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A correction to an equation in the paper by Zhukovsky [(2020). J. Synchrotron

Rad. 27, 1648–1661] is made and, following from this, values of some Bessel

coefficients and some harmonic intensities from an elliptic undulator with the

third field harmonic.

The author would like to correct a misprint in formula (3)

of Zhukovsky (2020) and communicate the change of the

numerical values in equations (23), (24) and in Fig. 9.

The argument of the generalized Bessel function (3) in

Zhukovsky (2020) for the magnetic field

H ¼ H0

�
sinðk�zÞ þ d sin pk�zð Þ; d1 sinðhk�zÞ þ d2 cosðlk�zÞ; 0

�
;

k� ¼ 2�=�u;x; d; d1; d2 2 real; h; l; p 2 integers; ð1Þ

was erroneously written in equation (3) of Zhukovsky (2020)

as a cosine instead of an exponential; formula (3) should

correctly read as follows,

Jm
n �ið Þ ¼

Z2�

0

d�

2�
exp

�
i
n

n�þ �1 sinðh�Þ þ �2 cos l�ð Þ

þ �3 sin �þ �4 sin 2�ð Þ þ �5 sin 2h�ð Þ

þ �6 sinð2l�Þ þ �7 cos½ðl þ hÞ��

þ �8 cos½ðl � hÞ�� þ �0 sinðp�Þ

þ �9 sin½ðpþ 1Þ�� þ �10 sin½ðp� 1Þ��

þ �11 sin 2p�ð Þ

o�
: ð3Þ

The undulator radiation (UR) harmonic powers in the undu-

lator with N = 30 periods, k = 2.216 and period �u = 2.3 cm, and

the beam with energy spread �e = 0.1%, are shown here in the

revised versions of Figures 9(a) and 9(b), which replace the

respective figures in the original paper. The ratio between the

harmonic intensity of the undulator and the magnetic field

(21) [see Zhukovsky (2020)] has somewhat changed, but, for

the studied undulator field (22) in Zhukovsky (2020),

H ¼ H0

�
sin k�zð Þ; 0:25 cos k�zð Þ þ sin 3k�zð Þ; 0

�
;

the third UR harmonic remains strong in both polarizations

and the change of the Bessel coefficients for the third

harmonic, fn= 3, is minor as compared with their values in

Zhukovsky (2020). New values, reported below, substitute

those in formulae (23) and (24) of Zhukovsky (2020),
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fx; n¼ 1...9 ¼
�

0:290; 0:007; 0:256; 0:010; 0:151;

0:009; 0:101; 0:009; 0:081
�
; ð23Þ

fy; n¼ 1...9 ¼
�

0:830; 0:056; 0:313; 0:042; 0:143;

0:033; 0:102; 0:033; 0:075
�
: ð24Þ

The changes of the numerical values in (26), (27), (29), (30)

are minor and we omit them for brevity. The harmonic

intensities of the UR spectrum, obtained with formula (3)

for the undulator in Zhukovsky (2020), are now revised and

reported in the revised Figures 9(a) and 9(b) for x- and y-

polarizations, respectively. We consider [see also Zhukovsky

(2020)] an undulator with period �u = 2.3 cm, k = 2.216,

magnetic field given by (22), electron beam relativistic para-

meter � = 12.72, emittances "x = 1.5 mm mrad and "y =

0.35 mm mrad, Twiss parameters �x = 43.66 cm and �y =

28.75 cm, beam sections �x = 809 mm and �y = 317 mm,

divergences 	x = 4.5 mrad and 	y = 1.6 mrad and electron

energy spread �e = 0.1%. The corrections have not affected

other calculations, results and conclusions in Zhukovsky

(2020). The author apologizes for the inconvenience.
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Figure 9
(a) x-polarization and (b) y-polarization of the on-axis UR harmonics
intensity (in relative units) for the elliptic undulator with period �u =
2.3 cm, k = 2.21622, h = 3, d1 = 1, d2 = +0.25, l = 1, �e = 10�3, N = 30.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5075&bbid=BB1


research papers

1648 https://doi.org/10.1107/S1600577520012230 J. Synchrotron Rad. (2020). 27, 1648–1661

Received 28 May 2020

Accepted 3 September 2020

Edited by M. Yamamoto, RIKEN SPring-8

Center, Japan

Keywords: undulator; field harmonics;

radiation harmonics; free-electron laser.

Theoretical spectral analysis of FEL radiation
from multi-harmonic undulators

K. Zhukovsky*

Department of Theoretical Physics, Faculty of Physics, M. V. Lomonosov Moscow State University,

Moscow 119991, Russian Federation. *Correspondence e-mail: zhukovsk@physics.msu.ru

A theoretical study of the spontaneous and stimulated undulator radiation (UR)

from electrons in undulators with multiple periods in both transversal directions

is presented. Exact expressions are derived for the UR intensities in terms of the

generalized Bessel and Airy functions, accounting for undulator field harmonics

of arbitrary strength and for real parameters of the beams and installations.

Theoretical results are verified with numerical and experimental data for

SWISS-XFEL, PAL-XFEL, LEUTL, LCLS etc. The spectrum, UR line shape

and width, and the harmonic evolution along the undulators are analyzed and

compared with the available data for these experiments. Moreover, the effect of

the field harmonics is elucidated. It is demonstrated that the third field harmonic

can cause distinct odd UR harmonics. The asymmetric undulator field

configuration is identified, which allows intense radiation of these harmonics.

The power evolution in a free-electron laser (FEL) with such an undulator is

studied by means of an analytical FEL model. The latter is enhanced by a true

description of the gradual power saturation of harmonics. A FEL with elliptic

undulator and electron–photon phase-shifting is proposed and modeled. It

is shown that the resulting harmonic power from the phase-shifted elliptic

undulator can be significantly higher than from a planar undulator with the same

phase-shifting.

1. Introduction

In the 21st century, theoretical studies of undulator radiation

(UR) remain important, especially regarding free-electron

lasers (FELs) (McNeil & Thompson, 2010; Pellegrini et al.,

2016; Huang & Kim, 2007; Saldin et al., 2000; Bonifacio et al.,

1984; Schmüser et al., 2014; Pellegrini, 2016; Margaritondo

& Ribic, 2011; Margaritondo, 2017). Notwithstanding fast

development of numerical methods and computational facil-

ities during the last decades, analytical studies preserve their

value because they usually allow deeper insight into the

underlying physics. UR theory involves generalized forms of

Bessel and Airy functions, which accurately describe the

radiation from relativistic charges in multi-periodic undulator

magnetic fields. Analytical expressions for the UR in planar

and spiral undulators involve relatively simple Bessel-type

special functions; the exact description of the radiation in

complex magnetic fields, consisting of multi-periodic and

non-periodic components, remains a complicated mathema-

tical problem. Analytical results for the UR in planar multi-

component magnetic fields have been obtained by various

authors (see, for example, Zhukovsky, 2015a,b,c, 2016a,b,

2017, 2018a,b, 2019a; Dattoli et al., 2003, 2006; Zhukovsky &

Potapov, 2017; Jia, 2011; Jeevakhan & Mishra, 2011; Mishra

et al., 2009; Zhukovsky & Kalitenko, 2019a); they involve

complicated mathematical generalizations of the Bessel
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functions and some conclusions, even for a two-frequency

planar undulator, contradicting each other in various cases.

