
computer programs

1996 https://doi.org/10.1107/S1600577521009851 J. Synchrotron Rad. (2021). 28, 1996–2002

Received 7 May 2021

Accepted 22 September 2021

Edited by A. Bergamaschi, Paul Scherrer Institut,

Switzerland

Keywords: synchrotron beamline control

software; graphical user interface;

data collection; remote access; daiquiri.

Daiquiri: a web-based user interface framework
for beamline control and data acquisition

Stuart Fisher,a* Marcus Oscarsson,a Wout De Nolf,a Marine Cottea,b and

Jens Meyera

aEuropean Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France, and
bLAMS, CNRS UMR 8220, Sorbonne Universités, Univ Paris 06, 4 Place Jussieu, 75005 Paris, France.

*Correspondence e-mail: stuart.fisher@esrf.fr

Daiquiri is a web-based user interface (UI) framework for control system

monitoring and data acquisition designed for synchrotron beamlines. It provides

simple, intuitive and responsive interfaces to control and monitor hardware,

launch acquisition sequences and manage associated metadata. Daiquiri

concerns itself only with the UI layer; it does not provide a scan engine or

controls system but can be easily integrated with existing systems.

1. Introduction

Many synchrotrons make use of some sort of graphical user

interface (GUI) to control their beamlines and acquire data.

Historically, macromolecular crystallography (MX) has been

at the forefront of these developments due to the rigid nature

of the experiments involved, many years experience in soft-

ware development, and the demand for efficiency and auto-

mation. This has resulted in the development of software

packages such as MXCuBE(1–3) (Mueller et al., 2017;

Oscarsson et al., 2019), co-developed and available at many of

the European synchrotrons, as well as GDA (and MXGDA)

(Enderby & Pulford, 2004) at Diamond Light Source, and

BlueIce (Stepanov et al., 2011) at NSLS-II. Synoptic overviews

of beamline layouts and control of hardware elements have a

long history and include user interfaces (UIs) such as EDM

and MEDM for EPICS (Dalesio et al., 1994), and Taurus

(Pascual-Izarra et al., 2015) for the Tango control systems

(Götz et al., 2020). Other facilities make use of more generic

programs to control their beamlines and accelerators such as

LabView (Kalkman, 1995).

At microscopy and imaging beamlines the use of a GUI is

essential for efficient observation of the sample, and for

selecting regions (ROIs) and points of interest (POIs). At the

ESRF, the ID21 beamline pioneered the development of such

a GUI 20 years ago. This beamline is dedicated to 2D micro-

X-ray fluorescence (mXRF) mapping and micro-X-ray

absorption spectroscopy (mXAS) (Cotte et al., 2017). Typical

samples are cells, plant or animal tissue sections, and trans-

versal cross-sections of paintings. They are composed of

complex and heterogeneous mixtures of organic and metallic

components. Micro-analyses usually aim to identify and

localize elements (with mXRF 2D maps), and assess their

chemical state (acquisition of mXAS spectra over tens of

points or acquisition of mXRF maps at tens of energies). A

GUI is essential to observe the samples in situ, to define 2D

maps both on the visible-light image and on previously

recorded X-ray maps, and to select points for mXAS analysis.

ISSN 1600-5775

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577521009851&domain=pdf&date_stamp=2021-10-29


This is necessary to make the beamline microscope as easy to

use as a visible-light or electron microscope, in particular for

non-expert users.

The new ESRF source, the so-called Extremely Brilliant

Source (EBS) delivered in 2019–2020, is pioneering in terms

of flux, with X-ray performances increased by a factor of 100.

Under these conditions where data acquisition times are

significantly reduced, it is important to develop tools to

ensure that the time for setting up the beamline instruments,

mounting the samples, identifying ROIs and POIs, and

launching acquisition is reduced to the minimum. The opti-

mization of a UI for beamline control and data acquisition is

in this respect fundamental. In addition, the ESRF upgrade

includes a large campaign of software development, notably

the conversion of the control system from SPEC to BLISS

(Guijarro et al., 2018). This has also helped drive the devel-

opment of a new GUI at ID21. The main initial specification

was the following:

(i) To develop a common framework that could be easily

deployed and adapted to as many beamlines as possible.

