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Although optical element error analysis is always an important part of beamline

design for highly coherent synchrotron radiation or free-electron laser sources,

the usual wave optics simulation can be very time-consuming, which limits

its application at the early stage of the beamline design. In this work, a new

theoretical approach has been proposed for quick evaluations of the optical

performance degradation due to optical element error. In this way, time-

consuming detailed simulations can be applied only when truly necessary. This

approach treats the imperfections as perturbations that convolve with the ideal

performance. For simplicity, but not by necessity, the Gaussian Schell-model has

been used to show the application of this theoretical approach. The influences of

the finite aperture size and height error of a focusing mirror are analysed using

the proposed theory. The physical explanation of the performance degradation

acquired from the presented approach helps to give a better definition of the

critical range of error spatial frequencies that most affect the performance of a

mirror. An example comparing two mirror surface errors with identical power

spectral density functions is given. These two types of mirror surface errors

result in very different intensity profiles. The approach presented in this work

could help beamline designers specify the error tolerances on general optical

elements more accurately.

1. Introduction

Ever since the novel design of multiple-bend achromatic

lattices (Einfeld et al., 2014) made diffraction-limited

synchrotron radiation sources possible, many synchrotron

radiation sources are being upgraded in order to provide more

coherent X-ray beams (Chenevier & Joly, 2018; Leemann et

al., 2018; Pellegrini, 2016; Shi et al., 2017). In parallel, X-ray

free-electron lasers have come to provide excellent spatial and

temporal coherence in the X-ray region as well as at visible

wavelengths. However, the great advances in coherent X-ray

sources make the tolerances on optical elements more strin-

gent if the high coherence originating at the source is to be

preserved throughout the beamline.

An important aspect of beamline design is to study the

effect of optical element errors. At beamlines of third-

generation synchrotrons, the impact of imperfect optical

elements can be evaluated by geometrical optics using ray-

tracing simulation software (Baumgärtel et al., 2016; Bergbäck

Knudsen et al., 2013; Klementiev & Chernikov, 2014; Rebuffi

& Sanchez del Rio, 2016, 2017). However, for diffraction-

limited synchrotron radiation (DLSR) or X-ray free-electron

lasers (FEL), because of the low emittance of the source, the

wave optics need to be taken into consideration. Wave optics
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simulation codes calculate wavefront propagation using the

Fresnel diffraction integral. Several types of methods for

wavefront propagation calculation have been used by

different simulation codes. Among them are the wave-optics-

based code SRW (Chubar & Elleaume, 1998) and WISE

(Raimondi & Spiga, 2015), hybrid method based codes xrt

(Klementiev & Chernikov, 2014) and others which have

already been integrated into the widget-based interface

OASYS (Rebuffi & Sanchez del Rio, 2017; Shi et al., 2014).

Although wave optics simulations yield more accurate results

than ray tracing for DLSR and X-ray FELs, they usually

require substantially more time unless carefully optimized.

Some improvements have been made to make wave optics

simulations faster (Sanchez del Rio et al., 2019), but they still

demand considerable computing resources. This drawback

limits the use of wave optics simulations. As a result, a theo-

retical tool to evaluate the performance of imperfect optical

elements prior to a detailed wave optics simulation will

be useful.

Instead of numerical simulation, some theoretical discus-

sions on the beamline performance have also been given by

many researchers. Some discussed the coherence properties

influenced by finite aperture size (Shi et al., 2017; Singer &

Vartanyants, 2014). Many others (Church & Takacs, 1993;

Harvey, 1995; Harvey et al., 1995; Raimondi & Spiga, 2015;

Spiga, 2018) have discussed mirror surface specifications for

third-generation synchrotron radiation as well. Two statistical

parameters have been proposed to describe the mirror

performance degradation, namely the root mean square

(RMS) mirror height error and RMS residual slope error.

However, wave optics simulations (Pardini et al., 2015; Shi et

al., 2016) have already shown that these statistical parameters

are not appropriate for the specification of DLSR or FEL

beamlines. In particular, some side peaks often appear when

the optical performance is simulated using the highly coherent

source. It is very difficult to explain the appearance of these

side peaks if the mirror’s imperfections are described only by

RMS height and slope errors. Thomasset & Polack (2008) and

Yashchuk et al. (2015) had already pointed out that mirror

imperfections within a certain spatial frequency range cause

more severe distortion of the focal spot and more intense side

peaks than do mirror imperfections with spatial frequencies

above or below this range. However, the definition of low

frequency range in these early works is ambiguous. Raimondi

& Spiga (2015) have done similar work. They investigated

the performance degradation from imperfect mirrors in detail

through both analytical expression and numerical simulation

in terms of the point spread function (PSF) of the mirror.

In this work, a theoretical approach to evaluate the optical

performance degradation caused by imperfect optical

elements without using wave optics simulations is given. The

proposed theory could be used to evaluate the impacts of

finite size aperture, surface height error and other imperfec-

tions of optical elements as long as they can be described by a

complex transfer function. Furthermore, the presented theory

provides physical insights that help to explain the degradation

of optical performance. These physical explanations will help

beamline designers estimate the tolerances on their optical

elements more accurately.

We will begin with a very concise introduction of the optical

coherence theory. After that, the main theoretical results that

are to be used throughout this paper will be given. Then two

cases, finite aperture size and mirror surface height error,

will be chosen to apply the proposed theory. Apart from the

calculation of the cross spectral density function, we also

provide physical explanations of the intensity profile distor-

tion due to the mirror surface height error modulation. A

summary of the proposed theoretical approach will be given

at the end.

2. Perturbation theory for partially coherent beams

2.1. Basic treatment of coherence

The coherence of the light beam could be described in

phase space by the Wigner distribution (Bazarov, 1987;

Tanaka, 2017) or in spatial coordinate space (Schroer &

Falkenberg, 2014; Singer & Vartanyants, 2014; Vartanyants &

Singer, 2010). In this work we choose the spatial coordinate

description. The treatment of coherence could be described

well by the mutual coherence function and other related

functions derived from it (Born & Wolf, 2013; Mandel & Wolf,

1995). The mutual coherence function is defined as

�ðr1; r2; �Þ ¼ Eðr1; t þ �ÞE�ðr2; tÞ
� �

T
; ð1Þ

where h . . . iT means an averaging over a long period of time T,

E(r1, t + �) and E(r2, t) are the complex amplitudes of wave-

fields at different positions r1, r2 and time t + �, t. The mutual

coherence function represents the correlation of the wavefield

at two different positions and times. In this article, we restrict

ourselves to the discussion of spatial (transverse) coherence

rather than temporal (longitudinal) coherence. Furthermore,

the electromagnetic field is assumed stationary. The assump-

tion of stationary or quasi-stationary field is valid in most

synchrotron radiation sources of hard X-rays (Geloni et al.,

2008, 2015; Kim, 1989). To discuss the spatial coherence of the

synchrotron radiation, it is convenient to introduce the cross-

spectral density (CSD) function, which is defined as the

Fourier transform of the mutual coherence function

Gðr1; r2;!Þ ¼
R1
�1

�ðr1; r2; �Þ expði!�Þ d�; ð2Þ

where ! is the frequency of the radiation. The normalized

cross-spectral density function is called the spectral degree of

coherence (SDC), denoted as �(r1, r2; !),

�ðr1; r2;!Þ ¼
Gðr1; r2;!Þ

Gðr1; r1;!Þ
� �1=2

Gðr2; r2;!Þ
� �1=2

¼
Gðr1; r2;!Þ

Iðr1;!Þ
� �1=2

Iðr2;!Þ
� �1=2

: ð3Þ

As in previous works (Geloni et al., 2008; Kim, 1989; Schroer

& Falkenberg, 2014; Singer & Vartanyants, 2014; Vartanyants
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& Singer, 2010), from now on, we will discuss the spectral

functions, omitting the ! for simplicity.