Early works (Zhukovsky, 2015a, 2016a, 2018a; Dattoli et al.,

2003, 2006; Zhukovsky & Potapov, 2017; Jia, 2011) contained

misprinted expressions and conclusions for the Bessel coeffi-

cients of planar bi-harmonic undulators, that were corrected

later (Zhukovsky & Kalitenko, 2019a; Zhukovsky, 2019a,b). In

the following we develop exact analytical expressions for the

spontaneous and the stimulated undulator radiation inten-

sities in the general case of a two-dimensional multi-periodic

undulator magnetic field, which accounts for off-axis deviation

and for the harmonic components in both spatial dimensions,

present in real installations (see, for example, Ratner et al.,

2011; Lee et al., 2015). Their numerical treatment through the

solution of a system of equations for the fields and charges is

very complicated; as far as we know, there are no user-ready

computer programs for FEL radiation from an arbitrary two-

dimensional periodic magnetic field with harmonics. Proper

software is usually written ad hoc for the given specific field;

its development is time- and cost-consuming and it requires

proper computational environment and trained personnel. In

the following we present analytical formulae of the general-

ized Bessel and Airy functions, which, in contrast to the

numerical treatment, yields immediate results for the UR

spectrum, and spontaneous and stimulated radiation inten-

sities in the two-dimensional multi-periodic magnetic field of

arbitrary intensity. In the limiting cases of the helical and

planar undulators with field harmonics, they reduce to simpler

expressions, which can be verified numerically and by

comparison with FEL experiments (see Zhukovsky & Kali-

tenko, 2019a; Zhukovsky, 2019a). Our analytical results for

the spontaneous UR intensities in multi-harmonic undulators

were verified upon comparison with the reported experi-

mental data by Lee et al. (2015) and, in some limiting cases,

with the numerical results of the SPECTRA program (Tanaka,

2014; Tanaka & Kitamura, 2001; Kalitenko & Zhukovskii,

2020). We identify the field of the undulator with harmonics,

advantageous for generating third and fifth FEL harmonics.

We show that this potentially allows obtaining X-ray radiation

from relatively low energy beams with the relativistic factor

� ’ 103 in relatively compact installations of length �30 m.

Modeling of the radiation from single-pass FELs is performed

with the phenomenological model (Zhukovsky & Kalitenko,

2019b,c; Zhukovsky, 2019c), which is based on the semi-

analytical description of the FEL power evolution (Dattoli &

Ottaviani, 2002; Dattoli et al., 2004), and includes multi-stage

saturation (Zhukovsky, 2019d) and power oscillations, verified

by Zhukovsky (2020a,b,c) with a number of FEL experiments

with reported harmonics. With its help, we obtain an analytical

description of the FEL harmonic power along the whole

undulator length.

2. Radiation from multi-harmonic undulators

Consider the following general configuration of the multi-

periodic magnetic field in the undulator with multiple periods

and main period �u,x,

H ¼ H0

�
sinðk�zÞ þ d sin pk�zð Þ; d1 sinðhk�zÞ þ d2 cosðlk�zÞ; 0

�
;

k� ¼ 2�=�u;x; d; d1; d2 2 real; h; l; p 2 integer: ð1Þ

In the following we denote �u; x � �u for conciseness. We

compute the radiation integral

d2I

d! d�
¼

e2

4�2c
!

Z1
�1

dt
�
n� n� b½ �

�
exp

�
i! t � nr=cð Þ

�������
������

2

ð2Þ

for an electron in the relativistic limit, expanding the expo-

nential and the integrand in the series of the small parameter

1=�� 1; n is the unit-vector from the electron to the observer,

r is the electron radius-vector, b is its velocity, and c is the

speed of light. The calculations of the radiation integral follow

the general lines of Dattoli et al. (2006) and Zhukovsky

(2015a,b,c, 2016a): the non-oscillating part of the exponential

in the radiation integral yields the resonances for the UR and

the periodic functions in the exponential of the integral

naturally form the generalized Bessel functions. The account

for axial asymmetry comes through the off-axis angle � and the

azimuthal angle ’, which are involved in the arguments of the

following generalized Bessel function,

Jm
n �ið Þ ¼

1

2�

Z2�
0

d� cos
n

n�þ �1 sinðh�Þ þ �2 cos l�ð Þ ð3Þ

þ �3 sin �þ �4 sin 2�ð Þ þ �5 sin 2h�ð Þ þ �6 sinð2l�Þ

þ �7 cos½ðl þ hÞ�� þ �8 cos½ðl � hÞ�� þ �0 sinðp�Þ

þ �9 sin½ðpþ 1Þ�� þ �10 sin½ðp� 1Þ�� þ �11 sin 2p�ð Þ

o
;

where the index m of the Bessel function Jm
n ð�iÞ is determined

by

�4 ¼
1

4

mk2

1þ ðk2=2Þ 1þ d=pð Þ
2
þ d1=hð Þ

2
þ d2=lð Þ

2
� �

þ �2�2
;

ð4Þ

where k = H0 �u;x e=2�mec2 is the main undulator parameter,

� is the off-axis angle, and azimuthal angle ’ is involved in the

following arguments,

�0 ¼
8d

kp2
�� sin ’ �4; �1 ¼

8d1

kh2
�� cos ’ �4;

�2 ¼
8d2

kl2
�� cos ’ �4; �3 ¼

8

k
�� sin ’ �4;

ð5Þ

�5 ¼
d2

1

h3
�4; �6 ¼ �

d2
2

l3
�4; �11 ¼

d2

p3
�4;

�7 ¼
4d1d2

hlðl þ hÞ
�4; �8 ¼

4d1d2

hlðl � hÞ
�4

ð6Þ

�9 ¼
4d

pðpþ 1Þ
�4; �10 ¼

4d

pðp� 1Þ
�4: ð7Þ

Formulae (3)–(7) are good for the arbitrary strengths of the

field components in (1). In real devices, field harmonic

amplitudes rarely reach �1/4 of the main field; then proper

arguments (5)–(7) simplify and so does the generalized Bessel
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function (3). For example, for a planar undulator with field

harmonics, d/p, d1 /h, d2 /l � 1 in (1), and the ratios d2
1=h3,

d2
2=l 3, d2=p3 etc. in (5)–(7) are small, so that the main contri-

bution in J m
n ð�iÞ (3) comes from the terms �3,4. Then the Bessel

function (3) can be approximated by the following Bessel

function of just two arguments, usual in UR studies,

J m
n

��
planar

�ið Þ ffi
~JJn �; �ð Þ ¼

1

2�

Z2�
0

cos n�þ � sin �þ � sin 2�ð Þ d�; ð8Þ

where � = �3, � = �4. For a helical undulator, d2 = l = 1 and

proper simplifications follow accordingly. The difference

between the results (8) and (3) for odd harmonics is <5%; the

difference can be higher for even UR harmonics, but the latter

are nevertheless weak.

For the undulator field (21) with multiple periods l, h, p, the

resonance wavelengths of the UR are lower due to the terms

(d/p)2 + (d1/h)2 + (d2/l)2 in the following expression,

�n ¼
�u

2n�2

(
1þ

k2

2

"
1þ

d

p

� �2

þ
d1

h

� �2

þ
d2

l

� �2
#
þ ��ð Þ2

)
:

ð9Þ

The intensity of the UR from an electron in the field (1) with

harmonics reads as follows,

d2I

d! d�
¼ ð10Þ

e2N2�2k2
P1

n¼�1

n2 sinc2 	n=2ð Þ Tn;x

�� ��2 þ Tn;y

�� ��2� �
c
n

1þ ðk2=2Þ
h

1þ d=pð Þ
2
þ d1=hð Þ

2
þ d2=lð Þ

2
i
þ ��ð Þ2

o2
;

where N is the number of main undulator periods, 	n =

2�nN½ð!=!nÞ � 1� is the detuning parameter, describing the

deviation from the resonances !n = 2�c=�n, and Tn;x,y are the

amplitudes for the x- and y-polarizations of the radiation,

Tn;x ¼
2

k
�� cos ’ J n

n þ
d1

h
J n

nþh þ J n
n�h

	 

þ i

d2

l
J n

nþl � J n
n�l

	 

;

ð11Þ

Tn;y ¼
2

k
�� sin ’ J n

n þ J n
nþ1 þ J n

n�1

	 

þ

d

p
J n

nþp þ J n
n�p

	 

; ð12Þ

where J m
n � J m

n ½�iðmÞ� are the generalized Bessel functions (3).

