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Complex dynamic tomographic experiments at brilliant X-ray light sources

require real-time feedback on the sample changes with respect to environmental

conditions, selecting representative regions of interest for high-resolution

scanning, and on-demand data saving mechanisms for storing only relevant

projections acquired by fast area detectors and reducing data volumes. Here the

implementation details of a 3D real-time imaging monitoring instrument, with

zooming to a volume of interest with easy-to-use visualization via ImageJ, a tool

familiar to most beamline users, is presented. The instrument relies on optimized

data flow between the detector and processing machines and is implemented on

commodity computers. The instrument has been developed at beamline 2-BM of

the Advanced Photon Source, where the automatic lens changing mechanism for

zooming is implemented with an Optique Peter microscope. Performance tests

demonstrate the ability to process more than 3 GB of projection data per second

and generate real-time 3D zooming with different magnification. These new

capabilities are essential for new APS Upgrade instruments such as the

projection microscope under development at beamline 32-ID. The efficacy of the

proposed instrument was demonstrated during an in situ tomographic experi-

ment on ice and gas hydrate formation in porous samples.

1. Introduction

The development of high-speed time-resolved tomographic

microscopy is of great interest for various three-dimensional

(3D) in situ studies including material science (Maire et al.,

2016; Zhai et al., 2019), geology (Butler et al., 2020; Nikitin et

al., 2020), and energy sources (Finegan et al., 2015; Liu et al.,

2019). Brilliant synchrotron light sources are able to perform

continuous tomographic data acquisition at a rate of more

than 7.7 GB s�1 (Mokso et al., 2017; Garcı́a-Moreno et al.,

2021), generating terabytes of data in a very short time,

opening the possibility of studying very fast processes at

unprecedented high temporal resolution. Most of the current

high-speed tomographic instruments capture events in a

preset region of the sample and monitor the sample evolution

by only looking at projection data. In most cases, this semi-

blind conventional approach leads to missing the dynamic

phenomenon as the place and time of its origination may not

be known in advance.

One of the main difficulties in studying fast processes is to

select a representative region of interest for scanning, i.e. the

region where the dynamic process starts occurring and evolves
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in time. In most cases the dynamic phenomenon is not

captured because it occurs in a location not under observation,

is faster than expected or requires a different spatial or

temporal resolution than the one the instrument is configured

at. Another difficulty in in situ studies of dynamically changing

samples is the determination of the optimal environmental

control system conditions. Without real-time 3D imaging

feedback, it is nearly impossible to set optimal environmental

conditions, such as cooling temperature, pressure or loading

forces, especially when the X-ray beam itself affects the

sample state.

There are many studies that would greatly benefit from fast

3D imaging optimized by using real-time image reconstruction

for feedback and control.

In material engineering and geomechanics it is important

to understand mechanisms of failure origination. But these

processes are very challenging for 3D imaging because a crack

may start in different parts of the sample. A recent study

demonstrates that it is possible to follow a crack propagation

in 3D at a 20 Hz acquisition rate and a sample-rotation rate

of 10 rev min�1 (Maire et al., 2016). However, the chance of

successful imaging of the crack is only 5%. Marti et al. (2021)

studied hydrofracturing in gypsum and reported a possibility

to perform 3D imaging at a rate of 2 s per full scan. But in most

cases the fast process of rock failure is still studied using

comparatively slow imaging. Processes of rupture nucleation,

evolution of damage and strain localization in tri-axially

compressed porous limestone were imaged at a rate of only

3 min for one full scan (Renard et al., 2017; Huang et al., 2019).

Studying mechanisms of rock failure is important to better

understand hydraulic fracturing but we did not find studies

utilizing real-time 3D imaging as a routine tool. Voltolini &

Ajo-Franklin (2020a) show a fracture sealing mechanism in

clay, revealed by in situ 3D imaging at a rate of �14 min for

one full scan. An important process of evolution of propped

fractures in shale was imaged only at a rate of�10 min for one

full scan (Voltolini & Ajo-Franklin, 2020b); fracture devel-

opment caused by the freeze–thaw cycling of porous samples

was imaged at a rate of 1.3 min for one scan (De Kock et

al., 2015).

An important topic in geosciences is to study fast non-

equilibrium pore-scale processes including wetting, dilution,

mixing, and reaction phenomena, without sacrificing signifi-

cant spatial resolution. For example, fast pore-scale fluid

dynamics – an incremental capillary-water movement known

as the Haines jumps – was observed in in situ experiments with

3D imaging every 16 s (Berg et al., 2013; Singh et al., 2018), and

at a 20 Hz rate (Dobson et al., 2016). Such results form the

basis for developing and validating multi-scale flow models

through heterogeneous pore networks. Note that fast imaging

in the latter case is not continuous but interrupted by data

transfer on the disk. An important process of super-critical

CO2 flow in porous rocks for carbon sequestration and storage

was imaged only at a rate of 2.5 min for one scan (Voltolini et

al., 2017). Nikitin et al. (2020) used dynamic in situ imaging at

a rate of 70 s per full scan to study the process of methane

hydrate formation in porous samples. They mentioned that

this scanning rate was not sufficient for studying the faster

hydrate dissociation processes and reported fluid movement

artifacts in the images. Fast time-resolved tomographic

experiments to study bubble growth in basaltic foam were

conducted by Baker et al. (2012) where the authors reported

that a temporal resolution issue caused by rapid sample

movements caused the fast dynamics of earliest bubble

growth. They were acquiring data with a fast camera at a rate

of 1 s per 180� interval, with 18 s total time for a measurement.

Because of sample motion they reported only the measure-

ments commencing 10–11 s following the earliest start of the

bubble growth. In the following work (Pleše et al., 2018), the

authors performed scanning with 0.5 s per 180� interval and

were able to acquire 100 tomographic datasets for each

measurement. In order to capture the initiation of the bubbles

growth, the authors monitored radiographs (2D projection

images) of one section of each sample and started tomo-

graphic data acquisition according to the approximate

temperature inside the sample.

A conventional approach for data acquisition in tomo-

graphic experiments is based on real-time visualization of 2D

projections streamed from the detector. These projections

are typically used to align the sample on the rotation stage

and adjust the detector exposure time. Further tomographic

scanning in fly scan mode (Wang et al., 2019) involves saving a

series of projections while the sample is continuously rotated

over a 180� interval. After scanning, the acquired data are

transferred from the detector computer to a processing and

visualization workstation where the reconstruction procedure

and the 3D rendering are performed. Data acquisition and

reconstruction becomes time-consuming especially in the case

of dynamic tomography experiments. At the micro-tomo-

graphy beamline 2-BM of the Advanced Photon Source the

typical acquisition time for geological samples is about

1–3 min, depending on the sample thickness and absorption;

nano-tomography measurements at sector 32-ID (De

Andrade et al., 2021), in turn, take 15–30 min (Nikitin et al.,

2021). At both beamlines, the reconstruction time of a full 3D

volume using tomoPy (Gürsoy et al., 2014a) multi-threaded

CPU-based functions is about 15 min.

