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For reconstructing large tomographic datasets fast, filtered backprojection-type

or Fourier-based algorithms are still the method of choice, as they have been

for decades. These robust and computationally efficient algorithms have been

integrated in a broad range of software packages. The continuous mathematical

formulas used for image reconstruction in such algorithms are unambiguous.

However, variations in discretization and interpolation result in quantitative

differences between reconstructed images, and corresponding segmentations,

obtained from different software. This hinders reproducibility of experimental

results, making it difficult to ensure that results and conclusions from

experiments can be reproduced at different facilities or using different software.

In this paper, a way to reduce such differences by optimizing the filter used in

analytical algorithms is proposed. These filters can be computed using a wrapper

routine around a black-box implementation of a reconstruction algorithm, and

lead to quantitatively similar reconstructions. Use cases for this approach are

demonstrated by computing implementation-adapted filters for several open-

source implementations and applying them to simulated phantoms and real-

world data acquired at the synchrotron. Our contribution to a reproducible

reconstruction step forms a building block towards a fully reproducible

synchrotron tomography data processing pipeline.

1. Introduction

In several scientific disciplines, such as materials science,

biomedicine and engineering, a quantitative three-dimen-

sional representation of a sample of interest is crucial for

characterizing and understanding the underlying system

(Fusseis et al., 2014; Luo et al., 2018; Midgley & Dunin-

Borkowski, 2009; Rubin, 2014). Such a representation can be

obtained with the experimental technique of computerized

tomography (CT). In this approach, a penetrating beam, such

as X-rays, is used to obtain projection images of a sample at

various angles. These projections are then combined by using

a computational algorithm to give a 3D reconstruction

(Buzug, 2011; Kak et al., 2002).

Different tomographic setups are used in various practical

settings. Our focus here is on tomography performed with a

parallel-beam X-ray source at synchrotrons. Synchrotrons

provide a powerful source of X-rays for imaging, enabling a

broad range of high-resolution and high-speed tomographic

imaging techniques (Thompson et al., 1984; De Carlo et al.,

2006; Stock, 2019).

A typical tomography experiment at the synchrotron can be

described by a pipeline consisting of several sequential steps
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(see Fig. 1). First, a sample is prepared according to the

experiment and imaging setup requirements. Then, the

imaging system is aligned (Yang et al., 2017), and a series of

projection images of the sample are acquired (Hintermüller

et al., 2010). These data are then processed for calibration,

contrast improvement [e.g. phase retrieval (Paganin et al.,

2002)] or removal of undesirable artefacts like rings or stripes

(Massimi et al., 2018). Following pre-processing, the data are

fed into a reconstruction software package that makes use of

one or more standard algorithms to compute a 3D recon-

struction (Gürsoy et al., 2014; Pelt et al., 2016). The recon-

struction volumes can then be further post-processed and

analysed (Salomé et al., 1999; Bührer et al., 2020) to obtain

parameter estimates of the system being studied. In some

cases, systematic imperfections in the data can also be

corrected by post-processing reconstructions. For example,

ring artefacts, which are commonly observed in synchrotron

data, can be corrected before or after reconstruction (Gürsoy

et al., 2014).

At various synchrotron facilities in the world, the pipeline

described above is implemented using different instruments,

protocols and methods specific for each facility (Kanitpa-

nyacharoen et al., 2013). These differences are on the level of

both hardware and software. Dissimilarities in the character-

istics of the used X-ray source and detection system, including

camera, visible light objective and scintillator screen, lead to

differences in the acquired data. The differences in the data

are then further compounded by variations in processing and

reconstruction software, resulting in differences in voxel or

pixel intensities, and eventually in variations in the output of

post-processing and analysis routines.

For users, such differences pose several challenges. First, it

is difficult to ensure that results and conclusions obtained from

experiments at one facility are comparable and consistent with

experiments from another facility. Second, other researchers

seeking to reproduce the results of a previous work with their

own software might not be able to do so, even if they have

access to raw data. Kanitpanyacharoen et al. (2013) report

quantitative differences at various stages of the pipeline when

scanning the same object at different synchrotrons. Repro-

ducibility and the ability to verify experimental findings is

crucial for ascertaining the reliability of scientific results.

Therefore, in order to ensure reproducibility for the

synchrotron pipeline, it is important to quantify and mitigate

differences in the acquired, processed and reconstructed data.

Hardware and software vary across synchrotrons for a

number of reasons. Each synchrotron uses a pipeline that is

optimized for its specific characteristics. In addition, legacy

considerations play a role in the choice of components.

Because of the variations across synchrotrons, any successful

strategy for creating reproducible results must take this

diversity into account. Ideally, the choices for specific imple-

mentations of each block in the synchrotron pipeline in Fig. 1

should not influence the final results of a tomography

experiment. Following this strategy, each block can be opti-

mized for reproducibility independently from the rest of

the pipeline.

In this paper, we focus on improving the reproducibility of

the reconstruction block in the pipeline. In most synchrotrons,

fast analytical methods such as filtered backprojection (FBP)

(Kak et al., 2002) and Gridrec (Dowd et al., 1999) are the

most commonly used algorithms for reconstruction. This is

primarily because such algorithms are fast and work out-of-

the-box without parameter tuning. These algorithms give

accurate reconstructions when the projection data are well

sampled, such as in microCT beamlines where thousands of

projections can be acquired in a relatively short time.

Several open-source software packages for synchrotron

tomography reconstruction are available, such as TomoPy, the

ASTRA toolbox and scikit-image (Gürsoy et al., 2014; Palen-

stijn et al., 2013; Van der Walt et al., 2014). Usually, an in-house

implementation of FBP or Gridrec, or one of the open-source

software packages, is used for reconstruction. Each of these

implementations contains a filtering step that is applied to the

projection data as part of the reconstruction. Filtering influ-

ences characteristics such as noise and smoothness, of the

reconstructed volume. A sample-independent, pre-defined

filter is generally used for reconstruction. Some filters used in

this step have tunable parameters, but these are often tuned

on-the-fly and are not recorded in metadata.