Their simplified forms, such as (8) for a planar undulator, can

be used especially for the odd UR harmonics, if the field

harmonic are weak. Despite the apparent complexity of (3)–

(12), these formulae allow easy and fast computation of the

spontaneous UR intensity and relevant Bessel factors with the

help of any common software, such as Mathematica, Matlab,

Scientific Workplace, or even a scientific calculator. Otherwise,

the numerical study of the UR in the two-dimensional

magnetic field with harmonics requires even more efforts and

ad hoc development of proper software. Formulae (3)–(12)

and their limiting cases can be coupled with the phenomen-

ological FEL model (see Zhukovsky & Kalitenko, 2019b,c;

Zhukovsky, 2019c,d, 2020a,b,c), which is based on the

approach of Dattoli & Ottaviani (2002) and Dattoli et al.

(2004), to evaluate the single-pass FEL performance, as we

will show in the following sections.

3. The effects of the electron energy spread, angular
deviation and off-axis position on the UR

The electron energy spread, 
e, is one of the major sources of

losses in the UR. It can be accounted for analytically with the

convolution

Z1
�1

d2I 	n þ 4�nN"ð Þ

d! d�
ffiffiffiffiffiffi
2�
p


e

exp �
"2

2
2
e

� �
d":

Relativistic beams in the modern FEL installations have very

low energy spread, usually 
e’ 10�3 to 10�4. Nevertheless, the

variation within this range changes significantly the harmonic

radiation intensities and the FEL saturation length. For

example, the radiation of high harmonics in the LCLS FEL

(Emma et al., 2010; Ratner et al., 2011; Emma, 2009) was

observed from a beam with energy spread 
e ’ 10�4; at PAL-

XFEL (Kang et al., 2017) with similar radiation wavelengths

�0.15 nm and �1.5 nm the harmonics were not registered.

One of many reasons for that, and arguably the main one, was

the significantly higher energy spread in the POHANG FEL,


e ’ 1.8 � 10�4 to 5 � 10�4 (Kang et al., 2017), than that in

the LCLS FEL; the weak condition for the Pierce parameter,

� > 2
e, was hardly fulfilled for the fundamental tone; for high

harmonics the inequality was not fulfilled: � < 
e. Another

installation, SWISS FEL (Milne et al., 2017), has very low

absolute energy spread, 350 keV, which translates into 
e =

0.006% for the energy E = 5.8 GeV. The harmonic power

evolution is shown in Fig. 1(a); for the third harmonic we

obtain 1% content and for the second harmonic 0.5% of the

fundamental [thin dotted lines in the saturation region in

Fig. 1(a)]. A higher spread, 
e = 0.018%, like that in PAL-

XFEL, effects the harmonic power noticeably as shown in

Fig. 1(b).

Further increase of the energy spread increases the gain

length and the saturation length, and decreases the funda-

mental power; high harmonics become very weak. The study

was performed analytically, using the phenomenological

FEL model (Zhukovsky, 2019d, 2020a,b,c) with enhanced

description of the harmonic behaviors around saturation.

In real undulators, there can be some non-periodic magnetic

constituents due to magnetizing errors in undulators and due

to the external effects, for example the magnetic field of the

Earth. The respective field integrals are carefully evaluated

and the undesired fields are compensated or screened out by

magnetic shimming. We provide an analytical description of

the possible effect of such non-periodic fields Hd, which bend

the electron trajectory in the effective angle �H . Omitting the

details, we note that evaluation of the radiation integral for a

charge in a periodic magnetic field with a constant component

yields additional non-periodic terms in the exponential of the
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integral. Collected together, they form the following gener-

alized Airy-type function,

Sð	n; �; Þ �

Z1

0

d� exp i �	n þ �
2 ð2�NÞ

2��

1þ k2=2
nk � cos�ð

�

�� sin�Þ þ �3 2�Nnð��HÞ
2

1þ k2=2

��
; ð13Þ

where 	n is the detuning parameter,

��H ¼
2�ffiffiffi

3
p

Hd

H0

kN ¼
107:1

ffiffiffi
3
p

Hd ½G�

2�Lu ½m�

is the effective bending angle, induced by the non-periodic

magnetic components Hd,x = �H0, Hd,y = �H0. This induced

angle ��H is accumulated along the undulator length Lu = �uN

and it modifies the angular part of the expressions for the UR

resonances and the UR intensity: �2 ! �2 = �2 + �2
H �ffiffiffi

3
p

�H�ð� sin ’� � cos ’ÞðH0=HdÞ. The shape of the spectral

line is described by the generalized function S and its deri-

vative @S=@	n,

Tn

�� ��2sinc2 	n=2ð Þ ! Tn S
�� ��2 þ �TTn @S=@	n

�� ��2; ð14Þ

where the term �TTn arises from the non-periodic magnetic

component Hd,

�TTn ¼ 2
ffiffiffi
3
p

��H J n
n =k: ð15Þ

Note that the constant field Hd gives rise to the even harmo-

nics of the spectrum on the axis, which is shown by �TTn (15).

The properties of the generalized Airy functions will be

explored in detail elsewhere; we note here that max½S� = 1,

max½@S=@	n� = 0.5 and S reduces to the common sinc function

for  = � = 0: Sð	n; 0; 0Þ = expði	n =2Þ sincð	n=2Þ. This, taking

into account the coefficient 2 in (15), yields the contribution

similar to that of the first terms in (11), (12) upon the substi-

tution �! �H in them. These angular contributions, however,

come from different angles. The possible effect of the constant

field of the Earth on the radiation on the LCLS FEL was

mentioned by Emma et al. (2010). It was screened out to avoid

the distortion of the UR lines, and rigorous controls after each

undulator section were performed. We reconstruct theoreti-

cally the possible distortions with regard to the spontaneous

UR as shown in Figs. 2 and 3. For the FEL radiation, this

translates through the Pierce parameter into a stronger second

FEL harmonic and slightly weaker third and fifth harmonics of

the spectrum.

Note that the effect of the angles �H and � can be mutually

opposite, and they can compensate each other; this means that

the resonance condition, corresponding to zeroes of the phase

of the exponential in (13), can be satisfied for 	n ’ �(� + ).

For example, for the third UR harmonic of the LCLS undu-

lator (Emma et al., 2010) the infrared shift of the radiation

in the angle �� = 0.1 can be best compensated by the magnetic

field Hd ’ 1 G (see Fig. 2). In a long undulator, such as LCLS,

where L = 3.4 m, the angle ��H ’ 0.1, which causes noticeable

distortion, can be induced by a relatively weak field, as

compared with the undulator field amplitude �1 T. Indeed,

Hd ’ 1 G causes ��H ’ 0.1 in the LCLS undulator and this

displaces the electron transversally in �10–20 mm on one gain
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Figure 2
Spectral line of the third (a) and of the second (b) FEL harmonics of the
LCLS undulator with period �u = 3 cm, k = 3.5, N = 113, 
e = 0.0003, � =
8400, off-the-axis angle �� = 0.1. The spectral lines are shown for the
detuning parameter 	n and the field Hd .