(ii) To target in priority needs from ID21 and of the other

microscopy beamlines.

(iii) To provide the existing tools for sample visualization,

ROI and POI definition, but also to further improve the tools

for data acquisition (in particular authentication and author-

ization, action queue and metadata).

(iv) To offer a UI framework that aims to combine both the

data acquisition and controls system interfaces.

(v) Finally to make these available via the web, thus having

the intrinsic benefit of being automatically suitable for remote

access. In this way, the same UI can be used for local and

remote access. Many synchrotrons are moving towards more

remote access methods and the COVID-19 pandemic has

significantly accelerated developments in this area.

Although MXCuBE3 fulfils many of these requirements, it

is targeted specifically towards MX and has a fixed UI layout

dedicated to diffraction experiments. It would have been

possible to refactor front- and back-end components of

MXCuBE3 to make them more generic but this would have

presented considerable difficulties in the context of a world-

wide collaboration. Therefore a new framework was designed

that would be more generic and applicable to a more diverse

range of beamlines in the future. This paper gives a first

presentation of the so-called ‘daiquiri’ framework, the new UI

developed at the ESRF.

2. Concepts

Daiquiri does not provide a scan engine or a controls system, it

provides only the UI layer. Interaction with the scan engine is

conducted via actors, scan data are accessible via an interface,

and hardware element control and notification makes use of a

very thin abstraction layer. These can technically connect to

any control system and integration is relatively straightfor-

ward. At the present time, adapters are available for BLISS

and Tango objects, and scans are integrated with the BLISS

scan engine. Connecting to a controls system requires imple-

menting an abstract device, for example a motor, and creating

a local implementation for the controls system of interest

which tells daiquiri how to interact with this object. The scan

data interface has functions to retrieve 0, 1 and 2D data and

hooks for the underlying controls system to send events to

daiquiri. This allows a scan engine to return data and send

notifications when new data are available, thus allowing

daiquiri to follow scans in real time.

Daiquiri implements a number of high-level concepts in the

context of a data acquisition application. These are as follows:

Authentication and authorization. Being a web application,

daiquiri enforces login to know who is accessing the applica-

tion (users, beamline staff, support staff) and what they are

allowed to do. Users must have a valid allocated beam time

session to access the interface. Privileges for staff members can

be elevated giving access to extra user interfaces, scan types

and hardware elements.

Multi-user, single point of control. Daiquiri allows multiple

sessions to be connected simultaneously and implements a

fairly common baton style system to enable control of the

beamline and avoid multiple users executing actions simulta-

neously. Only a single user can be in control of the beamline at

a time with other users requesting control as needed. Staff can

take control of the beamline at any time.

Actors. Daiquiri decouples itself from any action it executes

via actors; these are a simple Python class with a method that

can execute any Python code. These are discussed in more

detail later.

Action queue. Daiquiri implements a basic queue system.

Actors can be placed into this queue to run sequentially or be

executed immediately. The status of the queue is monitored

and reported, and items can be promoted and demoted as

needed This allows daiquiri to perform overnight and un-

attended data collection.

Metadata. Internally daiquiri makes use of the ISPyB

database (Delagenière et al., 2011) to store information about

who can login, their associated beamline session information

from a User Office system, and what privileges they have, as

well as store metadata associated with data collections. In

many cases scan engine data and metadata are only available

transiently and hence daiquiri must store some of this infor-

mation to provide useful interactive feedback and down-

stream analysis.

