backend and frontend of Mamba is shown in Fig. 2. The

backend is run as a subprocess of a wrapping program, which

is based on the pexpect library (https://pypi.org/project/

pexpect) and forwards input from the user and output from

the subprocess; the forwarding program also listens on a

socket (ZeroMQ REP, https://zeromq.org/) that ‘command-

injection clients’ can connect to, which sends the actual

injection requests [Fig. 3(d)]. This way, commands are injected

as if they were from the user’s keyboard. A problem with

pexpect-based command injection is the lack of feedback:

because the wrapping program does not understand the input

semantics of the program (e.g. IPython) it wraps, it only knows

whether some command has been successfully injected,

instead of the final result (return value or exception in Python,

cf. Fig. 1) of its execution. For this reason, we encapsulate

command injection with a remote procedure call (RPC)

service started by the server_start function in the

Mamba-specific startup script for IPython (Fig. 4); the RPC

service is a native Python thread with access to relevant

IPython interfaces, so it can capture the results of injected

commands and return them to its clients.

So the Mamba backend provides an RPC service that

supports command injection with feedback; however, there

are also communication requirements between the backend

and frontend that are unsuitable for command injection.

The first example is passwords, which should not appear in

clear text on the CLI because of the command-line-history

mechanism; additionally, many status queries (e.g. listing

known motors and detectors) are only required by GUIs, and

are inessential for CLI-only use of Mamba, so the appearance

of relevant commands on the CLI would be mostly useless

to users. Therefore we also provide ‘special RPCs’ for these

requirements [Fig. 3(a)]; however, because

RPCs need dedicated encapsulation code

(RPC-specific syntax checks etc.), we have

formed the policy that special RPCs should

usually not be added for communication

essential for CLI-only use. Noticing the need

for the frontend to get status updates [Fig. 3(c)]

and the intrinsic weakness of polling (polling

too often wastes system resources and too

infrequently risks loss of updates), in addition

to a request/reply socket (ZeroMQ REP) for

regular RPCs, a notification socket (ZeroMQ

PUB) is also provided by the RPC service to

proactively push updates to clients.

To further simplify our codebase, the finer

details in Mamba have also undergone careful

design, for which we give two examples. One is

the introduction of ZError, a subclass of

Python’s Exception, that can be raised by

handlers in the RPC service to give fine-

research papers

666 Yu Liu et al. � Mamba: a systematic software solution for beamline experiments at HEPS J. Synchrotron Rad. (2022). 29, 664–669

Figure 3
Example Mamba communication: (a) normal request/reply, (b) replies upon errors,
(c) notification and (d) raw communication to pexpect; except for (d), which uses raw byte
strings, all other (RPC) communication uses a JSON-based format.

Figure 2
Mamba’s communication architecture.

Figure 4
An example IPython startup script for Mamba.



grained reports for errors that have been anticipated by

developers [cf. Figs. 1 and 3(b)]. The RPC service will return

information extracted from ZError to clients, instead of the

more generic information it will return upon other types of

exceptions; this way, RPC clients can set up exception hand-

lers accordingly and only use a generic handler as a last resort.

Another example is the use of variables M and D to group

motors and detectors, respectively, in the global scope of

IPython [cf. Figs. 1, 4 and 3(a)], just like how RE is recom-

mended by Bluesky developers for the RunEngine instance

in the same scope. We find this much more natural as a way to

mark the ‘movability’ of devices than alternatives, like passing

two ad hoc dictionaries as arguments to server_start

which has the disadvantage that the device lists cannot be

modified dynamically. We have even gone one step further and

modified core Ophyd code to allow device object names like

M.m1 that contain dots, so that we can enforce a policy that

the name of a device object must be a Python expression

referencing exactly the same object, which has proven to again

save quite a lot of code.