Figure 1
Harmonic power evolution at SWISS XFEL; (a) the energy spread
350 keV for E = 5.8 GeV represents the real installation; (b) the assumed
spread is three times higher: 
e = 0.018%. Harmonics: n = 1, red solid;
n = 2, orange dot-dashed; n = 3, green dashed; n = 5, blue dotted line.



length (Lg ’ 1.5–3.5 m dependent on the experiment), by far

exceeding the target alignment, 5 mm, of the beam in the

undulators (Emma et al., 2010). This shows why in real devices

the non-periodic fields are avoided and carefully compen-

sated.

For the second UR harmonic we show the contributions of

the off-axis angle �� = 0.1 and of the non-periodic field Hd

in Figs. 3(a) and 3(b), respectively. The second harmonic was

registered with noticeable power and reported by Emma

(2009). The comprehensive result for the second harmonic is

demonstrated in Fig. 2(b).

The off-axis position y0 of the electron in the beam, whose

transversal size is 
x,y, also causes another well known effect –

betatron oscillations. They cause the split of the spectral lines

and give rise to even-harmonics radiation on the undulator

axis. This topic has been recently readdressed by Prakash et

al. (2016) with regard to the bi-harmonic undulator. For the

undulator with multi-harmonic field (1) we obtain similar

results, which reduce in their limiting cases to those of Prakash

et al. (2016). The split of the UR line occurs in the harmonics,

distant by the betatron frequency,

!� ¼

ffiffiffi
2
p
�ck�

�nn�
ð16Þ

¼
2
ffiffiffi
2
p
�c�k�

�u 1þ k2=2ð Þ 1þ d=pð Þ
2
þ d1=hð Þ

2
þ d2=lð Þ

2
� �

þ ��ð Þ
2

� �
where � = 1 for a common planar undulator and � =

ð1þ d2 þ d2
1 þ d2

2Þ
1=2 for the field (1). For ultra-relativistic

electrons, � 
 1, we obtain

!� � !n ffi
4�cn�2

1þ k2=2ð Þ½ � �u

;

!�
!n

ffi
k�ffiffiffi
2
p

n�
/

1

�
:

In X-ray FELs the relativistic factor of the beams is very high,

� ’ 103 to 104, and the spectral line split is very small: �1/�.

This split of radiation lines in p harmonics is described by

the series of the Bessel functions in (11) and (12), factorized

by ~JJpð�; �Þ (8),

Tn !
X

p

Tn
~JJp ��;��ð Þ; ð17Þ

where

� ¼
2��y0

n�n

¼
4��y0�

2

�u 1þ k2=2ð Þ½ �
;

� ¼
�2y2

0k�

2n�
ffiffiffi
2
p
�u�n

¼
�2�y2

0k�ffiffiffi
2
p
�2

u 1þ k2=2ð Þ½ �
:

ð18Þ

The split regards also the even harmonics due to the initial off-

axis position of electrons in the beam. Their respective addi-

tional term in (10) reads as follows,

~TnTn ffi
ffiffiffi
2
p
�d

y0

�u

X
p

J n
n ð�iÞ

~JJpþ1ð��;��Þ � ~JJp�1ð��;��Þ
� �

;

ð19Þ

where ~JJp �; �ð Þ is defined by (8) and depends on �, � (18), and

J n
n ð�iÞ is defined by (3) for the undulator field (1); the result in

the limiting case of the bi-harmonic undulator reduces to that

of Prakash et al. (2016). The contribution of the betatron

oscillations to the even harmonic generation is rather small. In

practical terms ~TTn¼2;4; ’ 0.01; this is usually comparable with

the contribution of the divergence angle of the beam in

(11), (12). In comparison, other terms in (11), (12) are larger:

Tn=1 ’ 0.75, Tn=3 ’ 0.3, Tn=5 ’ 0.15, Tn=2 ’ �TTn¼2 ’ 0.05–0.1.

While the even harmonics due to the betatron oscillations

are weak, another effect of the beam size is appreciable.

Indeed, the split of a radiation line in many harmonics may

occur even in the installations with narrow electron beams and

it can be measured. Employing the above-developed form-

alism of special functions, we studied analytically the spectrum

lines of several installations. For example, for the LCLS FEL

(Emma et al., 2010), where the beam size is 
x,y ’ 20–30 mm,

the fundamental line is split into a few harmonics: in soft

X-rays the fundamental at � = 1.5 nm is split into �5

harmonics [see Fig. 4(a)]; in hard X-rays, the fundamental at

� = 0.15 nm is split into �10 harmonics as shown in Fig. 4(b).

They yield the theoretical spectral density ��/� ’ 0.1%, in

agreement with the design value of Emma et al. (2010). In

comparison, we present in Fig. 5 the spectral lines of the

PAL-XFEL (Kang et al., 2017), which has the same radiation

wavelengths as LCLS, similar undulators, but poorer quality

beam with higher energy spread for hard X-rays, and some

larger emittances and wider beams.
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Figure 3
Contributions of the off-axis angle �� = 0.1 (a) and of the non-periodic
field Hd (b) to the spectral line of the second UR harmonic of the LCLS
undulator, �u = 3 cm, k = 3.5, N = 113, 
e = 0.0003, � = 8400 for the
detuning parameter 	n and the field strength Hd.



The resulting theoretical line split for PAL-XFEL is more

significant than that for LCLS, as follows from comparison of

Figs. 5 and 4. However, due to a smaller value of the undulator

parameter k = 1.87 in PAL-XFEL versus k = 3.5 in LCLS, the

betatron harmonics of the fundamental line are roughly twice

as close to each other, !�=!1 = k=ð�
ffiffiffi
2
p
Þ, for the PAL-XFEL

than for the LCLS line, and the estimate of the spectral width

is similar, ��/� ’ 0.1%. The split of the fundamental spec-

trum line at SWISS XFEL (Milne et al., 2017) at � = 0.1 nm,

where the beam has the same transversal size 
x,y ’ 25 mm, is

shown in Fig. 6(a).

The split is noticeable, but well contained. The computa-

tions of the theoretical spectral density give ��/�’ 0.1%; this

is in the reported range 0.05–0.15% (Abela et al., 2017). The

spectral line of the LEUTL FEL (Milton et al., 2001) in the

UV-A range at �1 = 385 nm is generated by a wide beam with

transversal size 
x,y ’ 0.25 mm. One would expect significant

betatron oscillations and their influence, including strong even

harmonics and line split. However, the second harmonic

registered in this experiment comes mostly due to the large

angle of photon–electron interactions in the wide electron

beam (Zhukovsky, 2020a,c). The contribution of the betatron

oscillations and the off-axis position of the electrons to the

even UR harmonics is low: proper Bessel coefficients of the

angular part, T2,4, exceed the betatron terms ~TT2;4 by an order

of magnitude. The fundamental line of the LEUTL FEL

consists of a few betatron harmonics [see Fig. 6(b)].

Accounting for them, we obtain the width �� ’ 3.5 nm in

agreement with the data of Milton et al. (2001) in the expo-

nential power growth. Close to the saturation the theoretical

relative bandwidth is approximately �[�/(Ls /�u)]1/2
’ 0.2% ’

�, and the coherence time is �c’ �
2/c��’ 0.5 ps. Then for the

electron bunch of duration �e ’ 0.65 ps, one coherence region

fits and one mode is radiated (Milton et al., 2001).

4. Effect of the magnetic field harmonics on the UR

The limiting case of the field (1), where d1 = d2 = 0, describes

the planar undulator with the field harmonic H = H0½sinðk�zÞ +

d sinðhk�zÞ�. It has been analytically and numerically studied

in many works (for example Zhukovsky & Kalitenko, 2019a,c;
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Figure 4
Split of the fundamental radiation line in betatron harmonics p for LCLS
FEL at � = 1.5 nm (a) and at � = 0.15 nm (b) as a function of the distance
from the axis �.

Figure 5
Split of the fundamental radiation line in betatron harmonics p for PAL
XFEL at � = 1.5 nm (a) and at � = 0.144 nm (b) as a function of the
distance from the axis �.