Reconstructions in analytical algorithms are obtained by

inversion of the Radon transform (Natterer, 2001). Although

this inversion is well defined mathematically in a continuous

setting, software implementations invariably have to work in a

discretized space. In software implementations, the measure-

ments as well as the reconstructed volume are discrete. In a

discretized space, inversion of the Radon transform often

translates to a backprojection step, which makes use of a

discretized projection kernel to simulate the intersection

between the scanned object and X-rays (Batenburg et al.,
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Figure 1
Schematic representation of a typical tomography pipeline at synchro-
trons. Hardware differences play an important role during sample
preparation and data acquisition. Software differences affect image pre-
processing, reconstruction and post-processing. Together these lead to
differences in the output of analysis and parameter estimation studies. In
this paper we propose a filter optimization method that works as a wrap-
around routine on the reconstruction block. Our method only requires
evaluations of the reconstruction routine and does not require any
internal coding. The output of our method is a filter that can be used in
the reconstruction block for more reproducible reconstructions.



2021). The backprojection operation can also be performed

directly using interpolations in Fourier space (Kak et al., 2002).

Different choices of discretization and interpolation, in

projection kernels and filters, are possible. These choices

lead to quantitative differences between the reconstructions

obtained from different software implementations. A simple

example of this effect is shown in Fig. 2, where we consider a

phantom of pixel size 33 � 33 and data along 8 projection

angles uniformly sampled in [0, �). We compare reconstruc-

tions of the same data using two different projection kernels

and two different filtering methods. In both instances, the

image to be reconstructed contains a single bright pixel at the

centre of the field of view. The sinogram of such an image

(i.e. the combined projection data for the full range of angles)

was computed using a CPU strip kernel projector from the

ASTRA toolbox (Palenstijn et al., 2013). Backprojections of

this projection data using two other projectors – a CPU line

projection kernel and a pixel-driven kernel implemented on

a graphics processing unit (GPU) – show significant, radially

symmetric differences. These differences are dependent on the

number of projection angles used, and are highly structured,

unlike differences due to random noise. We also observe

structured differences between reconstructions when the same

projection kernel (gpu-pixel) is used after different filtering

operations in real and Fourier space. This example highlights

the impact of discretization and interpolation choices on the

final reconstruction obtained from identical raw data.

Our main contribution in this paper is a heuristic approach

that can improve reproducibility in reconstructions.

Our method consists of optimizing the filter used in

different software implementations of reconstruction

methods. We call such optimized filters implementation-

adapted filters. The computation of our filters does not require

knowledge of the underlying software implementation of the

reconstruction algorithm. Instead, a wrapper routine around

any black-box implementation can be used for filter compu-

tation. Once computed, these filters can be applied with the

reconstruction software like any other standard filter.

Our paper is organized as follows. In Section 2, we formu-

late the reconstruction problem mathematically and discuss

the effect of different software implementations. In Section 3,

we describe our algorithm for computing implementation-

adapted filters. Numerical experiments described in Sections 4

and 5 demonstrate use cases for our filters on simulated and

real data. Finally, we discuss extensions to the current work

in Section 6 and conclude our paper in Section 7. Our open-

source Python code for computing implementation-adapted

filters is available on GitHub (https://github.com/poulamis

ganguly/impl-adapted-filters).

2. Background

2.1. Continuous reconstruction

Consider an object described by a two-dimensional

attenuation function f : R2
! R. Mathematically, the

tomographic projections of the object can be modelled

by the Radon transform, Rðf Þ. The Radon transform is

the line integral of f along parametrized lines l�;t =

fðx; yÞ 2 R2
j x cos � þ y sin � ¼ tg, where � is the projection

angle and t is the distance along the detector. Projection data

p�(t) along an angle � are thus given by
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Figure 2
Differences in reconstruction due to differences in backprojector and filter implementations. (a) A 33 � 33 phantom with one bright pixel. (b) Sinogram
of the phantom (computed using a strip kernel from the ASTRA toolbox). (c) Differences in (unfiltered) backprojection when using different
backprojectors: (left to right) backprojection using a CPU line kernel from the ASTRA toolbox, backprojection using a GPU pixel-driven kernel from
the ASTRA toolbox, absolute difference between the two backprojections. (d) Differences in reconstruction when using different filtering routines in
FBP with the gpu-pixel kernel as backprojector: (left to right) reconstruction using filtering in real space with the Ram–Lak filter, reconstruction using
the ramp filter in Fourier space, absolute difference between the two reconstructions.



p�ðtÞ ¼ Rð f Þ ¼

Z Z
R
2

f ðx; yÞ �ðx cos � þ y sin � � tÞ dx dy: ð1Þ

The goal of tomographic reconstruction is to obtain the

function f(x, y) given the projections p�(t) for various angles

� 2 �. One way to achieve this is by direct inversion of

the Radon transform. Given a complete angular sampling

in [0, �), the Radon transform can be inverted giving the

following relation (Kak et al., 2002),

f ðx; yÞ ¼

Z�
0

�Z 1
�1

~PP�ð!Þj!j exp
�
2�i!ðx cos � þ y sin �Þ

�
d!

�
d�;

ð2Þ

where ~PP�ð!Þ denotes the Fourier transform of the projection

data p�(t) and multiplication by the absolute value of the

frequency |!| denotes filtering with the so-called ramp filter.

For noiseless and complete data, the Radon inversion

formula [equation (2)] provides a perfect analytical recon-

struction of the function f(x, y) from its projections. However,

in practice, tomographic projections are obtained on a

discretized detector, consisting of individual pixels, and for a

finite set of projection angles. Additionally, the reconstruction

volume must be discretized in order to represent it on a

computer. Therefore, in practical applications, a discretized

version of equation (2) is used to obtain reconstructions.

2.2. Discrete reconstruction

Discretization of the reconstruction problem yields the

following equation for the discrete reconstruction r(xd, yd),

rðxd; ydÞ ¼
X
�d 2�

X
td 2T

h tdð ÞP�d
xd cos �d þ yd sin �d � tdð Þ; ð3Þ

where (xd, yd), �d and td denote discretized reconstruction

pixels, angles and detector positions, respectively, and h(td) is a

discrete real-space filter. This inversion formula is known as

the filtered backprojection (FBP) algorithm.