The acceleration of tomographic reconstruction with

modern multi-CPU and multi-GPU systems has always been

of great interest in the imaging community. Parallel imple-

mentations on multi-core CPU clusters (Bicer et al., 2017;

Marone et al., 2017) are based on splitting data over slices and

processing them independently on different nodes. Similarly,

GPU implementations with CUDA technology (van Aarle et

al., 2015; Andersson et al., 2016) allows for reconstructing full

3D volumes in less than a minute. While these approaches

demonstrate significant reduction in computational times,

reconstruction of full 3D volumes remains challenging in the

case of real-time tomographic reconstruction. In most cases

though, beamline users primarily look at recovered 3D

volumes slice by slice while the experiment is ongoing. More

detailed analysis involving, for instance, segmentation and

quantification is typically done after the experiment. The

computational cost to reconstruct a set of arbitrary slices
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through a sample is negligible compared with a full volume

reconstruction. In many cases, a set of arbitrary slices are

sufficient to implement real-time instrument feedback and

to enable users to make decisions about data quality and

dynamic event capturing (Buurlage et al., 2018, 2019).

Current frameworks for controlling detectors allow for

pipelining complex data flows including real-time projection

processing on different devices. Perhaps the most advanced

interface is provided by EPICS areaDetector (Rivers et al.,

2010; Rivers, 2017), where a set of plugins running in their own

threads allows for real-time processing of detector raw data.

The list of plugins (Rivers, 2022a) includes statistics calcula-

tions, image processing, region of interest extraction, file

saving, and exporting images via EPICS Channel Access or

pvAccess (Veseli, 2015) for display in clients like the ImageJ

package (Schneider et al., 2012), a commonly used software in

the imaging community, by making use of the EPICS NTNDA

Viewer (Rivers, 2022b) plugin, or further processing.

In this paper we propose a real-time 3D imaging monitoring

instrument able to: (1) optimize alignment and data collection

parameters including exposure time and angular step size

while streaming tomographic projections are collected in fly

scan mode; (2) trigger data save on-demand at any time while

continuing the streaming monitoring; (3) add to the saved data

an arbitrary set of projections streamed before the data save

trigger event; (4) perform real-time tomographic reconstruc-

tion of three arbitrary slices across the sample; (5) perform a

three-lens zoom-in/zoom-out to a region of interest centered

on the intersection point of the three arbitrary slices; and

(6) swap detector when different frame rate or pixel size are

required. The proposed instrument has been implemented at

beamline 2-BM of the Advanced Photon Source, where the

automatic lens changing mechanism for zooming was realized

by an Optique Peter microscope system (Optique-Peter,

2022). We demonstrate real-time streaming reconstruction

and ImageJ visualization of three arbitrary slices through the

sample volume, as well as optimal data flow management for

streaming reconstruction and projection capturing to HDF5

files with EPICS areaDetector. To prove the efficacy of the

proposed streaming functionality in providing effective real-

time feedback, we include detailed performance tests for

reconstruction using commodity computers, and demonstrate

its use in an in situ tomographic experiment of ice and gas

hydrate formation in porous media.

2. Streaming data acquisition model

We define data streaming as a transmission or broadcast over

the network of images as structured objects that include

metadata sufficient to correctly handle transmission errors.

For example, in the case of tomographic projection images,

these metadata include the angle at which that projection was

collected. The proposed streaming data acquisition model

consists of the following parts:

(1) Broadcasting projections over the network in streaming

mode with on-demand data capturing to disk.

(2) Changing acquisition parameters, including exposure

time and angular step, while in streaming mode.

(3) Real-time streaming reconstruction and visualization of

three arbitrary slices through the sample.

(4) 3D zooming to regions of interest inside the sample,

while in streaming mode.

In the proposed model we assume fly scan data collection,

i.e. the studied sample is positioned on a continuously spinning

rotary stage and that its encoder pulses are used to trigger the

detector whenever each particular projection angle should

be acquired. The specific hardware used to demonstrate this

model is listed in Section 3.

2.1. Broadcasting projections over the network in streaming
mode with on-demand data capturing to disk

Projection data broadcasting and capturing relies on using

the PVA1 pvAccess plugin (NDPluginPva, 2022) of area-

Detector (AD), an application for controlling area (2D)

detectors, including CCDs, pixel array detectors, and online

imaging plates (Rivers, 2017). We utilize the PVA1 plugin to

form structured objects containing the projection data and

transport them over the network. Besides the 2D raw image

array, the structured object includes information about data

size, binning, frame type, and a unique ID for each projection.

Frame type is assigned the values of ‘Projection’, ‘DarkField’,

and ‘FlatField’, and is used to distinguish raw projection data,

dark-field data (when the beam is off), or flat-field data (when

the beam is on but the object is out of the field of view) to

further apply dark-flat-field correction in the reconstruction

procedure. The reconstruction engine directly converts the

unique ID of each projection to the rotation angle at which the

projection is acquired. If, during streaming, a projection is

missed, due to slow network connection, transmission errors,

etc., the corresponding angle will be skipped as well and the

error be handled with negligible or no effect on the real-time

reconstruction quality. The AD region of interest (ROI)

plugin ROI1 is used for data cropping and binning. The

capturing of data from the detector stream to disk is handled

by the AD HDF plugin which, besides raw data, also saves all

metadata associated with the tomographic scan using the data-

exchange (De Carlo, 2022a) file format. To implement the

data-exchange schema, the AD HDF plugin is configured

using ad hoc xml files (De Carlo, 2022b). In addition, we

utilize the AD circular buffer (NDPluginCircularBuff, 2022)

plugin CB1 to store a set of projections back in time. In the

case of dynamic tomography, the circular buffer allows users

to capture the beginning of the studied dynamic process and

monitor the whole process evolution.

Plugins run in their own threads, allowing parallel proces-

sing on multi-core machines. All AD plugins can be structured

as a set of independent pipelines. In the proposed streaming

implementation we have two pipelines reading data from the

same detector channel RAW DATA:
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The first pipeline prepares data for broadcasting and

streaming reconstruction. In case of a slow network connec-

tion or limited computing resources, one can apply binning or

crop data to smaller sizes by adjusting parameters in the ROI1

plugin. The second pipeline is associated with on-demand data

capturing to an HDF5 file located on the machine controlling

the detector. As opposed to the first pipeline, no data binning

or cropping is applied in this case.