Zhukovsky, 2019a,c,e; Prakash et al., 2016). The radiation

wavelengths

�n ffi
�u

2n�2
1þ

k2

2
1þ

d

h

� �2
" #

þ ��ð Þ2
( )

and intensities follow straight from formulae (9) and (10),

which are more general. A comparison of the normalized UR

intensities taking into account the third field harmonic with

the numerical results of SPECTRA software (Tanaka, 2014;

Tanaka & Kitamura, 2001) showed very good agreement

for all harmonics (Kalitenko & Zhukovskii, 2020). In the

following we consider various undulators and installations

with electron energies over a wide range and we compare our

theoretical results with the available experimental data for

real devices.

We demonstrate the effect of the strong third field harmonic

with amplitude dH0 on the radiation of a planar undulator

[d1 = d2 = 0 in (1)], where H0 is the undulator main field

intensity; the results are shown in Fig. 7(a) for d = �0.4 and

in Fig. 7(b) for d = +0.4. The electron beam characteristics are

of the SPARC installation (Giannessi et al., 2011); we assume

an electron energy Ee = 152 MeV, energy spread 
e = 10�3,

relativistic factor � = 297, electron beam power PE = 8 GW,

beam current I0 = 53 A, current density J = 4.35 � 108 A m�2,

full beam section � = 1.22 � 10�7 m2, normalized emittance

"n = 2.7 mm mrad, Twiss parameter � = 2.2 m, undulator

parameter k = 2.133, and undulator period �u = 2.8 cm. The

computations were made for N = 150 periods. Here and in the

following the harmonics in the plots are color-coded: n = 1,

red; n = 2, orange; n = 3, green; n = 4, yellow; n = 5, blue lines

and bars.

For d =�0.4 the fundamental tone, n = 1, and the harmonics

with n = 7, 9, 11 etc. are stronger, while the third harmonic

is weaker as compared with their intensities for d = +0.4 [see

Fig. 7(a)]. For d = +0.4 [see Fig. 7(b)] we see some stronger

third UR harmonic and weaker first, seventh, ninth and

eleventh harmonics; the fifth UR harmonics are practically not

affected; for a detailed study of the effect of the third field

harmonic on the UR, see Zhukovsky (2019a,c,e).

Analytical expressions for the particular case of the UR

from the helical undulator, whose magnetic field contains the

following anti-symmetric field harmonics,

H ¼ H0 sinðk�zÞ � d sinðhk�zÞ; cosðk�zÞ þ d cosðhk�zÞ; 0
� �

;

h 2 integers; ð20Þ

were presented by Zhukovsky (2019a,c). We calculated the

UR from an electron in the field (20) with the third field

harmonic accounting for the beam asymmetry and finite size;

for example, the results for h = 3, d = 0.0825 and d = 0.3 are

shown in Fig. 8.

The presence of the third field harmonic with the field (20)

was reported by Lee et al. (2015), where the helical undulator

with period �u = 2.3 cm, N = 30 and k = 2.21622 was described.
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Figure 7
UR harmonic intensities in the planar undulator with k = 2.133, h = 3,

e = 10�3 in relative units versus the harmonic number n [(a) d = �0.4;
(b) d = +0.4].

Figure 6
Split of the fundamental radiation line in betatron harmonics p at SWISS
FEL at � = 0.1 nm (a) and at LEUTL FEL at � = 385 nm (b) as a function
of the distance from the axis �.



We assume the data of this device (Lee et al., 2015) and the

reported field (20) with amplitude H0 = 9.7 kG, d = 0.0825, h =

3, dH0 = 0.8 kG, relativistic factor � = 12.72, electron beam

energy E = 6.5 MeV, emittances "x = 1.5 mm mrad and "y =

0.35 mm mrad, beta functions �x = 43.66 cm and �y = 28.75 cm,

beam sections 
x = 809 mm and 
y = 317 mm, and divergences

�x = 4.5 mrad and �y = 1.6 mrad (see Lee et al., 2015). With the

above data, we calculate the radiated on-axis harmonic UR

intensity separately for x- and y-polarizations accounting for

the axial asymmetry of the beam, using the generalized Bessel

functions, and obtain the results shown in Fig. 8(a). In the ideal

helical undulator with the ideal beam only the fundamental

tone (red bar) would be radiated on the axis. In reality more

UR harmonics appear. The second harmonic (short orange

bar) is �1.5% of the fundamental (see Fig. 8); the power of

the fifth UR harmonic is �2% of the fundamental for d =

0.0825 and it is much stronger than the third UR harmonic in

agreement with experiment (Lee et al., 2015). Stronger even

harmonics in y-polarization than in x-polarization are due to

higher divergence �x than �y; it also slightly decreases the

intensity of odd harmonics in y-polarization. Thus, the asym-

metry of the electron beam, accounted for analytically, causes

some difference in the harmonic content for x- and y-polar-

izations, shown in Fig. 8. The third field harmonic gives rise to

the fifth UR harmonic (blue bar) in the radiation spectrum.

The third UR harmonic is suppressed and the fifth is enhanced

due to the anti-symmetry of the third field harmonic d in (20);

d has opposite signs in the x- and y-polarizations. The electron

energy spread expectably broadens the UR lines and

decreases the UR intensity; it can be demonstrated graphi-

cally, similarly to that given by Zhukovsky (2015a,b,c, 2016a,b,

2017, 2018b), Zhukovsky & Potapov (2017), Jia (2011),

Jeevakhan & Mishra (2011) and Mishra et al. (2009); we omit

the plots for conciseness. Comparison of the plots in Figs. 8(a)

and 8(b) show that the stronger third field harmonic dH0 [see

(20)] of the main undulator magnetic field increases the

radiation of high UR harmonics, especially the fifth (blue lines

in Fig. 8): for d = 0.3 the fifth UR harmonic is �25% of the

fundamental for the low energy spread 
e = 1 � 10�4 [see

Fig. 8(b)]. Higher energy spread, 
e = 1 � 10�3, naturally

reduces the fifth UR harmonic to �8% of the fundamental,

and even higher spread, 
e > 1 � 10�3, is even more detri-

mental.

Modeling of the FEL with the elliptic undulator (20) with

anti-symmetric third field harmonics was performed by

Zhukovsky (2019a,c); we hoped for a rather strong fifth FEL

harmonic, but the results demonstrated that it was barely

noticeable on the background of the initial shot noise, while

the third harmonic was suppressed by the field configuration.

Therefore, the anti-symmetric field (20) does not represent

particular interest for FEL harmonic generation. Now we

consider the following asymmetric elliptic undulator magnetic

field,

H ¼ H0

�
sinðk�zÞ; d2 cosðlk�zÞ þ d1 sinðhk�zÞ; 0

�
;

l 6¼ h; l; h 2 integers; ð21Þ

with period �u; x� �u, k� = 2�=�u along the x-coordinate, �1
u;y =

�u=h and �2
u;y = �u=l along the y-coordinate; (21) can be

viewed as an elliptic undulator field with an additional peri-

odic field component in one plane. We assume multiple

periods and l 6¼ h to study the field harmonics effect in this

undulator. In the limiting cases, d1 = 0, d2 6¼ 0 and d1 6¼ 0, the

field (21) simplifies and describes simpler elliptic undulators

[see, for example, Zhukovsky (2019c)]; for d1 = 0, d2 = 1 and l =

1 we obtain common helical undulator with f1; x, y = 1, fn 6¼1 = 0,

where, ideally, only the fundamental tone is radiated on the

axis. For d1 = 1, d2 = 0 and h = 1, we obtain the planar

undulator with the parameter keff =
ffiffiffi
2
p

k and the polarization

turned 45�.