3. Further plans on Mamba

After quite extensive research on the eligibility of Bluesky for

the applications at HEPS, we concluded that, apart from the

lack of GUI integration, Bluesky is able to cover most low-

frequency low-throughput (typically with <10 Hz commu-

nication between the computer and devices involved, and data

rates <100 MB s�1) needs at HEPS, in both regular ‘step scan’

experiments and certain preparation steps (e.g. the automated

arming of samples, including the fine tuning of their positions;

cf. also the requirement from the B5 beamline at HEPS

mentioned in Section 2). Nevertheless, because HEPS is a

fourth-generation synchrotron radiation facility, its small

X-ray spots and high brightness not only facilitates high-

resolution imaging but also necessitates continuous scans (fly

scans) to handle the significantly larger number of data points

and the much more serious radiation damage of samples. So

both high-frequency and high-throughput applications –

exactly where Bluesky is currently not very good – are

essential to HEPS; if these weaknesses are somehow

addressed, Bluesky will be able to provide a solid unified basis

for beamline experiments at HEPS.

We begin with high-frequency applications, represented by

fly scans; in comparison with fly scans, a typical high-frequency

(but low throughput) application is sound recording. When

performing fly scans (sound recording), because regular

computers cannot handle the influx of data points at too high

frequencies, we instead use dedicated controllers (sound

recorders) to do the handling; the computer reads data from

the controllers in a block-by-block (instead of point-by-point)

fashion, and other than that just sends control messages like

‘start’, ‘stop’ or ‘pause’. From the above we can see that the

key to high-frequency applications is asynchronous control

(indirectly with dedicated controllers), which currently does

not seem quite easy to do with Bluesky’s RunEngine. In

fact the latter already has primitive support for simple fly

scans, which only need ‘start’ (the kickoff operation in

RunEngine) and ‘stop’ (the complete operation), where

the data readout is mainly carried out offline (the collect

operation run after complete). At HEPS, we are currently

exploring an implementation of fly scans that allows real-time

tuning of the scanning behaviors (adaptive speed/step-size

tuning, automatic pausing/resuming etc.) based on online

processing of the data read from controllers. This might be of

particular interest in requirements like obtaining the optimal

X-ray spot size and wavefront for focus alignment, as well as

enabling ultra-high stability of the sample and X-ray probe

during multi-dimensional scanning measurements at the hard

X-ray nanoprobe beamline (B2) at HEPS.

Bluesky supports online data processing using Python

packages from the SciPy ecosystem (Virtanen et al., 2020), but

this is currently carried out through synchronous point-by-

point callbacks; similar to how point-by-point processing of

sound data cannot be carried out synchronously with regular

computers, synchronous processing is unsuitable for high-

throughput applications. The solution is also similar – use

asynchronous processing instead; noticing the discussion in

the previous paragraph, we can see that the same asynchro-

nous mechanism we envision also covers the data-processing

needs for high-frequency experiments naturally. To address

the complexity in both the asynchronous collaboration of

worker processes (buffering, polling/pushing, error handling

etc., plus the resource management for processing of big data)

and the diverse domain-specific logics we need to support, we

are developing what we call the Mamba Data Worker (MDW)

framework, which will be to an extent like HiDRA (Fischer et

al., 2017) and Odin (Yendell et al., 2017). However, instead of

focusing more on data producers, MDW will treat producers

and consumers equally, also handling the diverse formatting

requirements of raw data from beamline experiments at HEPS

(Hu et al., 2021a). The same requirements are, to our knowl-

edge, not something actively pursued by Bluesky’s databroker,

aside from the problem we notice that databroker is not

performant enough when there is heavy disk I/O on the same

machine. Moreover, instead of mainly supporting linear

processing pipelines, MDW will support full-fledged graphs of

data pipes (Fig. 5), perhaps implemented in cooperation with

the Daisy project (Hu et al., 2021b); this is crucial for the

research papers

J. Synchrotron Rad. (2022). 29, 664–669 Yu Liu et al. � Mamba: a systematic software solution for beamline experiments at HEPS 667

Figure 5
A partial data-pipe graph for a simple high-throughput tomography
experiment.



real-time tuning of fly scans and will also be very helpful in

complex multimodal experiments.