The free space propagation of the cross-spectral density

function from the initial plane G0(r1, r2; z = 0) at z = 0 to the

downstream plane Gz(r1, r2; z = z0) at z = z0 is well known to

obey the following relation (Born & Wolf, 2013; Mandel &

Wolf, 1995),

Gzðr1; r2; z ¼ z0Þ ¼

Z
G0ðr

0
1; r02; z ¼ 0ÞKzðr1 � r01Þ

� K�z ðr2 � r02Þ d
2r01 d2r02; ð4Þ

where Kz(r) is the Fresnel propagator along the optical axis.

Under the assumption of the paraxial approximation, Kz(r)

has the expression

KzðrÞ ¼ �
i

�z
exp ik

r2

2z

� �
: ð5Þ

2.2. Propagation through a non-ideal optical surface

The propagation of the CSD function through free space

is governed by equation (4). For simplicity and without loss

of generality, we only consider one transverse direction in

equation (4) hereafter. An ideal optical surface may be

defined as a surface of infinite extent with the ideal physical

shape for beam profile shaping. To be more specific, an ideal

infinite plane mirror only deflects the incident beam such that

the reflected beam propagates as a free space diffraction along

its reflected direction. An ideal infinite focusing mirror images

the source according to its demagnification factor. On the

other hand, a non-ideal optical surface deviates from the ideal

shape because of height error and finite physical size. As

shown in Fig. 1, the CSD function on the image plane should

be derived from the CSD function on the exit plane close

to the mirror through free space propagation according to

equation (4). For an ideal optical surface, we have the one-

dimensional version of equation (4),

G0zðx1; x2Þ ¼
1

�2z2

ZZ
G0ðx

0
1; x02Þ exp ik

ðx1 � x01Þ
2

2z

� 	

� exp �ik
ðx2 � x02Þ

2

2z

� 	
dx01 dx02: ð6Þ

G0z(x1, x2) is the CSD function on the image plane through the

ideal optical surface, G0(x1, x2) is the CSD function on the exit

plane right after the ideal optical surface, z is the distance

between the image plane and the exit plane, � is the wave-

length of the beam, and k = 2�/� is the wavevector. The

coordinates x01 and x02 in the above integral lie within the

exit plane.

In general, the non-ideal optical surface multiplies the ideal

amplitude by a complex transfer function t(x0). The effects

represented by t(x0) may include partial transmission due to

mirror reflectivity, finite mirror size, mirror surface height

error, etc. The specific expression of t(x0) related to these

factors will be discussed later. By multiplying the complex

amplitude of the incident beam by the complex transfer

function t(x0), one obtains an equation similar to (6),

Gzðx1; x2Þ ¼
1

�2z2

ZZ
G0ðx

0
1; x02Þ tðx

0
1Þ t
�ðx02Þ exp ik

ðx1 � x01Þ
2

2z

� 	

� exp �ik
ðx2 � x02Þ

2

2z

� 	
dx01 dx02: ð7Þ

The basic idea of our new treatment is to separate equation (7)

into two terms, one corresponding to the ideal optical element

and the other related to the imperfection. The non-ideal

optical element is hence a perturbation of the ideal optical

element. A similar idea can be found in other articles (Taya-

baly et al., 2016; Raimondi & Spiga, 2015) where the intensity

perturbation is considered. Here, the more general CSD

function perturbation is given. After some mathematical

derivation from equation (7) and comparing the result with

equation (6), we state that the CSD functions at the image

plane through the non-ideal optical surface and through the

ideal optical surface are related as follows,

Gzðx1; x2Þ exp �ik
x2

1 � x2
2

2z

� �
¼

G0zðx1; x2Þ exp �ik
x2

1 � x2
2

2z

� �� 	

� F �1
x2=�zjx0

2

Fx1=�zjx0
1

tðx01Þ t
�ðx02Þ

� �
 �
: ð8Þ

Appendix A gives a more detailed mathematical derivation of

equation (8). In the above equation, G0z(x1, x2) is the ideal

CSD function at the image plane calculated from equation (6)

and Gz(x1, x2) is the non-ideal CSD function at the image

plane calculated from equation (7), respectively. F� and F �1
x

denote the Fourier and inverse Fourier transform. Specifically,

Fx1=�zjx10
denotes a Fourier transform from x01 into x1/�z.

Similarly, F �1
x2=�zjx20

denotes an inverse Fourier transform from

x02 into x2/�z. The symbol � denotes the 2D convolution. The

2D convolution, Fourier and inverse Fourier transforms are

defined below:
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Figure 1
Schematic of the geometric layout for reflecting mirror.



f ðx1; x2Þ � gðx1; x2Þ ¼

ZZ
f ð�; �Þ gðx1 � �; x2 � �Þ d� d�;

F�½ f ðxÞ� ¼

Z 1
�1

f ðxÞ expð�i2�x�Þ dx; ð9Þ

F �1
x ½Gð�Þ� ¼

Z 1
�1

Gð�Þ expði2�x�Þ d�:

If x1 = x2, the CSD function Gz(x1, x2) becomes the intensity

I(x1) at coordinate x1 of the image plane. It is sometimes

convenient to change the variables of x1 and x2 to x1 /�z and

x2 /�z. Therefore, the intensity at image plane can be written as

the function of new variables,

Iz

x1

�z

� �
¼

(
G0z

x1

�z
;

x2

�z

� �
exp �i��z

x2
1 � x2

2

�2z2

� �� 	

�F �1
x2=�zjx0

2

Fx1=�zjx0
1

tðx01Þ t
�
ðx02Þ

� �
 �)�����
x1¼x2

¼

 (
I0z

x1

�z

� �� 	1=2

I0z

x2

�z

� �� 	1=2

�0z

x1

�z
;

x2

�z

� �

� exp �i��z
x2

1 � x2
2

�2z2

� �)

�F �1
x2=�zjx0

2

Fx1=�zjx0
1

tðx01Þ t
�ðx02Þ

� �
 �!�����
x1¼x2

: ð10Þ

G0z(x1 /�z, x2 /�z) above is expanded according to equation

(3). I0z(x1 /�z) and I0z(x2 /�z) are the ideal intensities at,

respectively, positions x1 and x2 on the image plane.