3. Implementation

Daiquiri is implemented with a traditional client server

methodology to provide clear separation between the UI and

associated application programming interface (API). Much

inspiration was taken from the MXCuBE3 project with the

intention of producing a more generic framework for acqui-

sition. Many core ideas were also inspired by features and

concepts in the GDA application. The general application

architecture is shown in Fig. 1 and is implemented in three

distinct projects: daiquiri (server), daiquiri-local (local beam-

line code and configuration) and daiquiri-ui (client).

computer programs

J. Synchrotron Rad. (2021). 28, 1996–2002 Stuart Fisher et al. � Daiquiri: beamline control and data acquisition 1997



3.1. Server

The server (daiquiri) is implemented in Python 3 making

use of Flask, Flask-RESTful, Flask-SocketIO and Marsh-

mallow to provide a REST API and SocketIO service for

websocket support and event-driven feedback. Marshmallow

and apispec allow for validation of parameters passed to the

API and automatic generation of associated documentation.

This includes a full description of the REST API comprising

detailed information about payloads and response types in

Swagger /OpenAPI format. The schemas generated by

Marshmallow are also available to the UI allowing for a single

point definition of validation. This avoids mismatched vali-

dation between server and client. A full test suite is provided

using pytest and a comprehensive continuous integration

pipeline provides code style validation, testing, coverage

reports and up-to-date API documentation.

Authorization is extensible and there is currently an LDAP

adapter. Authorization is controllable on a per beamline basis,

restricts access if a user does not have beam time scheduled,

and can elevate privileges for staff members.

The server implements the idea of pluggable components.

This allows each individual beamline to load only the

components relevant to it. Currently these include:

(i) A simple hardware component to monitor and control

hardware elements.

(ii) A synoptic view that can show schematic synoptics

annotated with hardware values and pop-ups that drill down

into groups of hardware elements.

(iii) A console component to allow daiquiri to interact with

the controls system command line interface.

(iv) A white-listed file editor so that actors, layout files and

other beamline configuration files can be created and modi-

fied.

(v) A visual light microscope (VLM) component to align

samples via a video camera, discussed in more detail later.

(vi) A simple component that executes actors in the context

of a defined sample.

(vii) A chat component so users and beamline staff can

communicate with each other.

The hardware abstraction layer

defines how daiquiri should map a

particular object from the control

system type to its internally defined

abstract object model. In the case of

BLISS, this simply maps the Python

attributes. The abstraction layer

currently includes objects for basic

types such as motors, shutters, cameras

and a few other devices. New objects

can be easily added and a tutorial is

provided in the documentation on how

to do this.

For example, the daiquiri motor

object contains properties such as

position, velocity and acceleration, and

functions such as move, and rmove

(for a relative move). This would be

converted into the following JSON by

the REST API:

AllhardwareobjectswithindaiquiricontainthecommonouterJSONstructure,witheachindividualobjectimplementing itsown‘properties’and‘callables’as peritsabstractobject.

Local beamline-specific code (for example actors), config-

uration and layout information is committed into the beam-

line-specific daiquiri-local repository. This is a cookiecutter

project that can be instantiated for each beamline and

provides a common layout and some sensible default config-

uration.

3.2. Client

The client (daiquiri-ui) is implemented in Javascript es6

making use of the popular front-end framework React (React,

2013) with state managed using Redux (Redux, 2015); the

application was bootstrapped using create-react-app (Create

React App, 2016). Layout is controlled using react-bootstrap

(React Bootstrap, 2014; Bootstrap, 2011) and styled with CSS

preprocessor SASS (SASS, 2015). A variety of libraries and

helpers allow for rapid development and abstract away some

of the complexities of Redux and management of asynchro-

computer programs

1998 Stuart Fisher et al. � Daiquiri: beamline control and data acquisition J. Synchrotron Rad. (2021). 28, 1996–2002

Figure 1
General application architecture.



nous resources. Testing uses jest and react-testing-library. A

comprehensive continuous integration pipeline provides code

style validation, testing, coverage reports and analysis. The

client requires no client side configuration and is passed all

configuration automatically from the server.

The schemas available from the server API are auto-

matically converted into intuitive forms using react-json-

schema-form. This means that developers can define their

schema in the server layer and have it automatically trans-

formed into something the user interacts with. This allows

controls group staff to develop interfaces to execute, for

example, a new scan type actor, rapidly in Python without

having to learn the nuances of Javascript.