As has also been discussed by Hu et al. (2021a), aside from

the diverse needs for processing of ‘real’ data from experi-

ments, the challenges posed by the many types of experiments

possible at HEPS also include the complexity in management

of the scientific metadata for these experiments, which will

directly affect the formatting of raw data by MDW. From the

data producers’ side, for each type of experiment at a certain

beamline, the number of parameters intended to be tuned by

users (especially typical users) is usually much smaller than

the total number of parameters for devices accessible on the

beamline. Therefore it is also necessary to extend Bluesky’s

RunEngine for each type of beamline experiment, so that

users’ needs to care about irrelevant parameters are system-

atically minimized. Noticing the strong correlation between

the specification of scientific metadata, device parameters and

data-pipe graphs, we will be designing an experiment para-

meter generator (EPG) mechanism. Given an experiment

schema, the EPG should accept a minimized group of inputs;

while the inputs are selected for typical needs, the output

should be in a form both customisable by advanced users and

friendly to automation mechanisms. In the same spirit of

simplifying user operations, we will also develop Mamba

modules to automate experiment-specific preparation steps, as

are mentioned in the beginning of this section; considering the

small X-ray spots allowed at HEPS, this will help greatly in

reducing the time costed by tasks like the fine tuning of beams.

We find that ‘intelligent’ techniques, e.g. those based on

statistical learning, are often useful in these steps, and we

believe the architecture of Mamba will help to incorporate

these techniques into our workflow.

For both the backend and frontend of Mamba, we fully

realize the necessity to reuse off-the-shelf code from open-

source projects to avoid unnecessary duplication of efforts in

providing domain-specific abstractions. Integration of code

from projects, e.g. xrayutilities (Kriegner et al., 2013) and

diffcalc (https://github.com/DiamondLightSource/diffcalc, for

SPEC-like access to crystallographic coordinates) on the

backend side, as well as TomoPy (Gürsoy et al., 2014) and

pyFAI (Ashiotis et al., 2015) (for requirements in tomography)

on the frontend side, is already under investigation. We also

realize the dominant status of certain projects in specific fields,

e.g. MXCuBE (Oscarsson et al., 2019) in macromolecular

crystallography, and will consider ways to provide a smooth

experience at HEPS to users familiar with these projects. We

may reuse Mamba components just enough to integrate the

upstream project into the workflow at HEPS, or conversely

integrate upstream components into Mamba, or even (if

preferable) reimplement functionalities in Mamba and just

emulate the GUIs for them; the actual way will be chosen

depending on the specific project, in friendly cooperation with

upstream developers, with the goal of minimizing the efforts

on both sides in mind. We also note the necessity to support

control systems other than the Experimental Physics and

Industrial Control System (EPICS, https://epics-controls.org/),

which is certainly doable with Bluesky but just not a focus to

its developers. This is imperative for high-throughput area

detectors, which are non-trivial to support cleanly with the

areaDetector framework in EPICS (Rivers, 2010), and we are

working on direct Ophyd support for them with MDW inte-

gration. There may also be systematic demand for other

devices unsupported by EPICS that cannot be replaced with

supported workalikes, which has fortunately not yet been

encountered by us.

To reduce the efforts necessary for implementation and

integration of GUIs, we are making what we call Mamba GUI

Studio (MGS), to provide reusable utility widgets and to allow

drag-and-drop composition of high-level GUI components,

similar to what is carried out by Sobhani & Vescovo (2020). A

feature commonly requested for Mamba is cross-platform use

of its frontend, but we find it really complex to expose its RPC

service (especially the command-injection mechanism) to the

network without harming security. For this reason, we only

allow the backend and frontend of Mamba to run on the same

host, but meanwhile we plan to use the xpra utility (https://

xpra.org/) (Fig. 6), with communication secured with SSH, to

provide access on remote computers with operating systems

supported by xpra. Since xpra supports multiple coexisting

‘virtual screens’ and simultaneous access to one virtual screen

by multiple clients, users can additionally collaborate either

using self-chosen groups of GUIs or using GUI groups shared

by others; proper coordination is obviously needed between

users, perhaps using walkie-talkies or some chat software, to

avoid conflicts between their operations.