�0z(x1 /�z, x2 /�z) is the SDC at the image plane. The x1 = x2

outside the curly bracket means setting x1 = x2 after the

operation inside the bracket.

Equations (8) and (10) give us a general analytical

description of the imperfections’ impacts on the CSD function

and the intensity distribution. The 2D version of these results

can be found in Hu et al. (2020). For the most general form

of equations (8) and (10), 4D integration (convolution) is

unavoidable. In that case, a special procedure such as coherent

mode decomposition (Glass & Sanchez del Rio, 2017; Sanchez

del Rio et al., 2019) must be applied to reduce the computa-

tional burden. However, although the computationally

demanding wave optics simulation in 2D is theoretically the

correct procedure, the semi-analytical discussion and reduced

1D calculation are also important and helpful to investigate

the impacts of imperfect optical elements. Thanks to the

extensive use of Fourier and inverse-Fourier transforms and

2D convolution in computer science, there exist well estab-

lished methods for calculating them rapidly. As a result, the

fast Fourier transform (FFT) and FFT-based 2D convolution

can be used for the calculation of equations (8) and (10). In

particular, if the horizontal and vertical properties of the

source are decoupled, as in the Gaussian Schell-model, the

time needed to calculate equations (8) and (10) is negligible

(Hu et al., 2020). If only a 1D calculation is required, as is the

case for grazing-incidence mirrors, equations (8) and (10) can

be applied easily as well.

Apart from providing a new simulation method, equations

(8) and (10) also provide physical insights into the perfor-

mance degradation caused by the imperfections of optical

elements. Later in this paper, these two expressions will help

to show the underlying physical mechanism of the perfor-

mance deterioration of imperfect mirrors. Moreover, although

accurate simulation using wave optics is essential, a quick and

reliable method for estimating the performance degradation

could be used to screen the metrology data on a large number

of optics to find those worthy of consideration for a high-

quality DLSR. These two equations are general as long as the

imperfections can be described by a complex transfer function.

In the following sections, several specific examples of common

imperfections on optical elements will be discussed.

3. Partially coherent X-ray beam after imperfect
focusing optical element

3.1. Focusing with perfect optical elements

In order to use equations (8) and (10) to explore the impact

that comes from optical imperfections, we need the ideal

performance of the perfect optical element. We state here that

the perfect optical element images the source according to the

magnification factor M. No loss of intensity and no distortion

of the intensity profile will occur at the final image plane. For

the convenience of the discussion throughout this paper, we

use the Gaussian Schell-model (GSM) to describe the DLSR

or FEL source (Schroer & Falkenberg, 2014; Vartanyants &

Singer, 2010). The advantage of the GSM is that the CSD

function of the source can be written analytically given just a

few parameters describing the properties of the source. We

stress that the GSM is used here only for simplicity and

because it is especially well suited for synchrotron and FEL

sources. Any other model for the CSD could be used without

any change to the procedure of this paper.

The CSD function of a GSM source is

G0ðxs1; xs2Þ ¼ I0 exp �
x2

s1 þ x2
s2

2	2
sx

� �� 	1=2

exp �
xs1 � xs2ð Þ

2

2�2
sx

� 	
;

ð11Þ

where I0 represents the maximum intensity at the source, and

	s and �s represent the source’s RMS size and coherence

length, respectively. xs1 and xs2 are the coordinates at the

source plane. Equation (11) shows that to describe the DLSR

or FEL source using the GSM, two parameters, i.e. source size

and coherence length, are required. Within the framework of

the GSM, these two parameters have the following relation,

�sx ¼
2	sx

4k2	2
sx	

20
sx � 1ð Þ

1=2
: ð12Þ

Here 	0sx is the angular divergence of the source. Usually, the

product 	sx	
0
sx is defined as the beam emittance. The CSD

function of the wave transmitted by a perfect focusing element

is affected only by the magnification factor as follows. We have

the following simple relations,
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	x ¼ M	sx; �x ¼ M�sx: ð13Þ

The CSD function at the image plane of the perfect optical

element could be written as

G0zðx1; x2Þ ¼ I0 exp �
x2

1 þ x2
2

2	2
x

� �� 	1=2

exp �
x1 � x2ð Þ

2

2�2
x

� 	
:

ð14Þ

Here x1 and x2 are the coordinates at the image plane. The

image size and image coherence length are derived from the

same parameters from the source according to equation (13).

The perfect CSD function at the image plane, which is

described in equation (14), will be used throughout this paper.

According to the outline in Section 2, the perfect CSD func-

tion will be ‘perturbed’ by the imperfection of the optical

element. The imperfections from optical element include the

finite aperture, the surface height error, etc.

The source parameters to be used in this paper are from the

High Energy Photon Source (HEPS) project (Jiao et al., 2018).

We choose the horizontal direction for our discussion. Two

typical focusing modes are considered. The first is the

diffraction-limited focusing mode. In this mode, the source-to-

mirror distance is 130.25 m and the image-to-mirror distance is

0.11 m. This makes the demagnification factor about 1184. The

focal spot size is of the order of tens of nanometres. The

second is the 1:1 focusing mode. The mirror is placed at 38.5 m

from the source and the image plane is also located at 38.5 m

from the mirror. If the optical element is perfect in this mode,

what we obtain in the focal plane is exactly 1:1 with the source.

Table 1 gives the detailed parameters used in this paper.

3.2. Optical elements with finite aperture

A perfect optical element has an infinitely large aperture

size. However, a real optical surface always has a finite

physical size. The complex transfer function t(x0) to describe

the finite optical element aperture at the exit plane could be

expressed as a rectangular function,

tðx0Þ ¼ rect
x0

L

� �
¼

1; �L=2< x0<L=2;
0; elsewhere:



ð15Þ

L is the size of the optic aperture projected onto the exit plane.

According to equation (8), the CSD function after the finite

aperture Gz(x1, x2) has the following equation,

Gzðx1; x2Þ exp �ik
x2

1 � x2
2

2z

� �

¼

(
I0 exp �

x2
1 þ x2

2

2	2
x

� �� 	1=2

exp �
x1 � x2ð Þ

2

2�2
x

� 	

� exp �ik
x2

1 � x2
2

2z

� �)

� L2sinc
Lx1

�z

� �
sinc

Lx2

�z

� �� 	
; ð16Þ

where sinc(x) = sin(�x)/�x, and x1 and x2 are the coordinates

at the image plane. The beam size and coherence length in the

above equation are the values at the final image plane. They

can be derived from source parameters according to

equation (13).