The UI supports multiple layouts that can be switched

between readily. These are generated from a simple YAML

structure defined on the server side. The layout manager has

basic widgets to organize components into rows, columns and

tabs, which map to bootstrap’s grid system. Then components

can be added to these layout elements, such as a table of scans,

plots of scan results, a series of hardware objects, etc.

4. In use

4.1. Classic light microscope

The classic visual-light microscope (VLM) or on-axis viewer

(OAV) is an integral part of many beamlines spanning

multiple disciplines. It allows for samples to be aligned visually

with the incident X-ray beam and scans to be enqueued

against positions on the sample. Daiquiri provides a compre-

hensive interface for this concept. However, contrary to

traditional implementations, it places the sample at the origin

of the canvas rather than the video stream. Traditionally the

viewport is fixed to the camera’s field of view. Daiquiri allows

for the canvas to be zoomed out, and thus allows marking of

ROIs and POIs outside of the current field of view, as well as

the generation of sample mosaic images where the sample is

rastered over a large 2D area, taking a visible image at each

point of the mosaic. Using this component a user can navigate

around the sample by clicking, mark regions, points and lines,

and then enqueue scans against these positions. Resulting

maps from scan data (in the case of regions and mapping) can

be annotated back onto this view, raw values can be inter-

rogated, and associated spectra can be shown for each pixel.

This component could also be readily extended to allow for

n-click centring.

4.2. Monitoring

The UI provides two types of monitoring components. The

first, at the top of the screen, provides essential information as

to the status of crucial hardware components, such as the ring

current, and status of absorbers and shutters. These elements

are always visible. The second is a generic hardware moni-

toring component that allows monitoring and control of, for

example, motors, shutters, cameras, etc.

4.3. Actors

Actors decouple daiquiri from other systems. They are

simply a class with a method function and an associated

schema to define and validate the required parameters. In

order to aid rapid development and testing, actors are auto-

matically reloaded both in the server and client on each

instantiation. Actors can provide extended validation, for

example, when parameters depend on each other, asynchro-

nous validation, for example, revalidation on each keystroke,

calculate parameters and report these back to the client, and

provide warnings. Code executed in these classes is isolated

from the core daiquiri code and output from these calls are

logged and captured for review to aid debugging.

4.4. On the ID21 microscopy beamline

At ID21, two core interfaces are provided to allow data

acquisition and beamline control and alignment. The first,

shown in Fig. 2, uses the VLM component detailed above to

allow the user to visualize the sample in real time via a live

video stream (frames provided from a LIMA camera, inter-

faced via video-streamer-mpeg, see Section 4.6), to navigate

around, mark regions and collect 2D mXRF maps. To the right

is the list of currently defined ROIs (in purple) and POIs (in

turquoise), and below the data collections conducted and

resulting maps on each of these regions. Further below is

a general hardware monitoring section to change settings

such as the zoom level and move to different sample stage

locations.

Once a region or point is selected a new data collection can

be executed against this object. By clicking the ‘New’ button

on the Data Collections panel, daiquiri will allow the user to

select what action to execute based on the available actors

defined on the beamline. For example 2D mXRF maps and 2D

multispectral mXRF maps can be collected against ROIs,

whereas mXAS can be executed against POIs. An example of

this dialogue is shown in Fig. 3 – this is generated auto-

matically from the actor’s validation schema. These actors are

committed to the local beamline repository daiquiri-local,

so can be readily modified and added by beamline staff as

experiments evolve. These actions can be placed into

daiquiri’s queue for sequential execution, so for example a

series of mXAS spectra can be collected overnight.

Daiquiri has been available to users since the EBS restart

(September 2020), and first-time synchrotron users were

autonomous in less than an hour.

The second interface, shown in Fig. 4, allows for basic

configuration and control of the beamline. There is a synoptic

overview of the beamline components along with their status.