The FBP equation (3) can be written algebraically as the

composition of two matrix operations: filtering and back-

projection. Filtering denotes convolution in real space (or,

correspondingly, multiplication in Fourier space) with a

discrete filter. Backprojection consists of a series of inter-

polation and numerical integration steps to sum contributions

from different projection angles. These discretized operations

can be implemented in a number of different ways and

different software implementations often make use of

different choices for discretization and interpolation. Conse-

quently, the reconstruction obtained from a particular imple-

mentation is dependent on these choices. The reconstruction

rI from an implementation I can thus be written as

rIðh; pÞ ¼ W T
I MIðh; pÞ; ð4Þ

where W T
I is the backprojector and MIð�; �Þ is the (linear)

filtering operation associated with implementation I. We

denote the discrete filter by h.

In the following subsection, we discuss some common

choices for projection and filtering operators in software

implementations of analytical algorithms.

2.3. Differences in projectors and filtering

In order to discretize the Radon transform, we must choose

a suitable discretization of the reconstruction volume, a

discretization of the incoming ray and an appropriate

numerical integration scheme. All these choices contribute to

differences in different backprojectors W T
I in (4).

Voxels (or pixels in 2D) in the reconstruction volume can be

considered either to have a finite size or to be spikes of infi-

nitesimal size. Similarly, a ray can be discretized to have finite

width (i.e. a strip) or have zero width (i.e. a line). The

numerical integration scheme chosen might be piecewise

constant, piecewise linear or continuous. All of these different

choices have given rise to different software implementations

of backprojectors (Batenburg et al., 2021). There exist

different categorizations of backprojectors in the literature;

for example, the linear kernel in the ASTRA toolbox is

referred to as the slice-interpolated scheme by Xu & Mueller

(2006) and the strip kernel is referred to as the box-beam

integrated scheme in the same work. In this paper, we desig-

nate different backprojectors with the terms used in the

software package where they have been implemented.

In addition to the choices mentioned above, backprojectors

have also been optimized for the processing units on which

they are used. For this reason, backprojectors that are opti-

mized to be implemented on graphics processing units (GPUs)

might be different from those that are implemented on a CPU

due to speed considerations. In particular, GPUs provide

hardware interpolation that is extremely fast, but can also be

of limited accuracy compared with standard floating point

operations.

So far, we have discussed real-space backprojectors.

Fourier-domain algorithms such as Gridrec (Dowd et al., 1999)

use backprojectors that operate in the Fourier domain. These

operators are generally faster than real-space operators, and

are therefore particularly suited for accelerating iterative

algorithms (Arcadu et al., 2016). Unlike real-space back-

projectors, Fourier-space backprojectors perform interpola-

tion in the Fourier domain. As this might lead to non-local

errors in the reconstruction, an additional filtering step is

performed to improve the accuracy of the interpolation.

Apart from differences in backprojectors, different imple-

mentations also vary in the way they perform the filtering

operation in analytical algorithms. Filtering can be performed

as a convolution in real space or as a multiplication in Fourier

space. Real-space filtering implementations can differ from

each other in computational conventions, for example by the

type of padding used (Marone & Stampanoni, 2012) to extend

the signal at the boundary of the detector. Moreover, the

zero-frequency filter component is treated in different ways

between implementations. For example, the Gridrec imple-

mentation in TomoPy sets the zero-frequency component of

the filter to zero.
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3. Implementation-adapted filters

We now present the main contribution of our paper. In

order to mitigate the differences between implementations

discussed in the previous section, we propose to specifically

tune the filter h for each implemented analytical algorithm.

In the following, we describe an optimization scheme for the

filter, which helps us to reduce the differences between

reconstructions from various implementations.

We optimize the filter by minimizing the ‘2 difference with

respect to the projection data p. This can be stated as the

following optimization problem over filters h,

h�I ¼ arg min
h
kp�WrIðh; pÞk2

2; ð5Þ

where rI is the reconstruction from implementation I. Note

that the forward projector W used above is chosen as a fixed

operator in our method (the same for each implementation

for which the filter is optimized) and does not have to be

the transpose of the implementation-specific backprojection

operator W T
I . In order to improve stability and take additional

prior knowledge of the scanned object into account, a regu-

larization term can be added to the objective in (5).

The solution to the optimization problem above is an

implementation-adapted filter h�I . Once the filter has been

computed, it can be used in (4) to give an optimized recon-

struction,

r�I ¼W T
I MIðh

�
I ; pÞ:

Out of all reconstructions that an implemented algorithm

can produce for a given dataset p by varying the filter, this

reconstruction, r�I , is the one that results in the smallest resi-

dual error. Such filters are known as minimum-residual filters

and have previously been proposed to improve reconstruc-

tions of real-space analytical algorithms in low-dose settings

(Pelt & Batenburg, 2014; Lagerwerf et al., 2020a).

Our implementation-adapted filters are thus minimum-

residual filters that have been optimized to each imple-

mentation I. The main difference between the previous works

(Pelt & Batenburg, 2014; Lagerwerf et al., 2020a) and our

present study is that we use a fixed forward operator in our

optimization problem, which is not necessarily the transpose

of the backprojection operator. More importantly, our goal in

this paper is not the improvement of reconstruction accuracy,

but the reduction of differences in reconstruction between

various software implementations.

We hypothesize that such minimum-residual reconstruc-

tions obtained using different implementations are closer

(quantitatively more similar) to each other than reconstruc-

tions obtained using standard filters. As an example for

motivating this choice, let us take an implementation of an

analytical algorithm from both TomoPy and the ASTRA

toolbox. Given a certain dataset, changing the reconstruction

filter results in different reconstructed images, each with a

different residual error. Even though the implementations

used by TomoPy and ASTRA are fixed, the freedom in

choosing a filter gives us an opportunity to reduce the differ-

ence between reconstructions from both implementations.

Tuning the filter is a way to optimize the reconstruction

according to user-selected quality criteria. Choosing the

minimum-residual reconstruction for each implementation

results in reconstructions that are the closest possible to each

other in terms of data misfit. Closeness in data misfit, under

convexity assumptions, indicates closeness in pixel intensity

values of reconstruction images. Hence, the minimum-residual

reconstructions for the two implementations are closer to each

other than reconstructions with standard filters offered by

the implementations.