Let us analyze the UR in the field (21) and identify the best

values of d1, d2, h for high UR harmonic generation. Along the

x-axis the common sinusoidal field is present in (21) just like in

any planar undulator; along the y-axis we have the combina-

tion of periodic sin and cos magnetic fields with multiple

periods and arbitrary amplitudes. Since (21) is actually the

limiting case of (1) for d = 0, rigorous analytical calculations

for the UR in the field (21) unsurprisingly yield formulae

(3)–(12), where d = 0 must be assumed. In real devices the

normalized angle �� usually has the order of 10�2 and thus

the term (��)2 is small compared with unity and with k2. The

radiation of the undulators is mostly determined by the first

and the third field harmonics [see, for example, Alexeev &

Bessonov (1991)], so we study the effect of the third field

harmonic in the following. Let us consider h = 3, l = 1, d1 = 1,

d2 = 0.25, i.e. the magnetic field
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Figure 8
On-axis UR harmonics intensity (in relative units) from the elliptic anti-
symmetric undulator (20) for k = 2.21622, d = 0.0825 (a) and d = 0.3 (b);
the energy spread is 
e = 10�4.



H ¼ H0

�
sinðk�zÞ; 0:25 cosðk�zÞ þ sinð3k�zÞ; 0

�
; ð22Þ

which describes an asymmetric undulator with the third field

harmonic along the y-axis. The resulting UR possesses rather

interesting features, such as the intense radiation of high

harmonics. To be able to compare the radiation in the field

(22) with that of the helical undulator with field harmonics

(see Fig. 8), we assume the same low-energy beam of the test

installation (Lee et al., 2015) with relativistic factor � = 12.72

(see the details in Section 2), undulator parameter k = 2.21622

and period �u = 0.023 m in (22), as we did for the undulator

field (20). The spectrum of the UR from an electron in the

field (22), however, is very different from that in the field (20).

We obtain the following values for the Bessel coefficients

fn,x, fn, y,

fx;n¼1;...;9 ¼
�

0:292; 0:023; 0:280; 0:011; 0:217; 0:010;

0:144; 0:011; 0:096
�
; ð23Þ

fy;n¼1;...;9 ¼
�

0:795; 0:003; 0:388; 0:003; 0:191; 0:004;

0:104; 0:004; 0:068
�
: ð24Þ

Note in (23) that the Bessel coefficients for the fundamental

harmonic in x-polarization and for the third harmonic are

almost the same, fx;1 ’ 0.29, fx;3 ’ 0.28, and the Bessel coef-

ficient for the fifth harmonic, fx;5’ 0.22, is comparable with fx;1

and fx;3. The intensities of the UR harmonics in x-polarization

[top plot (a)] and y-polarization [bottom plot (b)] accounting

for the energy spread 
e = 10�4 are shown in Fig. 9. The

spectrum in Fig. 9 is indeed very different from that of the

helical undulator with field harmonics (compared with Fig. 8):

we observe in Fig. 9(a) that the x-polarized third and fifth UR

harmonics are stronger by one order of magnitude than the

fundamental tone of this polarization and this can be exploited

in FELs. Although the high harmonics become weaker for

higher energy spread, the fifth harmonic still remains three

times stronger than the fundamental for 
e = 10�3. Also in y-

polarization, the third UR harmonic is stronger than the

fundamental [see Fig. 9(b)].

Thus, the third and fifth UR harmonics prevail in the UR

spectrum of electrons in the undulator field (22). The differ-

ence in even harmonic content between the polarizations is

caused by both the asymmetric beam and the undulator.

For the suppressed periodic cos component we set, for

example, d2 = 0.01 in (21),

H ¼ H0

�
sinðk�zÞ; 0:01 cosðk�zÞ þ sinð3k�zÞ; 0

�
: ð25Þ

Then we obtain the following Bessel coefficients for this

undulator,

fx;n¼1...9 ¼
�

0:059; 0:003; 0:244; 0:001; 0:183;

0:001; 0:121; 0:002; 0:087
�
; ð26Þ

fy;n¼1...9 ¼
�

0:809; 0:002; 0:336; 0:000; 0:161;

0:001; 0:104; 0:001; 0:080
�
: ð27Þ

The first harmonic in x-polarization vanishes, the third and

fifth harmonics have fx;3’ 0.24 and fx;5’ 0.18 [see (26)]; this is

somewhat less than the respective values for d = 0.25: fx;3 ’

0.28 and fx;5’ 0.22 in (23). In y-polarization [see (27)] we have

fy;1 ’ 0.81 > fy;3 ’ 0.34 > fy;5 ’ 0.16 for the third and fifth

harmonics; note also that the ratio fy;1 : fy;3 : fy;5 is similar to that

of a common planar undulator.

Let us now consider h = 1, l = 3, d1 = 1, d2 = 0.3 in (21),

i.e. the undulator field

H ¼ H0

�
sinðk�zÞ; sinðk�zÞ þ 0:3 cosð3k�zÞ; 0

�
ð28Þ

[compare with equation (22)]. We obtain the following Bessel

coefficients,

fx;n¼1...9 ¼
�

0:725; 0:010; 0:376; 0:012; 0:269;

0:013; 0:209; 0:013; 0:169
�
; ð29Þ

fy;n¼1...9 ¼
�

0:725; 0:006; 0:371; 0:009; 0:262;

0:010; 0:202; 0:011; 0:162
�
: ð30Þ

The respective numbers for each n in (29), (30) are similar

for both polarizations fx;n ’ fy;n , and the fundamental is the

strongest harmonic. The spectrum in both polarizations is

similar to that of a common planar undulator and does not

represent particular interest.

Finally, let us consider h = 3, d1 = 0.25, d2 = +1, l = 1 in (21),

i.e. the undulator field

H ¼ H0

�
sinðk�zÞ; cosðk�zÞ þ 0:25 sinð3k�zÞ; 0

�
ð31Þ
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Figure 9
On-axis UR harmonics intensity (in relative units) for the elliptic
undulator with k = 2.21622, h = 3, d1 = 1, d2 = +0.25, l = 1, 
e = 10�4, N = 30;
x-polarization (a); y-polarization (b).



[compare with (22) and (28)]. In contrast with the results for

(22) in Fig. 9, we obtain for the radiation in the field (31)

practically the spectrum of a helical undulator with very weak

harmonic content, which does not represent particular interest

(see Fig. 10); we omit proper Bessel coefficients for brevity.

5. Enhanced harmonic radiation by the phase shifting

Electrons in the magnetic field (21) with h = 3, l = 1, d1 = 1, d2 =

0.2–0.4 can generate intense FEL harmonics since the values

of the Bessel coefficients for the first, third, fifth harmonics

in x-polarization for the undulator field (22) are close to each

other: fy;1’ fy;3’ fy;5 [see (23)]. A simulation of FEL radiation

from the undulator like (22) was proposed by Kalitenko &

Zhukovskii (2020), where it was shown that elliptic bi-

harmonic undulators could be potentially useful for gener-

ating powerful harmonics of the polarized FEL radiation. The

enhancement of high harmonic radiation and the suppression

of the fundamental tone in x-polarization are due to the field

structure of the proposed undulator, but it may be difficult to

build such an undulator. Evaluation of the costs of realization

of this undulator in comparison with the costs of the alter-

native solutions, such as phase shifters between undulator

segments, is beyond the scope of this paper. However, a FEL

with high harmonic generation can benefit from the use of the

proposed undulator with the field (21) together with the phase

shifting, as we will show in the following.