Dark and flat fields are acquired on-demand while the

sample is continuously rotated. Dark and flat data are saved

in temporary HDF5 files named ‘dark_fields.h5’ and ‘flat_

fields.h5’, and copied to any future HDF5 file with projection

data whenever projection capturing is executed. Each

resulting HDF5 file containing dark, flat, and projection data is

structured as a standard Data Exchange file (De Carlo et al.,

2014) and can be read using the read_dx() function from the

DXchange toolbox (De Carlo, 2022a). These files can be

reconstructed offline using tomoPy (Gürsoy et al., 2014b) via

its command-line interface tomopyCLI (De Carlo, 2019),

or using a GPU-based reconstruction with tomocupyCLI

(Nikitin, 2022).

Recollecting the dark and flat fields while in streaming

mode will update the ‘dark_fields.h5’ and ‘flat_fields.h5’ files.

Each set of dark and flat fields is averaged, down-sampled with

respect to binning defined in the ROI1 plugin, and broad-

casted over the network via pvAccess variables. In this way,

any connected reconstruction engine has access to the most

recently collected dark and flat fields.

The circular buffer stores projection data representing the

state of the sample earlier in time, before the on-demand

projection capturing starts. Since the AD HDF5 file plugin

does not allow appending projections at the beginning of the

projection array in the file, one has to implement additional

data merging procedures involving large data transfers inside

memory. To avoid this, we decided to store the circular buffer

in a separate HDF5 file and apply an offline projection array

merging whenever streaming is done. Alternatively, one can

consider using virtual HDF5 datasets that allow several real

datasets to be mapped together into a single and sliceable

dataset via an interface layer.

We implemented the projection broadcast and on-demand

data capturing to disk described above in the tomoScanStream

Python class which is a part of tomoScan (Rivers, 2022c).

2.2. Changing acquisition parameters, including exposure
time and angular step, while in streaming mode

An additional important feature of the proposed streaming

model is the possibility to change data acquisition parameters,

such as exposure time and angular step, without stopping the

streaming process. For instance, exposure time needs to be

adjusted when changing energy or magnification setups using

thicker (thinner) or more (less) efficient scintillators required

to achieve a desired spatial resolution or data collection speed.

Moreover, fast real-time streaming reconstruction of sample

slices with very short exposure time and sparse angles is often

required for quick ROI search and for monitoring the sample

dynamics, whereas data capturing to an HDF5 file, in most

cases, should be done with optimal acquisition parameters.

Exposure time and angular step change involves accelerating

or decelerating the rotation stage while the stage is moving.

In our measurements we used an Aerotech stage model

ABRS-150MP-M-AS with the Aerotech Ensemble Controller

model HLE10-40-A-MXH operated by using commands from

Aerobasic programming language. The controller allows for

changing the rotation speed without stopping the stage only

when the rotation is done in the ‘Jog’ motion mode. When

the stage is rotating, its encoder sends trigger pulses to the

detector whenever each subsequent projection needs to be

acquired. To change the rotation speed without losing track of

the unique image ID and its matching angular position, while

the rotary stage is moving, we implemented a sequence which

(1) temporarily terminates the trigger pulses (locking the

unique image ID), (2) changes the rotation speed of the ‘Jog’

motion, (3) arms the recording of the stage encoder value

using the Aerobasic commands in the DATAACQ group, then

(4) resumes sending pulses.

The first recorded encoder pulse allows for recovering the

new rotary stage angular position at which the first projection

is acquired after changing the rotation speed. This image

unique ID is known (equal to the locked unique ID + 1) and

allows for re-synchronizing images with the new angular

positions. With the initial angle and the new angular step we

form a new array of angles and broadcast it as a PV variable

used by the streaming reconstruction. The reconstruction

engine is reinitialized whenever a new set of angles is gener-

ated. The whole procedure for rotation change with corre-

sponding Aerobasic code parts can be summarized as follows:

(1) Initiate ‘Jog’ rotation with velocity based on exposure

time and angular step.

(2) Wait for rotation stage acceleration time.

(3) Program PSO:

PSOCONTROL X OFF – turns off pulses.

DATAACQ X TRIGGER 2 – specifies which signal is

monitored to collect data.

DATAACQ X INPUT 0 – specifies the data element

collected when a trigger occurs.

DATAACQ X ON 1 – enables data collection.

PSOCONTROL X ARM – turns on pulses.

(4) Wait when one pulse is acquired.

(5) Read encoder value:

DATAACQXREAD0;1 – read one encoder value to an

integer register.

IGLOBALð0Þ – read value from the register.

(6) Turn off encoder values acquisition:

DATAACQXOFF – disable data collection.
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(7) Convert encoder value to the angle, match the angle

with projection unique ID.

(8) Create a new array of angles and broadcast it in a

PV variable.

2.3. Real-time streaming reconstruction and visualization of
three arbitrary slices through the sample

Each reconstruction engine in the streaming model is

associated with a computer equipped with a GPU. It

continuously performs the following operations: (1) reading

structured projection data from the network via the PVA1

plugin of AD, (2) fast reconstruction of three arbitrary slices

on GPU, and (3) broadcasting the result over the network as a

pvAccess variable. To implement the concurrent execution of

these operations we utilize multi-threading implemented with

regular Python threads.

The first thread reads the structured projection data

(containing unique projection ID) from the network and adds

it to a synchronized buffer with a given total number of items.

Typically the buffer size corresponds to the number of

projections in a 180� interval yielding a full tomographic

reconstruction. However, to improve reconstruction quality of

noisy data in some cases it makes sense to consider several

180� intervals for processing. New incoming projections

replace the buffer elements corresponding to the same angles

at which these new projections were acquired. The new buffer

elements are consumed by the reconstruction engine to

update three reconstructed slices.

Another thread performs an optimized reconstruction

pipeline. The conventional reconstruction pipeline typically

consists of pre-processing operations (e.g. dark-flat-field

correction, taking negative logarithm, ring-removal, etc.) and

filtered back-projection. Computational complexity of the pre-

processing step is lower than the complexity of the filtered

back-projection step. Therefore, in what follows, we will focus

on the reconstruction step and show its optimization for real-

time evaluation.

Suppose that we have a filled projection buffer with the size

K, where projections d(�i , s, z) are given for each angle �i with

i = 0, . . . , K � 1, signed distance s with respect to the rotation

axis, and vertical position z. Let ~ddð�i; s; zÞ be a projection

computed after applying all pre-processing procedures and

filtering with the Shepp-Logan, Parzen, or other filter. The

back-projection formula for recovering function f(x, y, z)

applied after filtering can be written as follows,

f ðx; y; zÞ ¼
XK�1

i¼ 0

~dd �i; x cos �i þ y sin �i; zð Þ: ð1Þ

If we assume that the number of discrete points in each x, y, z

direction is of the order of N, formula (1) can be directly

evaluated with computational complexity OðKN 3Þ. There

also exist methods with lower computational complexity

[OðN 3 log NÞ], such as the Fourier-based or log-polar-based

methods (Dutt & Rokhlin, 1993; Beylkin, 1998; Andersson et

al., 2016). These methods are significantly faster than the

conventional back-projection in cases where the total number

of angles for reconstruction is significantly bigger than the

sample size in one dimension (N).