Before we perform the detailed calculation using the above

convolution relation, let us consider some extreme cases

qualitatively. When the aperture size L ! +1, the second

term of the convolution operation in equation (16) is


(x1 /�z)
(x2 /�z), where 
(x) is the Dirac delta function. Using

the properties of the Dirac delta function, one can confirm

that the CSD function at the image plane in this case is the

ideal one, Gz(x1, x2) = G0z(x1, x2). Next, let us consider the

nano-focusing scheme. Table 1 shows that the demagnification

factor is about 1184, which leads to an ideal focal spot size of

about 7.76 nm. However, the second term of equation (16) will

be larger than this small ideal spot size. The limitation from

the aperture could be considered as follows. The phase term

exp[�ik(x1
2
� x2

2)/2z] in equation (16) has negligible impact

and can be ignored safely for the nano-focusing case.

Supposing �x � 	x , within the range of significant beam

intensity, the coherence term exp[�(x1 � x2)2/2�x
2] is

approximately 1. Then the intensity profile at the final image

plane is the convolution of the ideal intensity with the square

of the sinc function. Due to the limited optic aperture, the final

spot size is larger than the ideal value. This is the so-called

diffraction-limited case.

Fig. 2 gives a typical nano-scale intensity profile and the

SDC function modulated by an aperture size of 0.4 mm. The

results are obtained from equation (16) for the nano-focusing

mode listed in Table 1. As shown in Fig. 2(a), the final intensity
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Table 1
Source parameters and two focusing schemes for calculations throughout
this paper.

Source parameters

Photon energy 10 keV Source divergence (H) 4.97 mrad
Source size (H) 9.14 mm Coherence length (H) 4.07 mm

Diffraction-limited focusing 1:1 micro-focusing

Source distance 130.25 m 38.5 m
Image distance 0.11 m 38.5 m
Demagnification factor 1184 1

Figure 2
(a) The normalized intensity of perfect optics (dashed line) and after a
finite aperture of 0.4 mm (solid line). (b) The spectral degree of
coherence function after the finite aperture. One of the coordinates in
SDC function is set to be at the centre.



profile is broadened by the finite aperture. Moreover, Fig. 2(b)

shows that, within the area of sufficient intensity at the final

image plane, the wave is highly coherent.

Singer & Vartanyants (2014) have discussed the influence of

focusing optics of varying aperture sizes on the focal spot size

and coherence properties if the aperture is Gaussian in shape.

Here, we also calculated the effects of different rectangular

aperture sizes with little difficulty using equation (16).

However, equation (16) can deal with apertures of any shape.

As long as an appropriate complex transfer function for the

aperture can be defined, the impact on the coherence prop-

erties can be calculated using equation (8). We use the full

width at half-maximum (FWHM) value for the central peak of

the SDC function as the coherence length. In addition, we use

the FWHM of the intensity profile as the beam size at the

image plane. Two focusing schemes listed in Table 1 are

considered. Figs. 3(a) and 3(c) show that the larger the aper-

ture size, the shorter the coherence length. The limiting case is

the coherence length obeying the equation (13). On the other

hand, a larger aperture size will result in a smaller focal spot

size. The limit here is the ideal focus size according to equation

(13). One must also consider the sacrifice of beam intensity

when decreasing the aperture size in order to obtain higher

coherence. Figs. 3(b) and 3(d) show the relation between the

beam intensity and the beam coherence. At one limit is large

coherence length with small intensity. At the other limit is the

ideal optic with no loss of intensity and the coherence length

given by equation (13).

Higher focal intensity and larger coherence length are

always mutually exclusive, as are smaller focus size and larger

coherence length. Using the theoretical approach proposed in

Section 2, we can assess the trade-off between these consid-

erations relatively easily as shown in Fig. 3.

3.3. Focusing mirror with height error distribution

The X-ray mirror is one of the most widely used optical

elements for focusing. Apart from the aperture size, surface

height error is another common source of focal spot degra-

dation. It is well known that the height errors across the non-

ideal optical surface h(xs) with the mirror surface coordinate

xs give rise to a phase shift ��h . If the radiation wavelength is

� and the grazing incident angle is �, the phase shift could be

written as follows,

��h ¼ �
4�

�
hðxsÞ sin � ¼ �

4�

�
h

x0

sin �

� �
sin �: ð17Þ

In equation (17), the optical surface coordinate xs and the

optical surface exit plane coordinate x0 (see Fig. 1 for exit

plane) has the relation of x0 = xs sin�. The complex transfer

function at the exit plane is

tðx0Þ ¼ exp �i
4�

�
h sin �

� �
: ð18Þ

h in the above equation could be regarded as a function of the

mirror surface coordinate xs or the exit plane coordinate x0.

Once we have equation (18) for the complex transfer function,

we could use the theory outlined in Section 2 again for the

evaluation of coherence properties degraded by the mirror

surface height error.

Fig. 4 shows the normalized CSD function, the intensity

profile and the degree of coherence with and without degra-

dation by a theoretical mirror surface height error. The nano-

focusing scheme described in Table 1 is used. The mirror

length is 150 mm with a grazing angle of 3 mrad. The aperture

size effect has been considered for the ideal surface height

distribution. The surface height error for this calculation is
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Figure 3
The FWHM of intensity profile and coherence length as a function of
aperture size for 1:1 focusing (a) and nano-focusing (c). The loss of
intensity as a drawback of increasing coherence length by decreasing the
aperture size are shown for the 1:1 focusing case (b) and nano-focusing
case (d), respectively.

Figure 4
(a) The normalized CSD function from an ideal surface. (b) The
normalized CSD function from a surface with figure error. The figure
error used is shown in Fig. 5(a). (c) The ideal (dashed line) and distorted
(solid line) normalized intensity profile. The ideal intensity profile already
accounts for the finite aperture size. (d) The ideal (dashed line) and
distorted (solid line) SDC function.



shown in Fig. 5(a). The rest of Fig. 5 will be discussed later to

show a better definition of the spatial frequencies at which

height errors degrade the focus most severely. One obvious

impact shown in Fig. 4(c) is the severely distorted intensity

profile. We point out that this is mainly due to the low spatial

frequency components of the mirror surface error.

In the remainder of this section, we will give a physical

explanation for the intensity profile distortion following the

theoretical outline described in Section 2. The mirror height

error function h(x0) with respect to the exit plane coordinate

can be decomposed into its Fourier series,

hðx0Þ ¼ a0 þ
X1
n¼ 1

an cos
n2�x0

L
þ bn sin

n2�x0

L

� 	
;

� L=2 	 x0 	 L=2;

ð19Þ

with

a0 ¼
1

L

ZL=2

�L=2

hðx0Þ dx0; an ¼
2

L

ZL=2

�L=2

hðx0Þ cos
n2�x0

L

� �
dx0;

bn ¼
2

L

ZL=2

�L=2

hðx0Þ sin
n2�x0

L

� �
dx0: ð20Þ

Using the convolution theorem of the Fourier transform, the

Fourier transform term in equation (10) can be written as a

successive convolution of Fourier transforms of the phase

term caused by cosine and sine functions. This prompts us to

treat the simple sinusoidal and cosinusoidal height error

distribution first.