It was demonstrated (McNeil et al., 2006; Schneidmiller &

Yurkov, 2012) that the growth of the fundamental tone power

in a FEL can be reduced by the phase shift k�/n introduced

between the undulator cascades, such that k = 2, 4, 6, . . . and

n is the desired harmonic to be enhanced at the end. This

happens because the electrons obtain the spatial phase shift

k�/n between the cascades, which in fact displaces them with

respect to the photon pulse; the electron microbunching at

the wavelength of the fundamental tone is disrupted and the

radiation power follows it. This, however, does not regard the

harmonic n and its subharmonics, since the spatial phase shift

k�/n, where k = 2, 4, 6 . . . does not affect bunching at �n and

its radiation. Modeling of such a FEL with a planar undulator

(McNeil et al., 2006; Schneidmiller & Yurkov, 2012) demon-

strated that for effective harmonic suppression its bunching

disruption must be repeated at every FEL gain length.

Consider the cascaded FEL with the undulator and beam

parameters of a LCLS ‘soft X-ray’ experiment, where the

undulator field has additional periodic magnetic components

(21), where h = 3, l = 1, d1 = 1, d2 = 0.4 (see Table 1). For the

LCLS FEL planar undulator, d1 = d2 = 0 must be assumed in

(21); the beam parameters remain as reported in the experi-

ment (see Table 1).

For the bunching and FEL power modeling we use the

phenomenological FEL model, based on the proposals of

Dattoli & Ottaviani (2002) and Dattoli et al. (2004), where the

saturated harmonic powers are taken accordingly accounting

for the dominant third harmonic instead of the fundamental

[see Zhukovsky (2018a) for planar and Zhukovsky (2019c) for

elliptic undulators]. The phase shift k�/3, k = 2,4,6 . . . , aimed

at enhancing the third FEL harmonic, does not affect

bunching at its wavelength, but displaces electrons with

respect to the radiation with wavelengths �1, �5; thus the

harmonics with n = 1, 5 are rebunched repeatedly. The

evolutions of the bunching and FEL power were made using

Mathematica 9 software (�2 s computation time on a PC),
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Figure 10
On-axis spontaneous UR harmonics intensity (in relative units) for the
elliptic undulator with k = 2.21622, h = 3, d1 = +0.25, d2 = 1, l = 1, 
e = 10�4,
N = 30; x-polarization (a); y-polarization (b).

Table 1
Some data for the phase-shifted SASE-FEL with the undulator field (21).

Beam parameters Relativistic factor � = 8400, beam power
PE = 4.3 TW, current I0 = 1 kA, current
density J = 1.573 � 1011 A m�2, beam
section �beam = 2�"� = 6.36 � 10�9 m2,
average beam radius r = ð�beam=�Þ

1=2 =
45 mm, emittances "n

x;y = �"x;y =
0.56 mm mrad, � = 15 m, beam
size 
x, y = ("�)1/2

’ 30 mm,
divergence � = ð"=�Þ1=2

’ 2 mrad,
energy spread 
e = 10�4

Undulator parameters k = 3.5, h = 3, l = 1, d1 = 1, d2 = +0.4,
�u = 2.8 cm

FEL properties: Pierce parameter ~��n ffi 7–9 � 10�4,
saturated lengths for the third harmonic
with phase shift Ls3;x ffi 33 m, Ls3;y ffi

28 m, gain lengths for third harmonic
Lgain3;x = 1.9 m, Lgain3;y = 1.6 m,
radiation beam size 
photon ’

½
x;yð�1 Lg=4�Þ1=2
�
1=2
ffi 20 mm

Harmonic number n = 1 n = 3 n = 5
Bessel coefficient, fn;x 0.47 0.33 0.26
Bessel coefficient, fn;y 0.77 0.43 0.24
Pierce parameter, �n;x 0.0006 0.0005 0.0005
Pierce parameter, �n;y 0.0009 0.0007 0.0004
Harmonic wavelength, �n (nm) 1.75 0.58 0.35
Saturated power with phase

shifts, PF,n (W)
3 � 109 7 � 109 7 � 106

Saturated power, no phase
shifts, PF,n (W)

9 � 109 2 � 108 1.5 � 107



employing the analytical model of the FEL (Zhukovsky,

2019a,b,c,d) for the undulator (21), where h = 3, l = 1, d1 = 1,

d2 = 0.4. The results are shown in Fig. 11 for the x-polarization

and in Fig. 12 for the y-polarization. We find the following

fundamental tone wavelengths and powers for the harmonics:

�1 = 1.7 nm, P�=1.7 nm = 1 GW, and �3 = 0.6 nm, P�=0.6 nm =

7 GW; the fifth FEL harmonic at �5 = 0.3 nm is induced by

the fundamental tone in y-polarization at the end of the FEL.

Some axial asymmetry of the radiation is due to the asym-

metry of the undulator field. Note that the third FEL

harmonic dominates towards the end of the FEL due to the

suppression of the fundamental by the phase shifting. The

undulator field (21) helps by lowering the Bessel coefficient

for the first and raising it for the third harmonics as compared

with a planar undulator. The third FEL harmonic induces in a

nonlinear regime its subharmonics at �3�3 = 0.2 nm and �3�5 =

0.12 nm. They can be weaker, because of the diffraction limit

established for the approximate condition for the stable

radiation: � > 4�"x, y. The latter inequality, though, is not strict

for X-ray FELs (Pellegrini et al., 2016; Huang & Kim, 2007;

Saldin et al., 2000; Bonifacio et al., 1984; Schmüser et al., 2014);

high harmonics were registered even when the inequality did

not hold, for example, in the LCLS experiments (Emma et al.,

2010; Ratner et al., 2011; Emma, 2009).

Observe in Figs. 11(b) and 12(b) that the final power of the

third FEL harmonic (green line) exceeds that of the funda-

mental (red line). For comparison, the LCLS FEL funda-

mental harmonic in the planar undulator, d1 = d2 = 0 in (21),

under the same conditions was radiated with the wavelength

�1 = 1.5 nm. The harmonic powers in the LCLS experiment

with a planar undulator were as follows: P�1=1.5 nm ’ 5 GW,

P�3=0.5 nm ’ 70 MW, P�5=0.3 nm ’ 7 MW (Emma et al., 2010;

Ratner et al., 2011; Emma, 2009). Thus, the proposed FEL

undulator field (21) for h = 3, l = 1, d1 = 1, d2 = 0.4 generated

radiation at �3 = 0.6 nm (see Figs. 11 and 12) with the power

exceeding by �100 times that of the third harmonic �3 =

0.5 nm of the LCLS experiment under the same conditions.

Moreover, subharmonics can be generated at �3�3 = 0.2 nm

with up to �30 MW power, which is several times higher than

the power of the fifth LCLS harmonic at some longer wave-

length �5 = 0.3 nm; at �3�5 = 0.12 nm we obtain �1 MW

power.

In Figs. 11(a) and 12(a) we can see that the bunching

coefficients for the fundamental tone (red lines) are disrupted

after every section. They grow after that until the next

disruption at the next section (see Figs. 11 and 12). On the

contrary, the bunching grows continuously for the third FEL

harmonic (green line), as it does for the third and fifth

subharmonics, denoted by the dashed lilac and dotted pink

lines, respectively. The bunching for the fifth harmonic is not

shown so as not to overload the figure with lines. It is disrupted

as well as for the fundamental, but at lower values.
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Figure 11
x-polarization: bunching coefficients (a) and FEL harmonic power (b) for
the phase shifted FEL simulated for LCLS ‘low energy’ beam E =
4.3 GeV and undulator (21) for h = 3, l = 1, d1 = 1, d2 = 0.4. Harmonics: n =
1, red lines; n = 3, green lines; n = 5, blue lines. Subharmonics of the third
dominant harmonic: n = 3 � 3, dashed lilac line; n = 5 � 3, dotted pink
lines. The bunching for the weak fifth harmonic is omitted for clarity.