In this work, we use a similar approach as Buurlage et al.

(2018) and directly evaluate formula (1) to obtain three

arbitrary slice reconstructions for preset x, y, and z. We also

added functionality for setting the rotation angle of each

x, y, z slice to be able to follow different structures inside the

sample. Implementation of this functionality is straightfor-

ward and only involves rotation of x, y, z planes by using a

rotation matrix in 3D. The computational complexity for

each of the three arbitrary reconstructions is OðKN 2Þ. The

approach is more favorable compared with the aforemen-

tioned fast methods for two reasons. The first is that in many

cases there is no need to reconstruct a full 3D data volume in

real-time. Fast methods, such as the Fourier-based method,

recover the object at each discrete point x, y, z by employing

still significant computational resources and generating huge

reconstruction volumes. For real-time streaming reconstruc-

tion a user can monitor only few 2D slices and make relatively

fast decisions on when capturing data to disk or changing

scanning parameters. In turn, 3D volumes are difficult to

monitor without additional automatic data analysis.

Another reason for using the conventional reconstruction

method is related to the optimal evaluation of (1) when

projections are updated in streaming mode. Recall that

reconstruction is performed for all projections in the buffer.

Each upcoming projection and its unique ID are added to the

buffer for further updates of the recovered volume. Let f0 be

the recovered object from projections d0 representing a 180�

interval. The new recovered volume f1 can be computed by

using the whole 180� interval [see (1)], or, alternatively, by

updating the part corresponding to the new projection set
~dd1ð�j; s; zÞ, j = 0, . . . , K 0,

f1ðx; y; zÞ ¼ f0ðx; y; zÞ �
XK 0�1

j¼ 0

~dd0 �j; s; z
� �

þ
XK 0�1

j¼ 0

~dd1 �j; s; z
� �

:

ð2Þ

For K 0 � K, evaluation by formula (2) is significantly faster

than evaluation by (1). However, if acquisition is extremely

fast and K 0 > K/2, then formula (1) is computationally more

favorable. In Section 3, we will provide computational time

tables and analyze performance for different data acquisition

scenarios.

The whole reconstruction pipeline is implemented by

making use of the CuPy library (Okuta et al., 2017) developed

for GPU-accelerated computing with Python. The CuPy

interface is highly compatible with NumPy and SciPy; in most

cases it can be used as a drop-in replacement. In the proposed

reconstruction implementation, all preprocessing procedures,

such as dark-flat-field correction, taking negative logarithm, or

filtering, were ported from a NumPy source code. In turn,

back-projection, as the most computationally intensive part,

was implemented via CUDA C kernels directly callable from

the CuPy interface. Switching to GPU computations allowed

us to achieve real-time reconstruction of three arbitrary slices

through the sample. In some cases GPU memory is not
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enough to store the whole set of projections for a 180� interval.

To address this issue we split projections into several datasets

corresponding to different angles and process these datasets

independently one by one. With this straightforward data

splitting, one can use several GPUs for reconstruction and

obtain almost linear performance gains with increasing

number of GPUs.

For real-time reconstruction visualization, the three arbi-

trary slices are concatenated into one 2D array and broadcast

over the network as a structured pvAccess variable

constructed with the PvaPy interface (Veseli, 2015). Visuali-

zation can be done at any computer in the network by making

use of the EPICS NTNDA Viewer (Rivers, 2022b) plugin for

ImageJ (Schneider et al., 2012). An example of three conca-

tenated slices is shown in Fig. 1 (top). For the convenience of

selecting the region of interest inside ImageJ, the slices are

ordered as z, y, x. Solid black lines indicate the positions of

each of the three arbitrary slices. The positions are given in the

graphical user interface shown in the bottom panel of the same

figure. The interface allows users to control reconstruction

parameters such as the rotation axis location, FBP filter, x, y, z

ortho-slice numbers, and their rotation angles. The user

interface also allows to perform

reconstruction with the phase retrieval

procedure where the required para-

meters, such as the energy, pixel size,

detector–sample distance, are auto-

matically retrieved from EPICS PV

variables associated with the scan,

whereas the parameter � denoting

the ratio between the phase � and

absorption � of the sample [see

Paganin et al. (2002) for details] is

adjusted manually. It is implemented

as an EPICS MEDM (MEDM, 2022)

screen where all parameters are asso-

ciated with EPICS PV variables

broadcasted over the network. It turns

out that both three arbitrary slice

visualization and control of para-

meters can be done remotely, with a

regular computer or laptop.

We implemented the real-time

streaming reconstruction and visuali-

zation of three arbitrary slices

described above in a dedicated EPICS

IOC called tomoStream (Nikitin & De

Carlo, 2022). Demonstration Video 1

in the supporting information shows a

test tomographic experiment with real-

time streaming reconstruction and on-

demand data capturing.

2.4. 3D zooming to regions of interest
inside the sample, while in streaming
mode

At beamline 2-BM of the Advanced Photon Source we

integrated the streaming system with an Optique Peter

microscope to implement real-time zooming to regions of

interest. The Optique Peter microscope system, see Fig. 2,

consists of an automatic lens changer. The system has three

lenses and three scintillators associated with each lens. The

scintillator thickness influences photon flux and resolution

limit in acquired projections. Therefore, a thinner scintillator

is typically paired with a higher magnification lens, whereas a

thicker scintillator is paired with a lower magnification lens.

In the current setup we operate with the following pairs:

1.1� magnification – 100 mm scintillator; 5� magnification –

50 mm scintillator; 10� magnification – 25 mm scintillator.

All lenses are Mitutoyo Infinity Corrected Long Working

Distance Objectives, scintillator type Crytur LuAG:Ce. Each

scintillator converts the X-ray beam to visible light. Visible

light is then redirected to the detector through a magnification

lens and an array of mirrors. By using an additional mirror it

is also possible to redirect the beam to the second detector

having different acquisition frame rate and quantum effi-

ciency. To demonstrate the zooming functionality in this work

we operated with only one camera: Oryx 5.0 MP Mono
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Figure 1
Real-time streaming reconstruction. Top: reconstructed orthogonal slices through a wood stick
sample (concatenated as z, y, x). Bottom: MEDM screen for controlling reconstruction parameters.
Solid black lines in the slices visualization indicate positions of orthogonal slices given in the MEDM
screen. These slices can be arbitrarily tilted.