4. Conclusions

We are developing a Bluesky-based Mamba software frame-

work for the diverse experiment requirements at HEPS. We

use command injection with feedback to allow the command

line interface and graphical user interfaces of Mamba to

complement each other constructively; considering that

certain functionalities are unsuitable for command injection,

research papers

668 Yu Liu et al. � Mamba: a systematic software solution for beamline experiments at HEPS J. Synchrotron Rad. (2022). 29, 664–669

Figure 6
xpra provides virtual screens, each of which can be accessed by multiple
clients simultaneously.



Mamba provides a remote-procedure-call service, which also

supports proactive pushing of status updates. We take multiple

measures to further simplify the codebase of Mamba, like the

use of ZError to simplify error handling, and the use of M and

D to group motors and detectors, respectively. We find Blue-

sky’s weaknesses in high-frequency and high-throughput

experiments to be exactly where it lacks in requirements at

HEPS, and plan to address the former by improving Bluesky’s

support for asynchronous control. To fully address the

complexity in data processing for high-throughput experi-

ments, we are developing Mamba Data Worker, which will

cover the entire process from producers to consumers, as well

as support full-fledged graphs of data pipes. To simplify the

specification of scientific metadata, device parameters and

data-pipe graphs, we will develop an experiment parameter

generator; the generation will be tailored systematically

according to the experiment type, and its output will

be customisable yet machine friendly. Experiment-specific

modules to automate preparation steps will be developed

similarly. We are investigating the integration of off-the-shelf

code into Mamba to provide domain-specific functionalities,

and are also developing Mamba GUI Studio to simplify the

implementation and integration of graphical user interfaces.

We plan to use an xpra-based mechanism to allow cross-

platform access to Mamba, which will also enable easy colla-

boration between users.

Acknowledgements

All authors of this paper gratefully acknowledge the 3W1A

and 1W2B beamlines of the Beijing Synchrotron Radiation

Facility (BSRF) for providing software testing beam time.

Funding information

This work was supported by the National Science Foundation

for Young Scientists of China (Grant No. 12005253), the

Strategic Priority Research Program of Chinese Academy of

Sciences (XDB37000000, CAS-WX2021PY-0106) and the

Technological Innovation Program of Institute of High Energy

Physics of Chinese Academy of Sciences (E25455U210).

References

Allan, D., Caswell, T., Campbell, S. & Rakitin, M. (2019). Synchrotron
Radiat. News, 32(3), 19–22.

Ashiotis, G., Deschildre, A., Nawaz, Z., Wright, J. P., Karkoulis, D.,
Picca, F. E. & Kieffer, J. (2015). J. Appl. Cryst. 48, 510–519.

Coutinho, T., Cunı́, G., Fernández-Carreiras, D., Klora, J., Pascual-
Izarra, C., Reszela, Z. & Suñé, R. (2011). Proceedings of the 13th
International Conference on Accelerators and Large Experimental
Physics Control Systems (ICALEPCS2011), 10–14 October 2011,
Grenoble, France, pp. 607–609. WEAAUST01.

Fischer, M., Gasthuber, M., Giesler, A., Hardt, M., Meyer, J.,
Prabhune, A., Rigoll, F., Schwarz, K. & Streit, A. (2017). J. Phys.
Conf. Ser. 898, 082026.

Gibbons, E. P., Heron, M. T. & Rees, N. P. (2011). Proceedings of the
13th International Conference on Accelerators and Large Experi-
mental Physics Control Systems (ICALEPCS2011), 10–14 October
2011, Grenoble, France, pp. 529–532. TUAAUST01.

Gürsoy, D., De Carlo, F., Xiao, X. & Jacobsen, C. (2014).
J. Synchrotron Rad. 21, 1188–1193.

Hauf, S., Heisen, B., Aplin, S., Beg, M., Bergemann, M., Bondar, V.,
Boukhelef, D., Danilevsky, C., Ehsan, W., Essenov, S., Fabbri, R.,
Flucke, G., Fulla Marsa, D., Göries, D., Giovanetti, G., Hickin, D.,
Jarosiewicz, T., Kamil, E., Khakhulin, D., Klimovskaia, A., Kluyver,
T., Kirienko, Y., Kuhn, M., Maia, L., Mamchyk, D., Mariani, V.,
Mekinda, L., Michelat, T., Münnich, A., Padee, A., Parenti, A.,
Santos, H., Silenzi, A., Teichmann, M., Weger, K., Wiggins, J.,
Wrona, K., Xu, C., Youngman, C., Zhu, J., Fangohr, H. &
Brockhauser, S. (2019). J. Synchrotron Rad. 26, 1448–1461.