To compute the optimized filter (5), we use the fact that

the reconstruction rIðh; pÞ of data p obtained from an imple-

mentation of FBP or Gridrec is linear in the filter h. This

means that we can write the reconstruction as

rIðh; pÞ ¼ RIðpÞ h;

where RIðpÞ is the reconstruction matrix of implementation I

given projection data p. Thus, the optimization problem (8)

becomes

h�I ¼ arg min
h
kp�WRIðpÞhk

2
2 ¼: arg min

h
kp� FIðpÞhk

2
2:

ð6Þ

The matrix FIðpÞ has dimensions Np � Nf, where Np is the size

of projection data and Nf is the number of filter components.

For a filter that is independent of projection angle, the number

of filter components, Nf, is equal to the number of discrete

detector pixels, Nd. The projection size Np := NdN�, where N�

is the number of projection angles. FIðpÞ can be constructed

explicitly by assuming a basis for filter components. A cano-

nical basis can be formed using Nd unit vectors fei; i =

1; 2; . . . ;Ndg, such that

e1 ¼

1

0
..
.

0

0
BB@

1
CCA; e2 ¼

0

1
..
.

0

0
BB@

1
CCA; . . . eNd

¼

0

0
..
.

1

0
BB@

1
CCA:

Using these basis filters, each column of FIðpÞ can be

computed by reconstructing p using the implementation I,

followed by forward projection with W,

f j ¼ WrIðej; pÞ; j 2 f1; 2; . . . ;Ndg;

FIðpÞ ¼ f1 f2 f3 . . . fNd

� �
:

We can then substitute for FIðpÞ in (6) and solve for the

optimized filter h�I . Note that our method only requires

evaluations of the implementation I by using it as a black-box

routine to compute the reconstructions rIðej; pÞ above. In

other words, no knowledge of the implementation I or any

internal coding is required.

If we expand the filter in a basis of unit vectors, OðNpÞ

reconstructions using the implementation I and OðNpÞ

forward projections with W must be performed for filter

optimization. In contrast, the complexity of a standard FBP

reconstruction is of the order of a single backprojection.

Choosing a smaller set of suitable basis functions would result

in a reduction in the number of operations for filter optimi-
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zation and, consequently, faster filter computations. One way

to do this is by exponential binning (Pelt & Batenburg, 2014).

The idea of exponential binning is to assume that the real-

space filter is a piecewise constant function with Nb bins,

where Nb < Nd. The bin width wi for i = 1, 2, . . . , Nb is assumed

to increase in an exponential fashion away from the centre of

the detector, such that

wi ¼
1; jij < Nl ;
2jij�Nl ; jij � Nl ;

�
ð7Þ

where Nl is the number of large bins with width 1. Exponential

binning is inspired by the observation that standard filters

used in tomographic reconstruction, such as the Ram–Lak

filter, are peaked at the centre of the detector and decay to

zero relatively quickly towards the edges. Binning results in a

reduction of free filter components from Nd to Nb. Moreover,

despite the reduction in components, it does not typically

result in a significant change in reconstruction quality (Pelt &

Batenburg, 2014).

The pseudocode for our filter computation method is shown

in Algorithm 1 (see Fig. 3). Here we give further details of the

routines used in the algorithm. The filter routine performs

filtering in the Fourier domain, which is equivalent to multi-

plication by the filter followed by an inverse Fourier trans-

form. The reconstructI routine calls the function for

reconstruction in implementation I with the internal filtering

disabled. Finally, the lstsq routine calls a standard linear

least-squares solver in NumPy (Harris et al., 2020) to compute

filter coefficients.

Once a filter h� is computed, we can store it in memory,

either as a filter in Fourier space or as a filter in real space after

computing the Fourier transform of h�. Using the filter with a

black-box software package involves calling the filter routine

with the data and the computed filter as arguments, followed

by one call of the reconstructI routine in a chosen algo-

rithm (with its internal filtering disabled). Thus, the

complexity of a reconstruction using a computed imple-

mentation-adapted filter is the same as that of a reconstruction

run using a standard filter.

In the following sections, we describe numerical experi-

ments and the results of filter optimization on reconstructions.

4. Data and metrics

We performed a range of numerical experiments on real and

simulated data to quantitatively assess (i) the effect of our

proposed optimized filters on the variations between recon-

structions from different implementations; (ii) the behaviour

and dependence of our proposed filters on acquisition char-

acteristics such as noise and sparse angular sampling; and

(iii) the effect of our proposed filters on post-processing steps

following the reconstruction block in Fig 1. In this section, we

describe the software implementations used, data generation

steps and the metric used to quantify intra-set variability of

reconstructions.

4.1. Software implementations of analytical algorithms

We optimized filters to commonly used software imple-

mentations of FBP and Gridrec. For FBP, we considered

different projector implementations in the ASTRA toolbox

(Palenstijn et al., 2013) as well as the iradon backprojection

function in scikit-image (Van der Walt et al., 2014). These

implementations use different choices of volume and ray

discretization as well as numerical integration schemes. From

the ASTRA toolbox, we considered projectors implemented

on the CPU (strip, line and linear) as well as a pixel-driven

kernel on the GPU (gpu-pixel, called cuda in the ASTRA

toolbox). For Fourier-space methods, we considered the

Gridrec implementation in TomoPy. We used the ASTRA

strip kernel as the forward projector W in (5) during filter

computations.

4.2. Projection data

We performed experiments with both simulated and real

data. Both data consisted of projections acquired in a parallel-

beam geometry along a complete angular range in [0, �).

4.2.1. Simulated foam phantom data. Simulated data of

foam-like phantoms were generated using the foam_ct_

phantom package in Python. This package generates 3D

volumes of foam-like phantoms by removing, at random,

a pre-specified number of non-overlapping spheres from a

cylinder of a given material (Pelt et al., 2018). The simulated

phantoms are representative of real foam samples used in

tomographic experiments and are challenging to reconstruct

due to the presence of features at different length scales. At

the same time, the phantoms are amenable to experimentation

as data in different acquisition settings can be easily gener-

ated. Slices of one such phantom, which we used for the

experiments in this paper, are shown in Figs. 4 and 6.

Ray tracing through the volume is used to generate

projection data from a 3D foam phantom. To simulate real-

world experimental setups, where detector pixels have a finite

area, ray supersampling can be used. This amounts to aver-

aging the contribution of n neighbouring rays within a single

pixel, where n is called the supersampling factor.