Beamviewer and front-end components can be controlled, and

a variety of other components can be modified. The individual

icons within the synoptic view can be configured to show a

group of hardware objects that have been defined in the

hardware configuration. For example, clicking on a shutter

could show the four associated motors.

computer programs

J. Synchrotron Rad. (2021). 28, 1996–2002 Stuart Fisher et al. � Daiquiri: beamline control and data acquisition 1999



4.5. Containerization

The entire project has been containerized using docker.

The container includes a test BLISS session, LIMA simulator,

Tango dummy device, daiquiri, and a production-ready mini-

fied version of daiquiri-ui. The docker container is built nightly

and tested using dgoss. This allows daiquiri to be easily started

for rapid development, demonstration and evaluation. Two

images are available: the primary daiquiri container and a

supporting prepopulated database daiquiri-testdb.

4.6. Supplementary packages

In addition to daiquiri and daiquiri-ui, a number of addi-

tional packages are available to help stream video, create

synoptic schematics and synchronize user office information:

synoptic svg : Allows the generation of beamline schematic

synoptics from a simple YAML configuration file.

video-streamer-mpeg : Takes raw frames from a camera

and streams them over websockets using MPEG encoding

to provide low-latency real-time video with reasonable

compression. The package currently supports LIMA cameras

but the frame grabber is implemented via an interface and

so is straightforward to extend to other control systems. The

package internally uses FFmpeg (FFmpeg, 2000) and can

computer programs

2000 Stuart Fisher et al. � Daiquiri: beamline control and data acquisition J. Synchrotron Rad. (2021). 28, 1996–2002

Figure 2
Acquisition interface on ID21, courtesy of H. Moreira. mXRF maps are superimposed on the visible-light image of the sample. On the bottom left mXRF
map, a smaller map was selected and acquired with higher resolution. On the top right mXRF map, a series of POIs have been selected for the collection
of mXAS spectra.

Figure 3
An example new scan dialogue where the user can select the type of
action to execute against a particular ROI or POI. In this case an ROI
is selected and the user can execute a 2D mXRF map. The form is
automatically generated from the relevant actor’s schema and parameter
values are validated both in the client and on the server.



therefore decode and translate frames in RGB, bayer and

other formats.

replicator : Replicates user office information into the local

ISPyB database. It currently implements a SMIS plugin for

the ESRF user office system but is readily extensible via an

interface. It is designed to be performant so that changes in the

user office system can be synchronized on a 15 minute basis.

4.7. Third-party integration

Internally daiquiri makes use of the some of the ISPyB

database tables to handle its metadata; this means that if a

beamline is making use of daiquiri it can also make use of

ISPyB interfaces such as SynchWeb (Fisher et al., 2015) to

manage access rights, monitor beamlines in real time, evaluate

beam time usage and review collected data. This also means

that if ISPyB is used to barcode and ship samples to a facility,

daiquiri can access the sample information and use this

metadata during data collection. For example, chemical

information about a sample could help to determine data

collection parameters and guide data processing. Then ISPyB

can be used to ship samples back to users, giving full trace-

ability in a single Laboratory Information Management

System (LIMS).

Daiquiri also has basic support for the Zocalo (Gerstel et al.,

2020) automated data processing framework. This means that

it can send messages to start processing of data and it can be

notified when a processing job is finished. It can then access

and display the relevant processing results as these can also be

stored in the ISPyB database. Fig. 5 shows the overall infra-

structure.

5. Conclusions

Daiquiri is currently deployed on the X-ray fluorescence

mapping and spectroscopy beamline ID21, as well as the

BioSAXS beamline BM29 where the server is deployed along

with a custom front-end BSXCuBE3 (Oskarsson et al., 2020).

Daiquiri will be extended for BM23 and ID24, both of which

computer programs

J. Synchrotron Rad. (2021). 28, 1996–2002 Stuart Fisher et al. � Daiquiri: beamline control and data acquisition 2001

Figure 4
Beamline configuration interface on ID21.