10GigE, 2448 � 2048 chip size, 3.45 mm pixel size by Teledyne

FLIR LLC. A list of all cameras available in the Imaging

Group of the APS is reported in Table 3.

The Optique Peter system does not guarantee that the

sample image for different magnifications is aligned and

located at the same position on the detector. Even after

adjusting the lens change motor positions in a way that the

rotation center is located in the middle of the detector field of

view for each magnification, we still observe a misalignment

caused by the different tilt angles of the mirrors redirecting

visible light from scintillators to objectives. We also observed

that the lens change operation causes a rotation of the image

by a considerable angle. Instead of performing a manual

calibration of the tilt angles for mirrors,

we compensated the rotation axis

misalignment by adjusting the sample

stack motors and the image rotation by

adjusting the camera rotation. All

these misalignment offsets are repea-

table and can be corrected

by automatically adjusting the corre-

sponding motors at each lens change by

moving motors x (orthogonal to the

beam), z (along the beam) mounted

on the top of the rotation stage, y

(vertical) located under the rotary

stage, and the detector rotation, see

Fig. 2 (left). In Fig. 2 (right) one can see

test images of a pin for different

magnifications where the system misa-

lignment is compensated by the coor-

dinated motion described above.

To hide the complexity of such coordinated motion during

each lens change we developed a dedicated mctOptics (De

Carlo, 2022c) EPICS IOC, see Fig. 3.

It is not difficult to see that zooming to the region of interest

can also be done by moving the sample on the rotation stage

and vertically using the x,z,y motors. As an example, consider

zooming to the region of interest centered at (500, 1224, 1500)

in a (2448, 2448, 2048) volume reconstructed from tomo-

graphic data acquired with 1.1�magnification. To find the new

motor positions, we simply subtract half of the detector size in

each dimension from the ROI center, and multiply the result

by the pixel size for 1.1� magnification. It follows that the

x,z,y motors should be moved by (500 � 1224)/3.45 � 1.1 =

�230.8 mm, (1224 � 1224)/3.45 � 1.1 = 0 mm, and (1500 �

1024)/3.45 � 1.1 = 151.8 mm, respectively. After changing the

lens and correcting for the additional misalignment mentioned

above, the center of the ROI will be located in the middle of

the detector image. The same procedure is applied when

zooming is done between other magnifications.

3D zooming to regions of interest has been efficiently

combined with real-time streaming reconstruction of three

arbitrary slices. In Fig. 1 (top), the solid black lines in the

streaming reconstruction images indicate the position of

ortho-slices selected with the Ortho (X,Y,Z) sliders of the

streaming control MEDM screen. The tilt angle for each of

the three orthogonal slices can also be adjusted in real-time.

In our instrument, we assigned the location where the lines

intersect each other as the region of interest which is

kept in the same sample location during the lens change.

This provides a simple and easy-to-use zoom-in/zoom-out

capability available in streaming mode. To enable this feature,

in the MEDM screen shown in Fig. 1 (bottom), we imple-

mented a ‘Sync with lens selection’ button. When the button

is set to ‘Yes’, we have synchronization between the slider

selected ortho-slices and the region of interest for zooming.

The sample is shifted at each magnification change so that the

position of initial intersections for the solid black lines appears

in the middle of all ortho-slices for each magnification level.
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Figure 2
The Optique Peter microscope system at beamline 2-BM of the
Advanced Photon Source (left). Result of automatic sample alignment
for different magnification with x, z motors on the rotation stage, vertical
y motor under the stage, and detector rotation motors on the top of the
Optique Peter system (right).

Figure 3
Control of the Optique Peter microscope system with three lens and two detector change. Once the
sample x, y, z and detector rotation offsets are measured they are entered in the mctOptics setup
screen as Lens offset sample X, Y, Z and Lens 1, 2,3 offset. The instrument operator can change lens
by pressing the lens selector button 1.1�, 5�, 10� while keeping the rotation axis aligned and locked
at the same 3D sample location.



During real-time streaming reconstruction, it is required to

update the flat field after the 3D zooming is complete. To

avoid re-taking flat fields each time, we decided to store flat

fields for each magnification and read them from PV variables

corresponding to different lenses. Users can update flat fields

only when it is required by other experimental condition

changes, e.g. when the exposure time is changed or the flat

field drifted significantly.

Demonstration Video 2 in the supporting information

shows the 3D zooming functionality during real-time

streaming reconstruction.

3. Performance analysis

In this section we analyze the performance for each compo-

nent of the proposed streaming tomography model and find

out bottlenecks for the highest speed data processing.

To measure the performance of real-time tomographic

reconstruction, we generate a set of projections and broadcast

them to the reconstruction engine at different data rates. For

this test, both the projection data generator and reconstruc-

tion engine are executed on the same machine equipped with

a GPU. Projection size is 16-bit 1024 � 1024. In Table 1 we

present results for two different GPUs, a very powerful and

expensive NVidia Tesla A100 connected via PCI express v4.0,

and a less powerful and relatively inexpensive NVidia Quadro

RTX 4000 connected via PCI express 3.0. The number of

projections in the GPU buffer used for reconstruction corre-

sponds to the number of projection angles in a 180� interval

and equal to 1024 for the Tesla A100, and 512 for the Quadro

RTX 4000. The table shows that the total reconstruction time

is always less than 1 s. However, in cases of very fast data

acquisition some projections are missed and not used for

reconstruction, which is indicated by the last column showing

how many projections are stored in the buffer while one

reconstruction is finished. For instance, if the projection rate

is �5 GB s�1 for the machine with the Tesla A100 then the

buffer is filled completely and new coming projections are

replacing the elements in the buffer. However, if the data rate

is 	4 GB s�1 then the buffer is not filled during one recon-

struction and all projections are used for processing. Results

for low data rates, such as 2 and 3 GB s�1 for Tesla A100,

demonstrate additional performance gain because computa-

tions are done using the optimized formula (2) from

Section 2.3. The table shows that 4 GB s�1 and 1 GB s�1 are

maximum projection data rates that machines with Tesla A100

and Quadro RTX 4000, respectively, can accommodate

without missing any projection; nevertheless, it should be

noted that in typical real experiments missing projections for

real-time reconstruction in some cases may not lead to rele-

vant losses of real-time information. Specifically, if a projec-

tion is missed, the reconstruction engine will use the

projection corresponding to the same angle from the previous

rotation. If the number of missed projections is not very high

then the contribution by the incorrect projection is negligible

and typically not seen by the eye. At the same time, since data

capturing to HDF5 file is independent of projection broadcast

and real-time reconstruction, see Section 2.1, the projections

missed during streaming are fully captured by the on-demand

data capturing pipeline and safely stored in an HDF5 file to be

analyzed offline.