For our experiments, we generated a 3D foam with 1000

non-overlapping spheres with varying radii. A parallel beam

projection geometry, in line with synchrotron setups, was used

to generate projection data. We used ray supersampling with a
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Figure 3
Algorithm 1 – implementation-adapted filter computation.



supersampling factor of 4, and each 2D projection was

discretized on a pixel grid of size 256 � 256. We varied the

number of projection angles, N�, in our experiments in

order to determine the effect of sparse sampling ranges on

our filters.

Poisson noise was added to noiseless data by using the

astra.add_noise_to_sino function in the ASTRA toolbox

(Palenstijn et al., 2013). This function requires the user to

specify a value for the photon flux I0. In an image corrupted

with Poisson noise, each pixel intensity value k is drawn from a

Poisson distribution,

fPoisðk; �Þ ¼
�k expð��Þ

k!
;

with � / I0. High photon counts (and high values of �)

correspond to low noise settings. All noise realizations in our

experiments were generated with a pre-specified random seed.

4.2.2. Real data of shale. In order to validate the applic-

ability of our method to real data, we performed numerical

experiments using microCT data of the round-robin shale

sample N1 from the tomographic data repository Tomobank

(De Carlo et al., 2018). We used data acquired at the Advanced

Photon Source for our experiments. The round-robin datasets

were acquired for characterizing the porosity and micro-

structures of shale, and the same sample has been imaged at

different synchrotrons (using the same experimental settings)

for comparison of results (Kanitpanyacharoen et al., 2013).

The dataset we used was acquired with a 10� objective lens

and had an effective pixel size of approximately 0.7 mm. Each

projection in the dataset had pixel dimensions 2048 � 2048,

and data were acquired over 1500 projection angles. In order

to simulate sparse angular range settings, we removed

projections at intervals of m = 2, 3, 4, 5 and 10 from the

complete data.

4.3. Quantitative metrics

Reconstructions of a 3D volume from parallel beam data

can be done slice-wise, because data in different slices (along

the rotation axis) are independent of each other in a parallel

beam geometry. Therefore, all our quantitative metrics were

computed on individual slices. Reconstructed slices of the

simulated foam phantom were discretized on a pixel grid

of size 256 � 256. Reconstruction slices of the round-robin

dataset were discretized on a pixel grid of size 2048 � 2048.

All CPU reconstructions were performed on an Intel(R)

Core(TM) i7-8700K CPU with 12 cores. GPU reconstructions

were performed on a single Nvidia GeForce GTX 1070 Ti

GPU with CUDA version 10.0.

We were interested in comparing the similarity between

reconstructions in a set of images, without having a reference

reconstruction. We quantified the intra-set variability between

reconstruction slices obtained from different implementations

using the pixelwise standard deviation between these. For

a set of reconstruction slices frI; I 2 Ig obtained using

different implementations I, the standard deviation of a pixel j

is given by

�j ¼
1

NI

X
I 2I

h
rIð Þj � �rrj

i2

 !1=2

; �rrj ¼
1

NI

X
I 2I

rIð Þj; ð8Þ

where (rI)j is the intensity value of pixel j in reconstruction rI

and NI is the total number of implementations.

In our experiments, we reconstructed the same data using

our set of implementations fI 2 Ig, by using the Ram–Lak

filter and the Shepp–Logan filter as defined in different

packages, and then by using filters fh�I ; I 2 Ig (5) that were

optimized to those implementations. As a result, we achieved

three sets of reconstructions: one set using the Ram–Lak filter,

a second set using the Shepp–Logan filter and a third set using

the implementation-adapted filters. We computed the pixel-

wise standard deviation (8) over slices for all sets.

The mean standard deviation of a slice S (with dimensions

N � N) is defined as the mean of pixelwise standard devia-

tions in that slice,

���S
¼

1

N2

X
j2 J S

�j; ð9Þ

where JS is the list of pixels in slice S.

In addition to the mean, the histogram of standard devia-

tions (8) provides important information about the distribu-

tion of standard deviation values in a slice. The mode of this

histogram is the value of standard deviation that occurs most,

and the tail of the histogram indicates the number of large

standard deviations observed. For reconstructions that are

more similar to each other, we would expect the histogram to

be peaked at a value close to 0 and have a small tail.

In order to quantify the difference between a reconstruction

slice and the ground truth (in experiments where a ground

truth was available), we used the root mean squared error

(RMSE) given by

RMSEðrIÞ ¼
1

N2

X
rI � rgt

� �2

	 
1=2

; ð10Þ

where rgt is the ground truth reconstruction. For a set of

reconstructions we used the squared bias defined below to

quantify the difference with respect to the ground truth,h
bias

��
rI; I 2 I

��i2

¼


�rr� rgt

�2

; ð11Þ

where �rr :=
P

I 2I ð1=NIÞ rI is the mean over the set of recon-

structions. The squared bias, similar to the standard deviation

in (8), is a pixelwise measure. The mean squared bias over a

slice S is obtained by taking the mean of (11) over all pixels

in the slice.

In our experiments, we also quantify the effect of filter

optimization on later post-processing steps after reconstruc-

tion. To do this, we threshold a set of reconstructions using

Otsu’s method (Otsu, 1979), which picks a single threshold to

maximize the variance in intensity between binary classes. To

quantify the accuracy of the resulting segmentations and to

compare the similarity in a set we used two standard metrics

for segmentation analysis: the F1 score and the Jaccard index.

The F1 score takes into account false positives (fp), true
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positives (tp) and false negatives (fn) in binary segmentation

and is given by

F1 ¼
tp

tpþ ð1=2Þðfpþ fnÞ
: ð12Þ

The Jaccard index is the ratio between the intersection and

union of two sets A and B. In our case, one set is the

segmented binary image and the other set is the binary ground

truth image,

JðA;BÞ ¼
jA \ Bj

jA [ Bj
: ð13Þ

5. Numerical experiments and results

In this section, we give details of our numerical experiments

and discuss their results.