Assume the mirror surface error has a cosinusoidal distri-

bution

hðxsÞ ¼ A cos
2n� sin �xs

L

� �
¼ A cos

2n�x0

L

� �
; ð21Þ

where A is the half of peak-to-valley (P–V) value of the

surface height error, xs and x0 are the coordinates on the

mirror surface and the exit plane, respectively, the mirror

length is L/sin�, and L is the projected mirror length on the

exit plane. The period of the surface error distribution

projected on the exit plane is L/n. The asymptotic expansion

of the intensity profile affected by the cosinusoidal distribu-

tion is

Iz

x1

�z

� �
¼ J2

0 A
4�

�
sin �

� �
I0z

x1

�z

� �

þ J2
1 A

4�

�
sin �

� �
I0z

x1

�z
�

n

L

� �

þ J2
1 A

4�

�
sin �

� �
I0z

x1

�z
þ

n

L

� �
þ . . . : ð22Þ

Ji(x) in the above equation are Bessel functions of the first

kind. Fig. 6 shows these Bessel functions and their squared

values. Under the ultra-smooth mirror surface assumption,

A 	 �/4�sin�, the higher-order Bessel functions are much

smaller than the lower-order Bessel functions (see Appendix

B for the properties of Bessel functions). Equation (22) tells us

that a cosinusoidal height error will replicate the damped ideal

peak at positions determined by the spatial frequency n/L. The

intensity of the damped central peak and the nearest side

peaks are determined by zeroth- and first-order Bessel func-

tions, respectively. The higher orders of the above expansion

correspond to higher orders of Bessel functions. A similar

result has been given by Raimondi & Spiga (2015).

Similarly, the intensity profile degradation due to the sinu-

soidal distribution,

hðxsÞ ¼ A sin
2n� sin �xs

L

� �
¼ A sin

2n�x0

L

� �
; ð23Þ

can be expressed as
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Figure 5
(a, d) Two types of figure height error distributions. (b, e) The
corresponding square sum of Fourier components |an|2 + |bn|2. Only the
first 30 terms are shown here. (c, f ) The intensity profiles resulting from
these two errors. The dashed line is the ideal intensity profile.



Iz

x1

�z

� �
¼ J2

0 A
4�

�
sin �

� �
I0z

x1

�z

� �

þ J2
1 A

4�

�
sin �

� �
I0z

x1

�z
�

n

L

� �
ð24Þ

þ J2
1 A

4�

�
sin �

� �
I0z

x1

�z
þ

n

L

� �

þ

(
J0 A

4�

�
sin �

� �
J1 A

4�

�
sin �

� �
I0z

x1

�z

� �� 	1=2

� I0z

x1

�z
�

n

L

� �� 	1=2

�0z

x1

�z
;

x1

�z
�

n

L

� �)

�

(
J0 A

4�

�
sin �

� �
J1 A

4�

�
sin �

� �
I0z

x1

�z

� �� 	1=2

� I0z

x1

�z
þ

n

L

� �� 	1=2

�0z

x1

�z
;

x1

�z
þ

n

L

� �)
þ . . . :

For the derivation of equations (22) and (24), see Appendix B.

Two obvious properties can be spotted from the intensity

profile of the two simple models. One is that the central

intensity drops according to the P–V values of the height error

distribution. This can be seen from the first term of the

asymptotic expansion of equations (22) and (24). The central

intensity is scattered according to the square of the Bessel

function. The scattered intensity is approximately

Isc ’ 1� J2
0

4�A sin �

�

� �� 	
I0z: ð25Þ

Another property is that the side peaks at the image plane

appear at the position

xsc ¼ 
�zn=L: ð26Þ

The complex transfer function for a real surface combines

equations (18) and (19). The real surface impact can be

determined by successive convolution with single spatial

frequency terms from the Fourier transform of the real

surface. When one uses the asymptotic expansion for each

individual single spatial frequency term as discussed above,

one finds the asymptotic expansion of the real surface height

error by the successive application of equations (22) and (24)

for every component of its Fourier transform. The ideal

intensity distribution for a certain Fourier transform compo-

nent is the distorted one by its previous component. Thus, the

central peak intensity from the imperfect surface decreases as

Izð0Þ ’ I0zð0Þ � J2
0

4� sin �

�
a1

� �
� J2

0

4� sin �

�
a2

� �

� . . .� J2
0

4� sin �

�
an

� �
� . . .� J2

0

4� sin �

�
b1

� �

� J2
0

4� sin �

�
b2

� �
� . . .� J2

0

4� sin �

�
bn

� �
� . . . : ð27Þ

In the above equation, a1, a2, an, . . . , b1, b2, bn, . . . are the

coefficients of the Fourier transform of the mirror surface

error function. For the ultra-smooth mirror used for X-rays,

ai, bi in the above equation are quite small: |ai|, |bi|	 �/4�sin�.

The above equation then leads to the well known result (Als-

Nielsen & McMorrow, 2011; Harvey, 1995)

Izð0Þ ’ I0zð0Þ exp �
4� sin �

�

� �2

	2

" #
; ð28Þ

where 	 is the RMS value of the height error for the spatial

frequency range within which the scattered intensity falls

outside the central cone (Shi et al., 2016). For a detailed

derivation of equation (28) from equation (27), see

Appendix C.

It is well known that the low spatial frequencies give rise

to the side peaks, which distort the focal spot shape. The

commonly used definition is the critical length of the mirror, as

discussed by various researchers (Church & Takacs, 1993;

Pardini et al., 2015; Shi et al., 2016),

W �
Lm

n
¼

L

n sin �
¼

ffiffiffi
2
p
�

� sin �
: ð29Þ

In the above equation, Lm is the mirror length and � is defined

as the angular size of the image. The previous researchers

proposed that when the spatial frequency is larger than that

defined by 1/W, the scattered intensity will have limited impact

on the focus shape. However, the exact value of � is slightly

ambiguous. We point out here that this definition is merely

another form of equation (26), with the note that � has the

same unit of radian as xs /z in equation (26). Usually � is set as
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Figure 6
(a) The Bessel functions of the zeroth to fourth order. (b) The square of
the Bessel functions.



S/z, where S is the image size. We show this value will not

guarantee us an undistorted intensity profile. Comparing

equation (29) with equation (26), if � = S/z, the spatial

frequency of 1/W will contribute a side peak at position xsc =


S=
ffiffiffi
2
p

. This is not far enough from the central cone, and it

will distort the focus shape. We propose to use the equivalent

equation (26) to determine the lowest spatial frequency to

ensure the side peaks fall far enough from the central focal

spot. The coordinate xsc in the image plane in equation (26)

can be scanned over several times the full image size to secure

a safe spatial frequency range.