Another observation in Table 1 is the time distribution

among different GPU data processing tasks when recon-

struction is performed for the whole buffer. We observe that

most of the time is spent on the FBP filter function that indeed

becomes the most computationally expensive since it involves

computing FFTs with a total computational complexity of

OðKN 2 log NÞ, where K is the number of angles, and N is the

projection size in one dimension. CPU-GPU data copy is also

computationally demanding and can be optimized by a faster

data transfer link. One data transfer of a 1024 � 1024 � 1024

projection volume to Tesla A100 takes approximately the

same time as the transfer of a 512 � 1024 � 1024 volume to

Quadro RTX 4000, which is in agreement with the transfer

speed difference between PCIe v4 and PCIe v3 links.

For the second performance test we analyzed data transfer

speed over the network with the pvAccess channel. We

created a pvAccess server on the detector machine and

broadcast projections over the network at maximum speed.
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Table 1
Performance measurements for two different GPUs used for reconstruc-
tion of three ortho-slices from 16-bit projections each having sizes
(1024 � 1224), and acquired at different rates.

Streaming projections acquired during one reconstruction are stored in a
buffer of size 1024 for Tesla A100 and 512 for Quadro RTX 4000, representing
an angular interval of 180�; if reconstruction is not fast enough then
projections in the buffer are replaced by new ones. Lower table rows show
GPU computational times for each reconstruction task.

NVidia Tesla A100, PCIe 4.0, CUDA v11.5

Projection
data rate

Total time for
one reconstruction

Projections stored
during one
reconstruction

6 GB s�1 0.327 s 1024
5 GB s�1 0.321 s 1024
4 GB s�1 0.293 s 875
3 GB s�1 0.062 s 120
2 GB s�1 0.005 s 3

CPU-GPU
copy

Dark-flat-field
correction

Negative
logarithm

FBP
filter Back-projection

0.10 s 0.03 s 0.04 s 0.10 s 0.01 s

NVidia Quadro RTX 4000, PCIe 3.0, CUDA v11.5

Projection
data rate

Total time for
one reconstruction

Projections stored
during one
reconstruction

2.5 GB s�1 0.614 s 512
2 GB s�1 0.611 s 512
1.5 GB s�1 0.601 s 512
1 GB s�1 0.543 s 333
0.5 GB s�1 0.015 s 3

CPU-GPU
copy

Dark-flat-field
correction

Negative
logarithm

FBP
filter Back-projection

0.11 s 0.05 s 0.05 s 0.32 s 0.02 s



Any client connected via the pvAccess channel can read these

projections and save them to a pre-allocated array. The

pvAccess transfer speed is then measured as an average

number of projections acquired in 1 s multiplied by the size of

one projection in bytes. Table 2 shows the measured pvAccess

transfer speed between several machines located at beamline

2-BM of the APS linked with different connection types.

Machine ‘tomodata1’ acts as a server generating projections,

i.e. a simulated detector. Other machines in the beamline

network (‘tomo1’, ‘handyn’, and ‘tang’) act as clients reading

projections from the network. We also measured the pvAccess

channel and data reading overhead by setting ‘tomodata1’ as

a client. The table shows the pvAccess transfer speed limit

of 3.41 GB s�1 representing the overall protocol overhead.

InfiniBand [Mellanox Technologies MT28908 Family

(ConnectX-6) rate: 100 Gb s�1 (4X EDR)] connection

between the detector and processing machine is favorable for

the proposed streaming model and allows for keeping the

speed at the level of 3.32 GB s�1. 10 Gb fiber and 1 Gb

Ethernet connections confirm the declared speed of these

connections.

In addition to performance tests, we list in Table 3 the

specification of the fast detectors available at the Imaging

Group of the APS. The table includes cameras with and

without on-board memory. For the cameras without on-board

memory we calculated maximum data rates according to the

chip size, number of bits, and frames per second. Such cameras

are connected to a detector computer with a link fast enough

to handle the maximum frame rates. Cameras with on-board

memory, in turn, are much faster and perform data copy to the

detector machine whenever acquisition is carried out. In this

case it is not possible to implement fast data broadcasting from

the camera memory and thus provide a real-time reconstruc-

tion of projections coming at the maximum speed. However,

here we consider streaming reconstruction with slower data

acquisition speed to trigger the beginning of a fast dynamic

process, followed by ultra-fast data capturing to the camera

on-board memory without monitoring real-time sample states.

For switching to fast data acquisition one can increase the

rotation speed by following the procedure described in

Section 2.2. By making use of the Optique Peter system, such

as the one installed at beamline 2-BM (Fig. 2), it is also

possible to automatically switch cameras between the two

acquisition modes.

Finally, since for monitoring fast processes one needs to spin

the sample at fast rotation speeds, we list in Table 4 the rotary

stages available in the Imaging Group of the APS and allowing

for 500 and 6000 rotations per minute, which is more than

enough for capturing ultra-fast dynamic processes in 3D. All

stages are controlled by the same Ensemble HLE10-40-A-

MXH Aerotech Controller programmed using the Aerobasic

language shown in Section 2.2.

4. Applications

In this section, we present applications of our streaming

acquisition model with real-time reconstruction and 3D

zooming to regions of interest. To demonstrate the efficacy

of the proposed model we conducted synchrotron radiation

tomography experiments on ice and methane gas hydrate

formation in porous media (Nikitin et al., 2020, 2021). The

setup of the experiment at sector 2-BM of the Advanced

Photon Source is presented in Fig. 4.

The formation process was carried out in an environmental

cell (Fusseis et al., 2014) packed with sand and 5% NaBr water

solution. An Oxford 800 cryostream system was used for

cooling the sample by a flow of nitrogen

gas of low temperature. To monitor the

process of ice formation we set a nega-

tive flow temperature (�40�C) in the

cryostream system and performed

scanning of the sample while it was

continuously rotating. The top row of

Fig. 5 shows real-time streaming recon-

struction of orthogonal slices with 1.1�

magnification. Note that the top and

bottom part of the x and y slices contain

noise because these regions are not

illuminated by the beam due to its

limited size in the vertical direction
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Table 2
Data transfer speed over the network using the pvAccess (PVA) channel
for different connection types.

Server machine
name

Client machine
name

Connection
type

PVA transfer
speed

tomodata1 tomodata1 Local 3.41 GB s�1

tomodata1 tomo1 InfiniBand† 3.32 GB s�1

tomodata1 handyn 10 Gb Fiber 1.08 GB s�1

tomodata1 tang 1 Gb Ethernet 0.11 GB s�1

† Mellanox Technologies MT28908 Family (ConnectX-6) rate: 100 Gb s�1 (4X EDR).

Table 3
Characteristics of fast detectors available at the Imaging Group of APS.