5.1. Foam phantom data

5.1.1. Reduction in differences between reconstructions.
Figure 4 shows the central (ground truth) slice of the foam

phantom. Data along N� = 32 angles were reconstructed using

all implementations using the Ram–Lak filter, the Shepp–

Logan filter and our implementation-adapted filters. Recon-

structions using the various filters are shown in Fig. 4. In order

to highlight intra-set variability, we include heatmaps showing

the absolute difference with respect to one (strip) recon-

struction. Upon visual inspection, we see that discrepancies

between reconstructions are smaller in the set obtained using

implementation-adapted filters. An interesting point to note is

that the Gridrec and iradon reconstructions show the largest

differences from the ASTRA strip kernel reconstruction in

both sets. This suggests that differences between different

software packages are greater than differences between

different projectors in the same software package.

To further investigate intra-set variability, we use pixelwise

standard deviation maps for all sets of reconstructions. We

observe that higher values of standard deviation are observed

when using the Ram–Lak and Shepp–Logan filters. This

indicates that quantitative differences between these recon-

structions were more pronounced. In contrast, reconstructions

using our implementation-adapted filters were more similar,

resulting in low pixelwise standard deviations. Furthermore,

the mode of the histogram of standard deviations (in the

central slice) is shifted closer to zero for reconstructions with

our filters, and the tail of the histogram is shorter. This high-

lights the fact that the maximum standard deviation between

reconstructions with our filters is smaller than the maximum

standard deviation in reconstructions with the Shepp–Logan

or Ram–Lak filters.
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Figure 4
Reduction in intra-set variability between reconstructions of simulated foam data (N� = 32, no noise) by using implementation-adapted filters. (Top three
rows) Reconstructions of the central slice (slice No. 128) of a foam phantom. To highlight intra-set discrepancies we show the absolute difference with
respect to the corresponding strip kernel reconstructions in the right half of each image. The rightmost column shows pixelwise standard deviation � in
each set. (Bottom row, left) Ground truth foam phantom slice. (Right) Histograms of standard deviations � for all three sets. The Ram–Lak filter and
Shepp–Logan filter histograms overlap.



5.1.2. Dependence of filters on noise and sparse angular
sampling. We consider the effect of noise and sparse sampling

on our filters. For the central slice of the foam phantom

shown in Fig. 4, we generated data by varying the number of

projection angles N� and the photon flux I0 . For each of

these settings, we computed the mean standard deviation (9)

between reconstruction slices. Our results are shown in Fig. 5.

For all noise and angular sampling settings, the mean standard

deviation in the slice was reduced by using implementation-

adapted filters, with the difference being particularly promi-

nent for noisy and smaller angular sampling settings. Shepp–

Logan filter reconstructions had smaller mean standard

deviation compared with Ram–Lak filter reconstructions,

except in situations where many angles (N� � 256) were used.

In the high angle regime, reconstructions using the Ram–Lak

filter have a relatively small number of artefacts and

improvements due to filter optimization are modest.

We also quantified the mean squared bias and the mean

RMSE with respect to the ground truth for this slice. From

these plots, we observe that reconstructions using imple-

mentation-adapted filters have lower mean squared bias and

mean RMSE compared with those for reconstructions with

standard filters. High noise (low I0) and sparse angular

sampling settings result in an increase in bias and RMSE for

all filter types. However, the increase is sharper for the Shepp–

Logan and Ram–Lak filters than for our implementation-

adapted filters. For every noise setting, the Ram–Lak filter

results in the worst reconstructions in terms of bias and

RMSE. Although both bias and RMSE increase as the number

of projection angles is reduced in the noise-free setting, we

observe a reduction in mean standard deviation for recon-

structions using implementation-adapted filters. This suggests

that in spite of a reduction in mean standard deviation due to

effective suppression of high frequencies, the reconstructions

produced by our implementation-adapted filters in this regime

are incapable of mitigating the large number of low-angle

artefacts. In effect, these settings show a limit where optimi-

zation of a linear filter is not sufficient for good reconstruc-

tions, and intra-set homogeneity is achieved at the expense of

an increase in bias and RMSE.

In addition, we also show the shapes of the filters

(computed for the strip kernel in the ASTRA toolbox) as a

function of noise and angular sampling. As the number of

projection angles is increased, the shape of implementation-

adapted filters approaches that of the ramp filter. In these

regimes, reconstructions obtained using the Ram–Lak filter

and the Shepp–Logan filter are nearly identical in terms of

bias and RMSE. For different noise settings, the filters only

vary at certain frequencies. It is possible that these frequencies

are indicative of the main features in the foam phantom

slice used.

5.1.3. Variation of filters with projection data. In order to

understand how our filters change with changes in the data, we

computed filters for all slices of our simulated foam phantom.

Two such slices are shown in Fig. 6. These slices, although

visually similar, have different features. Implementation-

adapted filters for all 256 slices of the foam phantom are

shown in Fig. 6.

In order to study the applicability of the central slice filter to

other slices, we performed the following experiment. First, we

reconstructed all slices using the slice-specific filters, i.e. filters

that had been optimized for each individual slice using
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Figure 5
Implementation-adapted filters for noisy and sparsely sampled data. (Top, left to right) Mean standard deviations ��� S for slice S = 128 as a function of the
number of projection angles N�, mean value of the squared bias, mean value of RMSE with respect to the ground truth slice, and optimized filters in
Fourier space. (Bottom, left to right) Mean standard deviations in S = 128 as a function of photon flux I0 (higher values of I0 correspond to lower noise
levels) using N� = 64, mean value of the squared bias, mean value of RMSE with respect to the ground truth slice, and optimized filters in Fourier space.



different implementations. Next, we reconstructed all slices

with the central slice filter. As a baseline, all slices were also

reconstructed using the Shepp–Logan filter. Pixelwise stan-

dard deviations (8) were computed for all pixels in the foam

phantom volume for the three cases. The scatter plot in Fig. 6

shows that the pixelwise standard deviations with the central

slice filter are nearly the same as those with the slice-specific

filters. In fact, these points lie on a line with slope nearly equal

to one. This indicates that using the central slice filter results in

an equivalent reduction in differences between reconstruc-

tions as slice-specific filters. In contrast, the pixelwise standard

deviations using the Shepp–Logan filter are, for a majority of

pixels, larger than those obtained using slice-specific filters.

This suggests that, for a majority of pixels in the reconstruc-

tion volume, smaller values of standard deviation are observed

after filter optimization.

Our experiment suggests that using the central slice filter

for all slices of the foam phantom results in an equivalent

reduction in standard deviation as slice-specific filters. This

paves the way to fast application of such filters in a real

dataset. An implementation-adapted filter computed for one

slice of such a dataset could be reused with all other slices with

no additional computational cost, just like any of the standard

filters in a software package.