Hu, H., Qi, F., Zhang, H., Tian, H. & Luo, Q. (2021a). J. Synchrotron
Rad. 28, 169–175.

Hu, Y., Li, L., Tian, H.-L., Liu, Z.-B., Huang, Q.-L., Zhang, Y., Hu, H.
& Qi, F.-Z. (2021b). EPJ Web Conf. 251, 04020.

Huotari, S., Sahle, C. J., Henriquet, C., Al-Zein, A., Martel, K.,
Simonelli, L., Verbeni, R., Gonzalez, H., Lagier, M.-C., Ponchut, C.,
Moretti Sala, M., Krisch, M. & Monaco, G. (2017). J. Synchrotron
Rad. 24, 521–530.

Jiao, Y., Xu, G., Cui, X.-H., Duan, Z., Guo, Y.-Y., He, P., Ji, D.-H., Li,
J.-Y., Li, X.-Y., Meng, C., Peng, Y.-M., Tian, S.-K., Wang, J.-Q.,
Wang, N., Wei, Y.-Y., Xu, H.-S., Yan, F., Yu, C.-H., Zhao, Y.-L. &
Qin, Q. (2018). J. Synchrotron Rad. 25, 1611–1618.

Kriegner, D., Wintersberger, E. & Stangl, J. (2013). J. Appl. Cryst. 46,
1162–1170.

Oscarsson, M., Beteva, A., Flot, D., Gordon, E., Guijarro, M.,
Leonard, G., McSweeney, S., Monaco, S., Mueller-Dieckmann, C.,
Nanao, M., Nurizzo, D., Popov, A., von Stetten, D., Svensson, O.,
Rey-Bakaikoa, V., Chado, I., Chavas, L., Gadea, L., Gourhant, P.,
Isabet, T., Legrand, P., Savko, M., Sirigu, S., Shepard, W.,
Thompson, A., Mueller, U., Nan, J., Eguiraun, M., Bolmsten, F.,
Nardella, A., Milàn-Otero, A., Thunnissen, M., Hellmig, M.,
Kastner, A., Schmuckermaier, L., Gerlach, M., Feiler, C., Weiss,
M. S., Bowler, M. W., Gobbo, A., Papp, G., Sinoir, J., McCarthy, A.,
Karpics, I., Nikolova, M., Bourenkov, G., Schneider, T., Andreu, J.,
Cunı́, G., Juanhuix, J., Boer, R., Fogh, R., Keller, P., Flensburg, C.,
Paciorek, W., Vonrhein, C., Bricogne, G. & de Sanctis, D. (2019).
J. Synchrotron Rad. 26, 393–405.

Pérez, F. & Granger, B. E. (2007). Comput. Sci. Eng. 9, 21–29.
Rivers, M. (2010). AIP Conf. Proc. 1234, 52–54.
Slepicka, H. H., Canova, H. F., Beniz, D. B. & Piton, J. R. (2015).

J. Synchrotron Rad. 22, 1182–1189.
Sobhani, B. A. & Vescovo, E. (2020). In EPICS Collaboration

Fall Meeting 2020, https://indico.fhi-berlin.mpg.de/event/52/
contributions/579/.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright,
J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov,
N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J.,
Polat, I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris,
C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van
Mulbregt, P. & SciPy 1.0 Contributors (2020). Nat. Methods, 17,
261–272.

Yendell, G., Pedersen, U., Tartoni, N., Williams, S., Nicholls, T. &
Greer, A. (2017). Proceedings of the 16th International Conference
on Accelerators and Large Experimental Physics Control Systems
(ICALEPCS2017), 8–13 October 2017, Barcelona, Spain,
pp. 966–969. TUPHA212.

research papers

J. Synchrotron Rad. (2022). 29, 664–669 Yu Liu et al. � Mamba: a systematic software solution for beamline experiments at HEPS 669

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5087&bbid=BB13