Fig. 5 shows the focus degradation due to different spatial

frequency ranges. Two mirror surface height error distribu-

tions are shown, one in Fig. 5(a) and the other in Fig. 5(d).

Their power spectral density (PSD) functions (Alcock et al.,

2010), shown in Figs. 5(b) and 5(e), respectively, differ only in

an overall shift of four spatial frequency units. The lowest

spatial frequency in Fig. 5(d) will form the side peaks around

the position of 
151.6 nm at the image plane according to

equation (26). Fig. 5( f) shows that this range of spatial

frequency indeed has little impact on the intensity profile

except a decrease of the central intensity. Fig. 5(c) shows that

the low frequency, which falls within the central intensity

profile according to equation (26), plays the dominant role in

focus shape distortion.

On the other hand, the focal spot shape will be severely

distorted by the low frequency range. Even with a simple

sinusoidal or cosinusoidal surface distribution, which have

only a single spatial frequency, equations (22) and (24) show

different redistributions of the scattered intensity. This fact

prompts us to consider that, for highly coherent beam such as

DLSR or FEL, even the full knowledge of the PSD function

does not tell the whole story. In the following, the mirror

surface height error distributions have the same PSD function

as shown in Fig. 7(a).

Fig. 7(b) gives two figure errors with the same PSD function.

The only difference is the ratio of sinusoidal and cosinusoidal

terms in their Fourier decomposition. This is shown in

Figs. 7(c) and 7(d). The performance of these two distorted

surfaces are shown in Figs. 7(e) and 7( f). Fig. 7(e) shows that

the mirror surface error mainly decreases the central intensity

while preserving the intensity profile. In Fig. 7(f), on the other

hand, the main peak is split into two nearly equal parts. This

example shows that even full knowledge of the PSD function

cannot guarantee us an accurate judgement of the mirror

quality. This is due to the different behaviour of sinusoidal and

cosinusoidal terms according to equations (22) and (24).

The above physical analysis of the mechanism for intensity

profile distortion shows that the distortion mainly comes from

the low spatial frequency range. This frequency range relates

to the specific optical layout and can be calculated using an

analytical expression. Within the low spatial frequency range,

the distortion of the intensity profile is complex, and the PSD

function alone could not predict its impact. This indicates that,

for a DLSR or FEL beamline, each mirror should be treated

as a special case, especially in the low frequency range. The

theoretical approach proposed in Section 2 provides a tool for

beamline designers to quickly evaluate the impacts of imper-

fect mirrors when metrology data are available. Besides, the

fact that the low spatial frequency plays the killer role in focus

shape distortion makes adaptive optics such as bimorph

mirrors (Alcock et al., 2019ab, 2013; Sutter et al., 2019) or

refractive corrector (Laundy et al., 2019) an ideal solution for

the focus shape correction.

4. Summary

In this paper, we have developed a tool to rapidly evaluate the

performance degradation due to the imperfection of an optical

element. The effects due to the finite optical aperture size and

mirror surface height error distribution have been discussed.

These two cases are used to demonstrate the applicability of

the presented theory. Moreover, by applying the proposed

theory, we have also given a physical explanation of the

intensity profile distortion caused by the mirror surface height

error distribution. A better definition of low frequency range

has been proposed. Instead of using image size, we proposed

to use the coordinate on the image plane as the parameter for
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Figure 7
(a) PSD function of the distorted mirror surface. (b) Two surface height
errors with same PSD function. (c, d) Ratio of sinusoidal and cosinusoidal
terms in their Fourier decomposition for the corresponding two errors.
(e, f ) Intensity profiles distorted due to the two types of errors. (e)
Intensity after a mirror with a height error consisting of mainly
cosinusoidal terms in the low frequency range. ( f ) Intensity after a
mirror with a height error consisting of mainly sinusoidal terms in the low
frequency range.



low frequency range determination. Within the low frequency

range, one example is given to demonstrate that, for highly

coherent sources, even the full knowledge of the PSD function

cannot guarantee an accurate judgement of the mirror quality.

The proposed theoretical approach could help beamline

designers to evaluate optical element errors before

performing more detailed, but also more computationally

demanding, wave optics simulations. It is also useful for when

a large amount of metrology data need to be screened.

Although we use the GSM in this paper, the application of

the presented approach is not limited to this model. As long as

we obtain the CSD function after the ideal optic, the proposed

approach can be applied. As a result, the presented theoretical

approach in this paper has a wide range of applications.

APPENDIX A
Propagation of cross spectral density function through
non-ideal surface

In this section we consider only the one-dimensional cross

spectral density function. For an ideal surface, the propagation

of the cross spectral density is described by

G0zðx1; x2Þ ¼
1

�2z2

ZZ
G0ðx

0
1; x02Þ exp ik

ðx1 � x01Þ
2

2z

� 	

� exp �ik
ðx2 � x02Þ

2

2z

� 	
dx01 dx02: ð30Þ

G0(x1, x2) is the CSD function on the exit plane right after the

ideal optical surface, while G0z(x1, x2) is the ideal CSD func-

tion at the image plane. To treat a non-ideal surface, one must

include its transfer function in the propagated CSD function

as follows,

Gzðx1; x2Þ ¼
1

�2z2

ZZ
G0ðx

0
1; x02Þ tðx

0
1Þ t
�
ðx02Þ

� exp ik
ðx1 � x01Þ

2

2z

� 	

� exp �ik
ðx2 � x02Þ

2

2z

� 	
dx01 dx02: ð31Þ

Gz(x1, x2) is the non-ideal CSD function at the image plane,

t(x0) is the complex transfer function for a non-ideal surface

and t*(x0) is its conjugate. In the following, we try to establish

a relationship between G0z(x1, x2) from equation (30) and

Gz(x1, x2) from equation (31). First, we state the usual Fourier

transformF� and the inverse Fourier transform F �1
x ,

Gð�Þ ¼ F�½ f ðxÞ� ¼
R1
�1

f ðxÞ expð�i2�x�Þ dx;

f ðxÞ ¼ F �1
x ½Gð�Þ� ¼

R1
�1

Gð�Þ expði2�x�Þ d�:

ð32Þ

Besides, ‘*’ denotes the usual convolution operation,

HðxÞ ¼ f ðxÞ � gðxÞ ¼
R1
�1

f ð�Þ gðx� �Þ d�: ð33Þ

Using the definition of the Fourier transform, equation (30)

can be expanded as

G0zðx1; x2Þ ¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �
ð34Þ

�

ZZ
G0ðx

0
1; x02Þ exp ik

x01
2

2z

� �
exp �ik

x02
2

2z

� �

� exp �i2�
x1

�z
x01

� �
exp i2�

x2

�z
x02

� �
dx01 dx02

¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �
F�1

x2=�zjx0
2

(
Fx1=�zjx0

1

� G0ðx
0
1; x02Þ exp ik

x01
2

2z

� �
exp �ik

x02
2

2z

� �� 	)
:

In equation (34), Fx1=�zjx10
means performing the Fourier

transform from x01 into x1 /�z, F �1
x2=�zjx20

means performing the

inverse Fourier transform from x02 into x2 /�z. Using a similar

approach, we expand equation (31) as

Gzðx1; x2Þ ¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �

� F �1
x2=�zjx0

2

(
Fx1=�zjx0

1

"
G0ðx

0
1; x02Þ tðx

0
1Þ t
�ðx02Þ

� exp ik
x01

2

2z

� �
exp �ik

x02
2

2z

� �#)
: ð35Þ

Applying the convolution theorem of the Fourier transform

(Goodman, 2005), equation (35) can be further written as

Gzðx1; x2Þ ¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �

� F �1
x2=�zjx0

2

(
Fx1=�zjx0

1

"
G0ðx

0
1; x02Þ exp ik

x021
2z

� �

� exp �ik
x022
2z

� �#
� Fx1=�zjx0

1

tðx01Þ t
�
ðx02Þ

� �)
: ð36Þ

The convolution in equation (36) is over x1. To simplify the

discussion, we denote K(x1, x02) and H(x1, x02) as

Kðx1; x02Þ ¼ Fx1=�zjx0
1

"
G0ðx

0
1; x02Þ exp ik

x01
2

2z

� �

� exp �ik
x02

2

2z

� �#

¼

Z
G0ðx

0
1; x02Þ exp ik

x01
2

2z

� �
exp �ik

x02
2

2z

� �

� exp �i2�
x1

�z
x01

� �
dx01; ð37Þ

Hðx1; x02Þ ¼ Fx1=�zjx0
1

tðx01Þ t
�ðx02Þ

� �
¼

Z
tðx01Þ t

�ðx02Þ exp �i2�
x1

�z
x01

� �
dx01:
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Thus, equation (36) can be stated as

Gzðx1; x2Þ ¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �
� F �1

x2=�zjx0
2

Kðx1; x02Þ �Hðx1; x02Þ
� �

¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �

� F �1
x2=�zjx0

2

Z
Kð�; x02ÞHðx1 � �; x02Þ d�

� 	

¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �Z
exp i2�

x2

�z
x02

� �

�

Z
Kð�; x02ÞHðx1 � �; x02Þ d�

� 	
dx02; ð38Þ

where G(x1, x02) and H(x1, x02) are defined in equation (37).

Using Fubini’s theorem1 (Rudin, 1987), the order of the last

integration in equation (38) can be switched, giving the

following equation,

Gzðx1; x2Þ ¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �

�

Z " Z
Kð�; x02ÞHðx1 � �; x02Þ exp i2�

x2

�z
x02

� �
dx02

#
d�

¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �

�

Z (
F �1

x2=�zjx0
2

Kð�; x02ÞHðx1 � �; x02Þ
� �)

d�

¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �
ð39Þ

�

Z (
F �1

x2=�zjx0
2

Kð�; x02Þ
� �

� F �1
x2=�zjx0

2

Hðx1 � �; x02Þ
� �)

d�:

In equation (39), we use the convolution theorem of the

Fourier transform again, this time convoluting over x2 . Let

L(�, x2) and M(x1 � �, x2) be defined as

Lð�; x2Þ ¼ F �1
x2=�zjx0

2

Kð�; x02Þ
� �

¼

Z
Kð�; x02Þ exp i2�

x2

�z
x02

� �
dx02;

Mðx1 � �; x2Þ ¼ F �1
x2=�zjx0

2

Hðx1 � �; x02Þ
� �

¼

Z
Hðx1 � �; x02Þ exp i2�

x2

�z
x02

� �
dx02:

ð40Þ

Using the definition of equation (40), equation (39) is

rewritten as

Gzx1; x2Þ ¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �

�

Z
Lð�; x2Þ �Mðx1 � �; x2Þ
� �

d�

¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �
ð41Þ

�

Z Z
Lð�; �ÞMðx1 � �; x2 � �Þ d�

� 	
d�

¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �
Lðx1; x2Þ �Mðx1; x2Þ
� �

:

In equation (41), the symbol � denotes the 2D convolution.

According to the definition of L(x1, x2) in equation (40) and

the definition of G(x1, x2) in equation (37), we explicitly

rewrite L(x1, x2) as

Lðx1; x2Þ ¼ F �1
x2=�zjx0

2

Kðx1; x02Þ
� �

¼ F �1
x2=�zjx0

2

(
F

x1=�zjx0
1

"
G0ðx

0
1; x02Þ exp ik

x021
2z

� �

� exp �ik
x022
2z

� �#)
: ð42Þ

Furthermore, M(x1, x2) is written as

Mðx1; x2Þ ¼ F �1
x2=�zjx0

2

Hðx1; x02Þ
� �

¼ F �1
x2=�zjx0

2

Fx1=�zjx0
1

tðx01Þ t
�
ðx02Þ

� �
 �
: ð43Þ

With the help of the above equations, we rewrite equation (41)

as

Gzðx1; x2Þ ¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �
Lðx1; x2Þ �Mðx1; x2Þ
� �

¼
1

�2z2
exp ik

x2
1 � x2

2

2z

� �
ð44Þ

�

 
F �1

x2=�zjx0
2

(
Fx1=�zjx0

1

"
G0ðx

0
1; x02Þ exp ik

x021
2z

� �

� exp �ik
x022
2z

� �#)
� F �1

x2=�zjx0
2

(
Fx1=�zjx0

1

tðx01Þ t
�
ðx02Þ

� �)!
:

Comparing equation (44) with equation (34), we establish a

relationship between the CSD function Gz(x1, x2) for the non-

ideal surface and the CSD function G0z(x1, x2) for the ideal

surface by a 2D convolution. Explicitly, it is shown that

Gzðx1; x2Þ exp �ik
x2

1 � x2
2

2z

� �
¼

G0zðx1; x2Þ exp �ik
x2

1 � x2
2

2z

� �� 	

� F �1
x2=�zjx0

2

Fx1=�zjx0
1

tðx01Þ t
�
ðx02Þ

� �
 �
: ð45Þ
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1 By using Fubini’s theorem, we assume all the functions are bounded. This is
always true for a real physical quantity. However, the assumption made by
Fubini’s theorem excludes the very simple case of a plane wave because of its
infinite spatial distribution.



APPENDIX B
Intensity profile degradation from cosinusoidal and
sinusoidal figure error

In order to determine the effect of cosinusoidal and sinusoidal

figure errors on intensity profiles, we need some useful prop-

erties of Bessel functions of the first kind. The following

identities are given for reference. Detailed information can

be found in the literature (Wang & Guo, 1989; Whittaker &

Watson, 1996).