5.1.4. Reduction in differences after thresholding. We

investigated the effect of our filters on the results of a simple

post-processing step. We reconstructed data (N� = 32, no

noise) from the central slice of the foam phantom and used

Otsu’s method in scikit-image (Van der Walt et al., 2014) to

threshold reconstruction slices from different implementa-

tions. In Fig. 7, we show two sets of thresholded reconstruc-

tions, one obtained using the Shepp–Logan filter and the other

obtained using our implementation-adapted filters. We show

values for the Otsu threshold t, the F1 score with respect to the

ground truth slice and the Jaccard index in the figure. We used

routines in scikit-learn (Pedregosa et al., 2011) to compute all

segmentation metrics. For the set of Shepp–Logan filter

reconstructions, the ranges of threshold values (0.32–0.36), F1

scores (0.63–0.71) and Jaccard indices (0.46–0.55) were larger

than the corresponding ranges for the implementation-

adapted filter reconstructions. For the latter set, the Otsu

threshold varied between 0.32 and 0.33 for all reconstructions.

The F1 scores were between 0.81 and 0.83, and the Jaccard

indices were in the range 0.69–0.72. Upon visual inspection

of the zoomed-in insets we find greater differences between

thresholded reconstructions in the set of Shepp–Logan filter

reconstructions. These results suggest that post-processing

steps such as segmentation may be rendered more repro-

ducible and amenable to automation if reconstructions are

obtained using implementation-adapted filters.

5.1.5. Optimizing to a reference reconstruction. Although

we focus on filter optimization in sinogram space in this paper,

a related optimization problem is one where reconstruction

results from different implementations are optimized to a

reference reconstruction. This type of optimization might

be useful when the result of one specific implementation is

preferred due to its superior accuracy and when the exact

settings used with this algorithm are unknown.

In some cases, high-quality reconstructions might be

computed with an unknown (possibly in-house) software

package during the experiment by expert beamline scientists.

When users reconstruct this data later at their home institutes,

it might not be possible to use the same software packages

with identical settings. Our approach would enable users to
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Figure 6
Variation of filters with projection data. (Top) Two slices of a simulated foam phantom with differences in features. (Bottom left) Implementation-
adapted filters for all slices of the foam phantom (slice-specific filters). Central slice (slice No. 128) filters for each implementation are indicated with bold
lines. (Bottom right) Scatter plot of pixelwise standard deviations � using slice-specific filters, the central slice filter and the Shepp–Logan filter. Standard
deviations using the central slice filter are almost the same as those using slice-specific filters (orange dots). These points lie on a straight line (shown in
black) with slope�1 and intercept�0. In contrast, standard deviations using the Shepp–Logan filter are higher than those using slice-specific filters (blue
dots) for most pixels.



reduce the difference between their reconstructions and the

high-quality reference reconstructions.

Optimization in reconstruction space can be performed by

modifying the objective in (5),

h�I ¼ arg min
h
krref � rIðh; pÞk2

2; ð14Þ

where rref is the reference reconstruction.

To illustrate filter optimization in reconstruction space, we

performed the following experiment. Using the strip kernel

reconstruction (with the Shepp–Logan filter) as a reference,

we computed optimized filters for two other implementations

(ASTRA line kernel and TomoPy Gridrec) for reconstructing

the central slice of the foam phantom. Subsequently, we

reconstructed the sinogram with the Shepp–Logan filter and

our filters. These reconstructions are shown in the top row of

Fig. 8. To quantify similarity with the reference reconstruction,

we computed the pixelwise absolute difference between each

reconstruction and the reference as well as the RMSE using

the reference as ground truth, which we denote as RMSEr. For

both line and Gridrec backprojectors, optimizing the filter to

a reference reconstruction reduced the RMSEr and absolute

difference. As a further test, we applied the filters computed

for this slice to a different slice of the foam phantom, which

did not have any overlaps with the slice used to compute the

filters. For this test slice, we again observed the reduction in

RMSEr and absolute error, suggesting that our filters were

able to bring the resulting reconstructions closer to the

reference reconstruction.

5.2. Round-robin data

Figure 9 shows the results of our method on the central slice

(slice No. 896) of the round-robin dataset N1. These recon-

structions were performed by discarding every second

projection from the entire dataset. From the heatmaps of

absolute difference with respect to the strip kernel recon-

struction, we observe that intra-set differences are reduced by

using implementation-adapted filters. This is further shown by

the pixelwise standard deviation maps. Standard deviations

between reconstructions using the Ram–Lak and Shepp–

Logan filters are larger than those between reconstructions

using implementation-adapted filters. Similar to the distribu-

tions in Fig. 4, we see that our implementation-adapted filters

are able to shift the mode of the histogram of standard

deviations towards zero and to reduce the number of large

standard deviations in the slice. We also observe that the

Ram–Lak filter reconstructions show higher standard devia-

tions than the Shepp–Logan filter reconstructions.

We also studied the effect of the number of projections used

on the mean standard deviation (9) in this slice. To do this, we

performed experiments with the whole dataset and also with

parts of the data, where every 2, 3, 4, 5 and 10 projections were

discarded. For each instance, the data were reconstructed

using the Ram–Lak filter, the Shepp–Logan filter and our

implementation-adapted filters. The plot of mean standard

deviations is shown in Fig. 9. For all projection numbers, filter

optimization reduced the mean standard deviation in the slice.

The difference was smaller for higher projection numbers,

indicating that our filters are especially useful in improving

reproducibility of reconstructions when the number of

projection angles is small. In practice, data along few angles

may be acquired to reduce the X-ray dose on a sample or to

speed up acquisition when the sample is evolving over time.

6. Discussion

In this paper, we have presented a method to improve the

reproducibility of reconstructions in the synchrotron pipeline.
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Figure 7
Differences after thresholding using Otsu’s method. Reconstructions shown in Fig. 4 were used as input to the thresholding routine. (Top row)
Thresholded reconstructions obtained using different backprojector implementations and the Shepp–Logan filter. Corresponding Otsu thresholds t, F1

scores and Jaccard indices are given for each image. (Bottom row) Thresholded reconstructions obtained using implementation-adapted filters.
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Figure 8
Filter optimization using a reference reconstruction. (Top row) Filters optimized to a strip kernel reconstruction (left). Reconstructions before and after
filter optimization using the ASTRA line kernel and Gridrec. The right half of each image shows absolute difference with the reference reconstruction.
RMSE values with respect to the reference are also shown. (Bottom row) Reconstructions of a different (test) slice using the filters obtained for the slice
in the top row. Pixelwise absolute difference and RMSE using implementation-adapted filters are smaller in both cases.