Detector Model Chip size
Pixel size
(mm) Bits Frames s�1 GB s�1

Adimec Q-12A180 4000 � 3000 5.5 8–10 187 2.09
FLIR ORX-10G-51S5M-C 2448 � 2048 3.45 8–12 167 0.78
PCO Edge 2048 � 2048 6.5 16 100 0.78
FLIR ORX-10G-310S9M 6464 � 4852 3.45 8–12 26 0.76
PCO PCO DIMAX HS4 2000 � 2000 11 12 2277 †
Photron Fastcam Nova S16 1024 � 1024 20 12 16 000 †
Photron Fastcam SA-Z 1024 � 1024 20 12 20 000 †
Shimadzu HPV-X2 400 � 250 32 10 10 � 106 †

† These detectors use on-board camera memory to reach the specified maximum frames s�1. Data transfer to the
controller computer varies depending on the camera-computer bus speed.

Table 4
Speed of rotary stage available at the Imaging Group of APS.

Name Manufacturer Model
Speed
(rev min�1)

Rotary stage Aerotech ABRS-150MP-M-AS 500
Rotary stage Aerotech ABS-250MP-M-AS 500
Rotary spindle Aerotech ABS2000-1000AS-RU 6000



(similar beam deterioration can be observed in the pin image

for 1.1� magnification in Fig. 2). In our future work, we plan

to add a feature for manual cropping the camera field of view

to decrease data sizes and optimize reconstruction. Solid black

lines in the figure indicate positions of orthogonal slices

selected by a user in the MEDM screen (Fig. 1). For conve-

nience, we also agreed that in our implementation the center

of the ROI for zooming corresponds to the intersection of

these solid lines. After 5 min of cooling we observed regions

where ice started to appear, forming brighter surrounding

regions of brine with higher salt concentration (ice formation

consumes only pure water leaving salt in the brine). We

selected one of these regions and automatically zoomed into it

with higher magnification. Reconstruction of orthogonal slices

through the region of interest with 5� magnification is shown

in the bottom row of Fig. 5. Here one can observe small salt

structures between ice particles, whereas with 1.1� magnifi-

cation these structures are non-distinguishable. Such imaging

will be of great help in interpreting complicated dependence

of acoustic properties (i.e. velocity and attenuation of seismic

waves) of saline permafrost samples on temperature and pore-

brine salinity observed in laboratory experiments, see Dou et

al. (2016). Understanding these processes is important for

developing seismic methods of mapping and monitoring saline

permafrost for geotechnical applications.

With the on-demand data capturing option described is

Section 2.1 we can save projections for a 180� interval repre-

senting this ROI to an HDF5 file, reconstruct and analyze it in

more detail after streaming is done. So we can conveniently

switch between different ROIs following our research needs.

While streaming reconstruction is on-going we can easily

select another ROI and capture data there. The proposed

approach is clearly more effective than the conventional

scanning where the ROI is blindly selected. In these scans we

kept the same exposure time of 0.04 s, and angular step 0.5�

for both magnifications. It should be noted that color bars in

the two images of Fig. 5 are different. This is caused by the fact

that projection data for 5� magnification also includes infor-

mation about other parts of the sample, decreasing the

contrast levels between different materials in reconstructions

and amplifying phase artifacts on the material borders. The

effect can be partially compensated by phase retrieval filtering

(Paganin et al., 2002). A better approach to address this issue

will be discussed in Section 5.

Demonstration Videos 3 and 4 in the supporting informa-

tion show real-time visualization of ice formation/melting in

low and high resolution.

The ice formation experiment was a preliminary function-

ality test before a longer experiment for the methane gas

hydrate formation in sand. The

formation was done in the same

environmental cell packed with sand

and 5% NaBr water solution (brine

concentration is 10% mass fraction in

relation to sand). To simulate the gas

hydrate growth we followed certain

temperature and gas pressure condi-

tions, see Sun et al. (2014). Specifi-

cally, we adjusted the cryostream

cooling system to hold the tempera-

ture inside the environmental cell at

the level of 7�C, and used a Teledyne

ISCO D-Series syringe pump system

to pressurize the cell with methane

gas served via high-pressure tubes.

The formation process took about

20 h. During this time we performed

continuous vertical scanning of the

environmental cell with 1.1� lens and

periodically used 5� and 10� lenses
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Figure 4
Setup for ice and gas hydrate formation experiments with real-time
reconstruction and zooming to regions of interest.

Figure 5
Real-time 3D zooming to the region of interest showing ice crystals formation surrounded by brighter
brine. Rotation speed and exposure time are the same for both magnifications.



to zoom into the regions of interest containing gas hydrate

structures.

In Fig. 6 we demonstrate the results of real-time 3D

zooming to image gas hydrate structures formed on sand

particles at different resolution (using 1.1�, 5�, and 10�

lenses). The resolution level for high magnifications allows for

a more detailed analysis of the sand–hydrate interface and

porosity inside gas hydrate volumes. After zooming we clearly

see micro-porosity of the gas hydrate crystals. This will have

a serious effect on the permeability of the hydrate-bearing

porous sample at the macro-scale. In turn, changing perm-

eability in hydrate-bearing sediment critically governs the

growth and distribution of hydrates during their formation

and gas production during the hydrate dissociation (Zhang

et al., 2020). Thus a pore-scale investigation of permeability

changes during the hydrate formation/dissociation is impor-

tant for planning gas production from hydrate reservoirs.

On the imaging side, note that such gas hydrate structures

(as in Fig. 6) appear only in particular regions inside the

environmental cell. Moreover, temperature and pressure

variations may result in gas hydrate dissociation and structure

modifications. Therefore, real-time zooming to regions of

interest is highly beneficial compared with regular scanning

of the whole sample, followed by offline reconstruction

and manual selecting ROI for zooming inside a huge recon-

structed volume.

Compared with the ice formation experiment where for

scanning we used the same exposure time and angular step for

both low and high magnifications, data acquisition parameters

for the hydrate formation experiment were adjusted with

respect to selected magnification. Exposure time and angular

step pairs for different lenses were chosen as follows:

1.1�: 0.05 s, 0.25�; 5�: 0.2 s, 0.125�; 10�: 0.4 s, 0.125�. To enhance

data quality the streaming reconstruction pipeline also

contained phase retrieval (Paganin et al., 2002) and circular

mask filtering of the result.

5. Conclusions and outlook

Zooming to arbitrary regions of interest while performing

streaming data collection and real-time reconstruction has

been demonstrated using the three motorized lens system

implemented by the Optique Peter

microscope which is currently available

at beamline 2-BM of the Advanced

Photon Source. The current model

allows for exposure time, rotation

speed, and angular step size to be

changed at any time during the data

streaming process. These new features

open a completely new way to optimize

data collection parameters. Instead of

‘blind’ data capturing, one can select a

relevant sample region directly looking

at the streaming reconstruction, zoom

into it, change exposure time and

angular step to optimize reconstruction

quality and, if the sample under study requires a faster camera,

even swap detector in a few seconds, and finally, once all is set,

capture data to an HDF5 file on-demand while streaming is

on-going. By implementing a circular buffer storing images

before the data saving trigger, we are always certain to capture

the event of interest.