Figure 12
y-polarization: bunching coefficients (a) and FEL harmonic power (b) for
the phase-shifted FEL simulated for the LCLS ‘low energy’ beam E =
4.3 GeV and undulator (21) for h = 3, l = 1, d1 = 1, d2 = 0.4. Harmonics: n =
1, red lines; n = 3, green lines; n = 5, blue lines. Subharmonics of the third
dominant harmonic: n = 3 � 3, dashed lilac line; n = 5 � 3, dotted pink
lines. The bunching for the weak fifth harmonic is omitted for clarity.



Regrouping of the electrons every time requires some distance

and time; thus the continuous power growth, which follows

the bunching evolution, occurs slower for the first and fifth

harmonics and the third harmonics dominates at the end

of the FEL.

For comparison we have modeled the evolution of the

bunching and FEL power for the harmonics of the common

planar undulator in the LCLS experiment for the case where

the phase shifters would be installed in the same way as we

supposed above under the same conditions. Despite the

disruption of the bunching for the fundamental [red lines in

Fig. 13(a)], this is not enough compared with the bunching for

the third harmonic, and the first harmonic power [red line

in Fig. 13(b)] dominates along the whole FEL. Thus, the

saturation appears early due to the fundamental tone, which

limits further growth of high harmonics as usual in a FEL.

Eventually, the third harmonic [green line in Fig. 13(b)] does

not reach the full power and its saturated power remains more

than one order of magnitude lower than that of the funda-

mental despite the phase shifters being applied. The fifth FEL

harmonic is rather strong and is shown by the blue line in

Fig. 13. It grows in a nonlinear regime induced by the funda-

mental, and the disruption of its bunching is reflected in its

power evolution in Fig. 13. This behavior of the common

undulator FEL (see Fig. 13) differs from that of the asym-

metric elliptic undulator FEL (see Figs. 11 and 12) where a

two-period field with orthogonal polarizations helps the third

UR harmonic radiation. Thus the chosen undulator with the

field (21), where h = 3, l = 1, d1 = 1, d2 = 0.4, is much more

effective in high harmonic generation with phase shifters

compared with a common planar undulator.

The above examples show possible practical solutions to

increase the radiation of selected high harmonics from

undulators and generate X-ray radiation from relatively low

energy beams in compact installations. They demonstrate that

selected high harmonics can appear in the FEL spectrum

due to the third field harmonic. They also show that our

phenomenological model, together with the exact formulae

for the Bessel coefficients, accounting for the off-axis devia-

tion and field harmonics, can be used for easy and fast

evaluation of the FEL harmonic power, including even

harmonics. This can help in controlling the deviation of the

beam and the alignment of the undulator.

6. Conclusions

We have analytically considered the UR from electrons in

multi-periodic undulators taking into account the field

harmonics. We obtained exact analytical expressions for the

UR in terms of the Bessel coefficients and UR intensities

taking into account the beam properties, using the formalism

of generalized Bessel functions. We have considered the

general form of the two-dimensional multi-periodic magnetic

field without limitations on the harmonic strength. The

obtained expressions for the UR spectrum and intensity

reduce in the limiting cases to those for planar and helical bi-

harmonic undulators. The results are confirmed by compar-

ison with numerical simulations and with experimental values.

The analytical results are applied for FELs with the help of the

phenomenological FEL model; the latter was verified with

many FEL experiments and describes analytically the FEL

harmonic power and bunching evolution along the undulator.

The effects of the energy spread, off-axis angle and off-axis

position in the beam were analyzed and compared. Using the

analytical expressions, we showed that the betatron oscilla-

tions have a negligible effect on the radiation of even UR

harmonics compared with the effect of the off-axis and elec-

tron–photon interaction angles and of non-periodic magnetic

components in undulators. The latter may distort the UR

spectrum lines, if not screened out. An example of an LCLS

undulator spectral line is demonstrated.

The shapes of the spectral lines were analytically calculated,

analyzed and compared for SWISS FEL, LCLS, PAL-XFEL

and LEUTL FEL taking into account the betatron split,

broadening and angular effects in real beams. Theoretical

radiation lines in these FELs were in agreement with data

from the relevant installations and experiments. We demon-

strated the betatron harmonic line split and broadening of the

spectrum lines in undulators, affected by the constant field of

the Earth and accounting for the off-axis effects in the finite-

sized beams.

The UR radiation in a helical undulator with anti-symmetric

third field harmonic was calculated using the developed

analytical expressions for the Bessel coefficients. In agreement

with the reported measured values, we found the second

harmonic power to be �2–3% of the fundamental tone. We
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Figure 13
Evolution of the bunching coefficients (a) and FEL harmonic powers (b)
for FEL harmonics in the common planar undulator FEL with phase
shifters. Harmonics: n = 1, red lines; n = 3, green lines; n = 5, blue lines.



demonstrated that the third harmonic of the undulator field,

amounting to �10% strength of the main periodic field, d ’

0.1, h = 3, gives rise to the fifth harmonic in the UR spectrum;

its radiation power is <2% of the fundamental in agreement

with the reports. A stronger third undulator field harmonic,

d’ 0.25, raises the fifth UR harmonic power to 10–25% of the

fundamental tone, dependent on the beam quality. However,

in FEL radiation the fifth harmonic remains weak due to the

high sensitivity of the electron–photon interaction to the

losses at high harmonic wavelengths.

We obtained exact analytical expressions for the Bessel

coefficients and the UR harmonic intensity in an asymmetric

elliptic bi-harmonic undulator with magnetic field (1); for the

field H = H0½sinðk�zÞ, d1 sinðhk�zÞ + d2 cosðlk�zÞ, 0�, we showed

that strong FEL harmonics can be generated. We studied a

number of combinations of the parameters h, l, d1, d2 and

identified the set of values h = 3, l = 1, d1 = 1, d2 = 0.2–0.4 which

yields the values of the Bessel coefficients close to each other

for the UR harmonics with n = 1, 3, 5; in particular, for d2 =

0.25, fx,n=1 = 0.29 ’ fx,n=3 = 0.28 ’ fx,n=5 = 0.22. The third UR

harmonic is the strongest in the y-polarization of the sponta-

neous radiation spectrum of this undulator, and is followed by

the fundamental tone; in the x-polarization the fifth harmonic

is the strongest, followed by the third, and the fundamental

tone is weak.

We analytically estimated the harmonic power evolution in

a single-pass FEL with this undulator. In x-polarization, the

power of the third FEL harmonic reaches the power of the

fundamental tone at the end of a long FEL without any

phase shifters. Such an asymmetric elliptic undulator is much

better for harmonic generation than a planar undulator. We

demonstrated that the chosen elliptic bi-harmonic undulator

could generate, in a FEL with phase shifts between the

cascades, the third FEL harmonic power up to two orders of

magnitude higher compared with for a planar undulator in

the same FEL. This means almost 1010 W for 0.6 nm instead

of 1.5 nm radiation for the conditions of the ‘low energy’

LCLS experiment.

Finally we note that the choice of the parameters for the

beams and undulators in this study was dictated by the existing

installations: KAERI (Lee et al., 2015), SPARC (Giannessi et

al., 2011), LCLS (Emma et al., 2010; Ratner et al., 2011; Emma,

2009), LEUTL (Milton et al., 2001), SACLA (Owada et al.,

2018), PAL-XFEL (Kang et al., 2017) and SWISS-XFEL

(Milne et al., 2017; Abela et al., 2017). The analysis of the

harmonic generation is independent of the energies of the

electron beam, although verification with experiments was

made in each case for the specific values of the set of

experimental parameters. The results and conclusions are

valid over a broad range of electron energies from infrared

to hard X-ray FELs and show the potential of elliptic bi-

harmonic undulators for generating high X-ray harmonics.
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