Figure 9
Reduction in differences between reconstructions of the round-robin dataset (slice No. 896). (Top three rows) Slice reconstructions using different
implementations. Reconstructions were performed by discarding every second projection from the full dataset. The right halves of the images show
absolute differences with the corresponding strip kernel reconstruction in each set. The rightmost column shows pixelwise standard deviations in each
set. (Bottom row, left) Histograms of standard deviation for all three types of filters. (Right) Mean standard deviations ��� S in slice S = 896 for different
numbers of projection angles.



Our method uses an optimization

problem over filters to reduce

differences between reconstructions

from various software implementa-

tions of commonly used algorithms.

The objective function that was

used in our optimization problem

was the ‘2-distance between the

forward projection of the obtained

reconstruction and the given

projection data. This choice was

motivated by the fact that ground

truth reconstructions are generally

not available in real-world experi-

ments. However, it is possible to

formulate a similar (and related)

problem in reconstruction space, by

using the ‘2-distance between the

reconstruction from a given soft-

ware package and a reference

reconstruction as the objective to be

minimized. The solution to such an

optimization procedure is a shift-

invariant blurring kernel in recon-

struction space. The implementa-

tion-adapted filters presented in this

paper can thus be viewed as a linear

transformation of the projection

data that results in an automatic

selection of shift-invariant blurring

of reconstructions.

Our work here can be extended to optimize other pre-

processing and post-processing steps in the synchrotron

pipeline. An important example is phase retrieval, which can

be formulated in terms of a filtering operation (Paganin et al.,

2002). This filter can be optimized similarly in order to

improve reproducibility.

One limitation of our method is that we optimize to the data

available. This optimization can lead to undesired solutions in

the presence of outliers in the data, such as zingers or ring

artefacts. Reconstructions of data corrupted with zingers

(randomly placed very bright pixels in the sinogram) are

shown in Fig. 10. In this example we see that the FBP

reconstruction using the ASTRA strip kernel and the Shepp–

Logan filter shows less prominent zingers than the recon-

struction using an implementation-adapted filter. This is

because the optimized filter preserves the zingers in the data

whereas the unoptimized FBP reconstruction is independent

of them. Other methods, such as the simultaneous iterative

reconstruction technique (SIRT), which iteratively minimize

the data misfit also give similar, poor reconstructions. One way

to improve iterative reconstruction methods is to use regu-

larization, which can be achieved either by early stopping

or by the inclusion of an explicit regularization term in the

objective function to be minimized. Analogous techniques can

be used for our filter optimization problem (5) to ensure

greater robustness to outliers.

Although we have demonstrated the reusability of our

filters for similar data, these filters are dependent on the noise

statistics and angular sampling in the acquired projections.

One way to improve the generalisability of filters would be to

simultaneously optimize to more than one dataset. This idea

has been explored by Pelt & Batenburg (2013) and Lagerwerf

et al. (2020b) using shallow neural networks.

Another promising direction is provided by deep-learning-

based methods, which have been applied to improve tomo-

graphic image reconstruction in a number of ways (Arridge et

al., 2019). Supervised deep-learning approaches can be used to

learn a (non-linear) mapping from input reconstructions to a

reference reconstruction. However, such approaches generally

require large amounts of paired training data (input and

reference reconstructions). When insufficient training pairs

are available, various unsupervised approaches, such as the

Deep Image Prior method proposed by Ulyanov et al. (2018),

are more suitable. For a quantitative comparison of various

popular deep-learning-based reconstruction methods, we refer

the reader to Leuschner et al. (2021).

Apart from software solutions for image reconstruction,

which have been the focus of this paper, improving reprodu-

cibility throughout the synchrotron pipeline requires hard-

ware adjustments to the blocks in Fig 1. Scanning the same

sample twice under the same experimental conditions leads to

small fluctuations in the data due to stochastic noise and drifts
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Figure 10
Reconstructions of data corrupted with zingers showing an example where the Shepp–Logan filter
reconstruction and corresponding segmentation are better than those using an implementation-adapted
filter or an iterative method (SIRT). (Top row) Reconstructions of data from slice 128 (N� = 512, no
noise) corrupted with zingers. Zingers are more prominent in the reconstruction using an
implementation-adapted filter and in the SIRT reconstruction (after 800 iterations). (Bottom row)
Segmentations using Otsu’s method of all three reconstructions. The Otsu threshold, F1 score and
Jaccard index for each image is given below.



during the scanning process. In addition, beam-sensitive

samples might deform due to irradiation. Such changes lead

to differences in reconstructions that are similar to the

differences due to software implementations, albeit less

structured than those shown in Fig. 2. To improve hardware

reproducibility, controlled phantom experiments might be

performed to address differences in data acquisition. Finally,

software and hardware solutions can be effectively linked by

using approaches like reinforcement learning for experimental

design and control (Recht, 2019; Kain et al., 2020). Such

creative solutions might provide an efficient way for

synchrotron users to perform reproducible experiments

in the future.

7. Conclusion

In this paper, we proposed a filter optimization method to

improve reproducibility of tomographic reconstructions at

synchrotrons. These implementation-adapted filters can be

computed for any black-box software implementation by

using only evaluations of the corresponding reconstruction

routine. We numerically demonstrated the properties of and

use cases for such filters. In both real and simulated data, our

implementation-adapted filters reduced the standard devia-

tion between reconstructions from various software imple-

mentations of reconstruction algorithms. The reduction in

standard deviation was especially evident when the data were

noisy or sparsely sampled.

Our filter optimization technique can be used to reduce the

effect of differences in discretization and interpolation in

commonly used software packages and is a key building block

towards improving reproducibility throughout the synchro-

tron pipeline. We make available the open-source Python code

for our method, allowing synchrotron users to obtain recon-

structions that are more comparable and reproducible.
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