As part of the APS Upgrade, the Imaging group will install

an X-ray projection microscope, Fig. 7, where a zooming

functionality is implemented by moving the sample along the

cone beam. In this figure we schematically demonstrate 1�

magnification by placing the sample stack closer to the

detector, and 3� magnification by placing the stack closer to

the beam focal point. The proposed streaming model can be

directly implemented in the projection microscope to deliver

continuous zooming reconstruction.

We conducted a series of performance tests for all compo-

nents of the proposed streaming model, including real-time

reconstruction and data transfer performance for different

detector speeds. With the current software and hardware

solution, it is possible to process data coming from the

detector at 3–4 GB s�1, which corresponds to 1500–2000

projections of 16-bit 1024 � 1024 in size per second. Currently
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Figure 7
In an X-ray projection microscope the continuous zooming functionality
is implemented by moving the sample along the cone beam: magnification
is higher if the sample is closer to the focal point, and lower if the sample
is closer to the detector.

Figure 6
Reconstructed z-slices taken after real-time 3D zooming to the region of interest with formed gas
hydrates. Rotation speed and exposure time were adjusted for each magnification change. The
reconstruction procedure also involved phase-retrieval and circular mask filtering.



available detectors at beamline 2-BM broadcast data at a

significantly lower speed (0.7–2 GB s�1). Detectors with on-

board memory have higher speed; however, fast real-time data

broadcasting is not possible. In the proposed model, slower

detectors can still be used in combination with fast detectors,

for instance to trigger ultra-fast data capturing.

The real-time X-ray tomographic microscopy we propose

opens new possibilities for in situ characterization of micro-

structure evolution in matter. As an application of the

proposed technique, we considered a geological experiment

for in situ ice and gas hydrate formation, where new insights

about the formation process have been gathered. The tech-

nique could have a wide range of applications not only in

geosciences but also in materials science, environmental

science, and medical research. The method we developed will

allow non-invasive imaging of objects to reveal their physical

and chemical properties under different conditions and relate

these properties to their density distribution in three-dimen-

sional space at the micro- and nano-scales. Such relationships

are key to understanding the properties of materials and could

be used to identify minerals and oil-bearing rocks, look at

in situ chemical reactions, distinguish between healthy and

diseased tissue, or probe stress–strain gradients in manu-

factured components.

Despite the fact that the streaming tomographic model

with real-time reconstruction already demonstrates several

advantages compared with the conventional tomographic

model, there is still a series of enhancements that may help in

conducting more complex dynamic experiments. For example,

the proposed tomographic scanning method requires the

sample to continuously rotate, which may not be possible to

implement when wires and water/gas lines are connected to

the sample environment cell. In some cases this issue is solved

using slip rings; however, this is not always possible. For these

situations, we plan to implement streaming with a ‘back and

forth’ scanning where an alternating sequence of 0–180� is

followed by 180–0� rotation. In this case we expect to have a

small data collection dead-time between each two 180� scans,

where the rotary stage performs deceleration, change of

direction, and acceleration. During these time periods, the

reconstruction engine will pause and wait for the next set of

projections. We also find it potentially possible to implement

the streaming interlaced angular scanning protocol, in which

a full tomographic scan is acquired with multiple sample

rotations where projection angles are mod 2� different and

uniformly cover the interval [0, 2�) (Mohan et al., 2015; Zang

et al., 2018). With this protocol, a significant time gap between

acquisition of two nearby angles, that should give similar data

in a static case, allows to estimate corresponding shifts by

using rigid image registration methods like cross-correlation.

The cross-correlation procedure can also be evaluated in real-

time. Another natural enhancement regards the local tomo-

graphy problem (Kuchment et al., 1995). When the samples

are significantly larger than the detector field of view, e.g. in

the 10� zoom-in magnification case, the projection data also

include information from the portion of the sample that is

outside of the field of view. With the automatic lens changing

mechanism we can easily pad high resolution with low reso-

lution projections and correct the high-resolution scans from

local tomography artifacts (Xiao et al., 2007). Finally, we plan

to add AI-based methods (Schoonhoven et al., 2020; Teka-

wade et al., 2021) for detecting events and trigger data saving

automatically. In fast-evolving dynamic systems, automatic

segmentation, classification, and detection may allow for

steering tomographic experiments, e.g. changing environ-

mental conditions (pressure, temperature, charge) based on

real-time sample states. AI-based steering techniques will play

a very important role in future complex dynamic experiments

at brilliant light sources.
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Batenburg, K. J. & Schlepütz, C. M. (2019). Sci. Rep. 9, 18379.

Buurlage, J.-W., Kohr, H., Jan Palenstijn, W. & Joost Batenburg, K.
(2018). Meas. Sci. Technol. 29, 064005.

De Andrade, V., Nikitin, V., Wojcik, M., Deriy, A., Bean, S., Shu, D.,
Mooney, T., Peterson, K., Kc, P., Li, K., Ali, S., Fezzaa, K., Gürsoy,
D., Arico, C., Ouendi, S., Troadec, D., Simon, P., De Carlo, F. &
Lethien, C. (2021). Adv. Mater. 33, 2008653.

De Carlo, F. (2019). tomopy cli, https://tomopycli.readthedocs.io/en/
latest/.

research papers

J. Synchrotron Rad. (2022). 29, 816–828 Viktor Nikitin et al. � Real-time streaming tomographic reconstruction 827

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5255&bbid=BB11


De Carlo, F. (2022a). Data exchange, https://dxchange.readthedocs.io/
en/latest/source/api/dxchange.exchange.html.

De Carlo, F. (2022b). Data exchange xml configuration files, https://
dxfile.readthedocs.io/en/latest/source/demo/doc.areadetector.html.

De Carlo, F. (2022c). mctoptics, https://mctoptics.readthedocs.io/.
De Carlo, F., Gürsoy, D., Marone, F., Rivers, M., Parkinson, D. Y.,

Khan, F., Schwarz, N., Vine, D. J., Vogt, S., Gleber, S.-C.,
Narayanan, S., Newville, M., Lanzirotti, T., Sun, Y., Hong, Y. P. &
Jacobsen, C. (2014). J. Synchrotron Rad. 21, 1224–1230.

De Kock, T., Boone, M., De Schryver, T., Derluyn, H., Van Stappen,
J., Van Loo, D., Masschaele, B. & Cnudde, V. (2015). 2nd
International conference on Tomography of Materials and
Structures (ICTMS 2015), 29 June–3 July 2015, Québec, Canada,
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