The relationship between the positive integer order Jn(x)

and its negative counterpart is

J�nðxÞ ¼ ð�1ÞnJnðxÞ: ð46Þ

The sum of Bessel functions has the following properties,

X1
n¼�1

J2
nðxÞ ¼ 1;

X1
m¼�1

JmþnðxÞ JmðxÞ ¼ 0; n 6¼ 0: ð47Þ

Sums over Jn(x) are also related to trigonometric functions,

expðix cos�Þ ¼
P1

n¼�1

i nJnðxÞ expðin�Þ;

expð�ix cos�Þ ¼
P1

n¼�1

ð�iÞ
n
JnðxÞ expðin�Þ;

expðix sin�Þ ¼
P1

n¼�1

JnðxÞ expðin�Þ:

ð48Þ

Equation (48) is used for the derivation of the Fourier trans-

form of cosinusoidal and sinusoidal mirror surface height

error functions.

The cosine height error function affects the intensity profile

at the image plane according to the convolution operation in

equation (10). The Fourier transform and inverse transform

terms are

Fx1=�zjx0
1

exp �i
4�

�
A cos

2n�x01
L

� �
sin �

� 	
 �
¼

X1
m¼�1

ð�iÞ
m

Jm A
4�

�
sin �

� �



x1

�z
�

mn

L

� �
;

F �1
x2=�zjx0

2

exp i
4�

�
A cos

2n�x02
L

� �
sin �

� 	
 �
¼

X1
m¼�1

imJm A
4�

�
sin �

� �



x2

�z
�

mn

L

� �
:

ð49Þ

As in previous sections, Fx1=�zjx10
denotes a Fourier transform

from x01 into x1 /�z. Similarly, F �1
x2=�zjx20

denotes an inverse

Fourier transform from x02 into x2 /�z. By combining the above

equation and equation (10), the intensity distribution at the

image plane when the mirror has a cosinusoidal surface height

error can be written as

Iz

x1

�z

� �
¼

 (
I0z

x1

�z

� �� 	1=2

I0z

x2

�z

� �� 	1=2

� �0z

x1

�z
;

x2

�z

� �
exp �i��z

x2
1 � x2

2

�2z2

� �)
ð50Þ

�

" X1
m¼�1

ð�iÞ
m

Jm A
4�

�
sin �

� �



x1

�z
�

mn

L

� �#

�

" X1
l¼�1

i l Jl A
4�

�
sin �

� �



x2

�z
�

ln

L

� �#!�����
x1¼x2

:

In order to preserve the wavefront as much as possible, the

mirrors required for X-ray optics are usually ultra-smooth.

That means the P–V value of 2 A should be quite small. Fig. 6

shows the figure of Bessel functions and their squared values.

Under the ultra-smooth mirror surface assumption, the high-

order Bessel functions are much smaller than the low-order

Bessel functions. This leads to the asymptotic expansion of

equation (22),

Iz

x1

�z

� �
¼ J2

0 A
4�

�
sin �

� �
I0z

x1

�z

� �

þ J2
1 A

4�

�
sin �

� �
I0z

x1

�z
�

n

L

� �

þ J2
1 A

4�

�
sin �

� �
I0z

x1

�z
þ

n

L

� �
þ . . . : ð51Þ

Similarly, for a sinusoidal figure error distribution, the Fourier

transform and inverse transform terms for the sine function in

equation (10) are

Fx1=�zjx0
1

exp �i
4�

�
A sin

2n�x01
L

� �
sin �

� 	
 �
¼

X1
m¼�1

Jm A
4�

�
sin �

� �



x1

�z
�

mn

L

� �
;

F �1
x2=�zjx0

2

exp i
4�

�
A sin

2n�x02
L

� �
sin �

� 	
 �
¼

X1
m¼�1

Jm A
4�

�
sin �

� �



x2

�z
�

mn

L

� �
:

ð52Þ

The intensity distribution at the image plane when the mirror

has a sinusoidal surface height error can be written as

Iz

x1

�z

� �
¼

 (
I0z

x1

�z

� �� 	1=2

I0z

x2

�z

� �� 	1=2

� �0z

x1

�z
;

x2

�z

� �
exp �i��z

x2
1 � x2

2

�2z2

� �)
ð53Þ

�

" X1
m¼�1

Jm A
4�

�
sin �

� �



x1

�z
�

mn

L

� �#

�

" X1
l¼�1

Jl A
4�

�
sin �

� �



x2

�z
�

ln

L

� �#!�����
x1¼x2

:
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The first few terms of the asymptotic expansion of (24) are

Iz

x1

�z

� �
¼ J2

0 A
4�

�
sin �

� �
I0z

x1

�z

� �

þ J2
1 A

4�

�
sin �

� �
I0z

x1

�z
�

n

L

� �

þ J2
1 A

4�

�
sin �

� �
I0z

x1

�z
þ

n

L

� �

þ J0 A
4�

�
sin �

� �
J1 A

4�

�
sin �

� �

� I0z

x1

�z

� �� 	1=2

I0z

x1

�z
�

n

L

� �� 	1=2

ð54Þ

� �0z

x1

�z
;

x1

�z
�

n

L

� �

� J0 A
4�

�
sin �

� �
J1 A

4�

�
sin �

� �
I0z

x1

�z

� �� 	1=2

� I0z

x1

�z
þ

n

L

� �� 	1=2

�0z

x1

�z
;

x1

�z
þ

n

L

� �
þ . . . :

APPENDIX C
From Bessel function to exponential function

The squared zeroth-order Bessel function J2
0ðzÞ can be

approximated by the Gaussian function exp(�z2/2). The

power series of J2
nðxÞ is (Wang & Guo, 1989; Whittaker &

Watson, 1996)

J2
nðxÞ ¼

Xþ1
m¼ 0

ð�1Þmð2nþ 2mÞ!

m!ð2nþmÞ! ðnþmÞ!½ �
2

x

2

� �2nþ2m

: ð55Þ

Around z = 0, the above equation can be approximated by

J2
0ðzÞ ¼ 1�

z2

2
þ

3z4

32
þ oðz6

Þ: ð56Þ

By comparing with the series expansion of the Gaussian

function exp(�z2/2), the squared zeroth-order Bessel function

at around z = 0 can be approximated as

J2
0ðzÞ ¼ exp �z2=2

� �
� ð1=32Þ z4

þ oðz6
Þ

¼ exp �z2=2
� �

þ oðz4Þ: ð57Þ

For the ultra-smooth mirrors used for X-rays, ai , bi in equation

(27) are quite small, |ai|, |bi| � �/4�sin�. Then equation (27)

can be approximated as

Izð0Þ ’ I0zð0Þ exp �
4� sin �

�

� �2
1

2

Xþ1
n¼ 1

a2
n þ b2

n

� �" #
: ð58Þ

From Parseval’s equality (Boggess & Narcowich, 2015), the

above result is equivalent to the well known one (Als-Nielsen

& McMorrow, 2011; Harvey, 1995),

Izð0Þ ¼ I0zð0Þ exp �
4� sin �

�

� �2

	2

" #
; ð59Þ

where 	 is the RMS value of the mirror height error.
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