Figure 5
Overall infrastructure and relevant links between daiquiri and third-party
tools.



conduct mostly EXAFS experiments, the tomography beam-

line BM18, the diffraction at extreme conditions beamline

ID27, and the micro X-ray diffraction beamline ID13. Basic

monitoring installations are available on BM05 and ID26.

In the future daiquiri will be the standard interface by which

users and scientists interact with the controls system on many

beamlines at the ESRF.

Further information and details on how to try daiquiri can

be found on the landing page: https://ui.gitlab-pages.esrf.fr/

daiquiri-landing.

6. Source code

Source code for the relevant projects can be found at https://

gitlab.esrf.fr/ui/daiquiri, https://gitlab.esrf.fr/ui/daiquiri-local,

https://gitlab.esrf.fr/ui/daiquiri-ui, and documentation at https:

//ui.gitlab-pages.esrf.fr/daiquiri, https://ui.gitlab-pages.esrf.fr/

daiquiri-ui. Docker images can be found on docker hub:

https://hub.docker.com/u/esrfbcu.

Acknowledgements

We would like to thank the ID21 staff, especially Hiram

Castillo and Murielle Salomé, as well as all of the BCU staff

members for internal testing and valuable feedback during the

development process. We thank Hugo Moreira, University of

Montpellier, and his colleagues for testing Daiquiri as the first

academic users at ID21 and for permission to use Fig. 1.

References

Bootstrap (2011). Bootstrap – Build fast, responsive sites with
Bootstrap, https://getbootstrap.com/.

Cotte, M., Pouyet, E., Salomé, M., Rivard, C., De Nolf, W., Castillo-
Michel, H., Fabris, T., Monico, L., Janssens, K., Wang, T., Sciau, P.,
Verger, L., Cormier, L., Dargaud, O., Brun, E., Bugnazet, D.,
Fayard, B., Hesse, B., Pradas del Real, A. E., Veronesi, G., Langlois,
J., Balcar, N., Vandenberghe, Y., Solé, V. A., Kieffer, J., Barrett, R.,
Cohen, C., Cornu, C., Baker, R., Gagliardini, E., Papillon, E. &
Susini, J. (2017). J. Anal. At. Spectrom. 32, 477–493.

Create React App (2016). Create React App – Set up a modern web
app by running one command, https://create-react-app.dev/.

Dalesio, L. R., Hill, J. O., Kraimer, M., Lewis, S., Murray, D., Hunt, S.,
Watson, W., Clausen, M. & Dalesio, J. (1994). Nucl. Instrum.
Methods Phys. Res. A, 352, 179–184.

Delagenière, S., Brenchereau, P., Launer, L., Ashton, A. W., Leal, R.,
Veyrier, S., Gabadinho, J., Gordon, E. J., Jones, S. D., Levik, K. E.,
McSweeney, S. M., Monaco, S., Nanao, M., Spruce, D., Svensson, O.,
Walsh, M. A. & Leonard, G. A. (2011). Bioinformatics, 27, 3186–
3192.

Enderby, M. J. & Pulford, B. (2004). SR Generic Data Acquisition
Project Overview, NOBUGS 5, 18–20 October 2004, PSI, Switzer-
land.

FFmpeg (2000). FFmpeg – A complete, cross-platform solution to
record, convert and stream audio and video, https://ffmpeg.org/.

Fisher, S. J., Levik, K. E., Williams, M. A., Ashton, A. W. & McAuley,
K. E. (2015). J. Appl. Cryst. 48, 927–932.

Gerstel, M., Ashton, A., Gildea, R., Levik, K. & Winter, G. (2020).
Proceedings of the 17th International Conference on Accelerator
and Large Experimental Physics Control Systems (ICALEPCS-
2019), 5–11 October 2019, New York, NY, USA, pp. 1031–1035.
WEMPR001.

Götz, A., Abeillé, G., Bartolini, M., Bourtembourg, R., Braun, T.,
Chaize, J.-M., Coutinho, T., Gara, S., Goryl, P., Hardion, V., Joubert,
A., Khokhriakov, I., Liszcz, M., Mant, G., Merkulova, O., Moldes,
J., Pivetta, L. & Verdier, P. (2020). Proceedings of the 17th
International Conference on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS2019), 5–11 October 2019,
New York, NY, USA, pp. 1234–1239. WEPHA058.

Guijarro, M., Beteva, A., Coutinho, T., Dominguez, M.-C., Guilloud,
C., Homs, A., Meyer, J., Michel, V., Papillon, E., Perez, M. &
Petitdemange, S. (2018). Proceedings of the 16th International
Conference on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS2017), 8–13 October 2017, Barcelona, Spain,
pp. 1060–1066. WEBPL05.

Kalkman, C. J. (1995). J. Clin. Monit. Comput. 11, 51–58.
Mueller, U., Thunnissen, M., Nan, J., Eguiraun, M., Bolmsten, F.,

Milàn-Otero, A., Guijarro, M., Oscarsson, M., de Sanctis, D. &
Leonard, G. (2017). Synchrotron Radiat. News, 30(1), 22–27.

Oscarsson, M., Beteva, A., Flot, D., Gordon, E., Guijarro, M.,
Leonard, G., McSweeney, S., Monaco, S., Mueller-Dieckmann, C.,
Nanao, M., Nurizzo, D., Popov, A., von Stetten, D., Svensson, O.,
Rey-Bakaikoa, V., Chado, I., Chavas, L., Gadea, L., Gourhant, P.,
Isabet, T., Legrand, P., Savko, M., Sirigu, S., Shepard, W.,
Thompson, A., Mueller, U., Nan, J., Eguiraun, M., Bolmsten, F.,
Nardella, A., Milàn-Otero, A., Thunnissen, M., Hellmig, M.,
Kastner, A., Schmuckermaier, L., Gerlach, M., Feiler, C., Weiss,
M. S., Bowler, M. W., Gobbo, A., Papp, G., Sinoir, J., McCarthy, A.,
Karpics, I., Nikolova, M., Bourenkov, G., Schneider, T., Andreu, J.,
Cunı́, G., Juanhuix, J., Boer, R., Fogh, R., Keller, P., Flensburg, C.,
Paciorek, W., Vonrhein, C., Bricogne, G. & de Sanctis, D. (2019). J.
Synchrotron Rad. 26, 393–405.

Oskarsson, M., Beteva, A., De Sanctis, D., Fisher, S., Florial, J. B.,
Leonard, G., McCarthy, A., Pernot, P. & Tully, M. (2020).
Proceedings of the 17th International Conference on Accelerator
and Large Experimental Physics Control Systems (ICALEPCS-
2019), 5–11 October 2019, New York, NY, USA, pp. 1364–1367.
WEPHA115.

Pascual-Izarra, C., Coutinho, T., Cunı́, G., Falcón Torres, C.,
Fernández-Carreiras, D., Reszela, Z. & Rosanes Siscart, M.
(2015). Proceedings of the 2015 International Conference on
Accelerator and Large Experimental Physics Control Systems
(ICALEPCS2015), 17–23 October 2015, Melbourne, Australia,
pp. 1138–1142. THHC3O03.

React (2013). React – A JavaScript library for building user interfaces,
http://reactjs.org/.

React Bootstrap (2014). React Bootstrap – The most popular front-
end framework Rebuilt for React, https://react-bootstrap.github.io/.

Redux (2015). Redux – A Predictable State Container for JS Apps,
https://redux.js.org/.

SASS (2015). CSS with superpowers, https://sass-lang.com/.
Stepanov, S., Makarov, O., Hilgart, M., Pothineni, S. B., Urakhchin,

A., Devarapalli, S., Yoder, D., Becker, M., Ogata, C., Sanishvili, R.,
Venugopalan, N., Smith, J. L. & Fischetti, R. F. (2011). Acta Cryst.
D67, 176–188.

computer programs

2002 Stuart Fisher et al. � Daiquiri: beamline control and data acquisition J. Synchrotron Rad. (2021). 28, 1996–2002

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gy5026&bbid=BB21

