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Synchrotron radiation was originally studied by classical methods using the

Liénard–Wiechert potentials of electric currents. Subsequently, quantum

corrections to the classical formulas were studied, considering the emission of

photons arising from electronic transitions between spectral levels, described in

terms of the Dirac equation. In this paper, an intermediate approach is

considered, in which electric currents generating the radiation are considered

classically while the quantum nature of the radiation is taken into account

exactly. Such an approximate approach may be helpful in some cases; it allows

one to study one-photon and multi-photon radiation without complicating

calculations using corresponding solutions of the Dirac equation. Here, exact

quantum states of an electromagnetic field interacting with classical currents are

constructed and their properties studied. With their help, the probability of

photon emission by classical currents is calculated and relatively simple formulas

for one-photon and multi-photon radiation are obtained. Using the specific

circular electric current, the corresponding synchrotron radiation is calculated.

The relationship between the obtained results and those known before are

discussed, for example with the Schott formula, with Schwinger calculations,

with one-photon radiation of scalar particles due to transitions between Landau

levels, and with some previous results of calculating two-photon synchrotron

radiation.

1. Introduction

As a rule, the motion of charged particles in external elec-

tromagnetic fields is accompanied by electromagnetic radia-

tion. Important examples, at the same time related to the

present work, are synchrotron radiation (SR) and cyclotron

(CR) radiation of charged particles in a magnetic field. The

phenomenon of SR was discovered approximately 70 years

ago (Elder et al., 1947). A large number of works have been

devoted to its theoretical description, within the framework of

both classical and quantum theory. In both cases, various

approximate methods and limiting cases were considered. In

classical electrodynamics the electromagnetic field created by

an arbitrary electric four-current is described by the Liénard–

Wiechert (LW) potentials (Landau & Lifshitz, 1971; Jackson,

1998). It turns out that SR can be described sufficiently

precisely in the framework of the classical theory (using LW

potentials). Schott was the first to obtain a successful formula

for the angular distribution of the power emitted in SR by a

particle moving in a circular orbit (Schott, 1907a,b, 1912). An

alternative derivation of the classical formulas describing

the properties of SR and their deep analysis, especially for

high-energy relativistic electrons, was given by Schwinger
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(Schwinger, 1949). Nevertheless, quantum effects may play an

important role in SR and CR. In particular, the effects of a

back-reaction related to photon radiation, aspects of the

discrete structure of the energy levels of electrons in the

magnetic field, and the spin properties of charged particles

are ignored by classical theory. In this relation, one should

mention a new treatment of classical radiative effects, in

particular radiation reactions of the electromagnetic field, via

effective field theory methods, with an action principle in

classical contexts, in particular in the framework of the closed

time path formalism (see Birnholtz et al., 2013, 2014). The

essence of quantum corrections to classical results was first

pointed out by Schwinger (1954). In quantum theory, the

radiation rate of the energy of a charge particle in the course

of quantum transitions was calculated using exact solutions of

the Schrödinger (nonrelativistic case), Klein–Gordon (spinless

case) or Dirac (relativistic case) equations with a magnetic

field (Sokolov & Ternov, 1957, 1968, 1986). Using his source

theory (Schwinger, 1970, 1973b), Schwinger had presented an

original derivation of similar results (Schwinger, 1973a). The

quantum treatment revealed a completely new effect of self-

polarization of electrons and positrons moving in a uniform

and constant magnetic field (Sokolov & Ternov, 1963a,b). We

note that in the latter works only one-photon radiation in

the course of quantum transitions was taken into account.

However, it has been shown that a multi-photon emission can

contribute significantly to the SR (see, for example, Sokolov et

al., 1976a,b). For electromagnetic fields exceeding the critical

Schwinger field, H0 = m2c3=eh- , nonlinear phenomena of

quantum electrodynamics begin to play a prominent role.

Moreover, at fields comparable with the critical field one can

observe nonlinear quantum effects caused by ultrarelativistic

particles with high enough momenta. Some examples of such

effects [of the orders of �, �2 (� is a fine-structure constant)

in the interaction with the radiation field] are one-photon

emission by electrons (e ! e�; �), pair production by

photons (� ! eþe�; �), electron scattering accompanied by

pair production (e ! eeþe�; �2), the two-photon emission

process (e ! e2�; �2) etc. If an incident particle has a

momentum p ’ ðH0=HÞm, then the probabilities of such

processes become sufficiently high, and the processes cannot

be disregarded.

It should be noted that even the calculation of one-photon

radiation using the solutions of the above-mentioned quantum

equations is a very complex task. There is an opportunity to

simplify these calculations considering in the same relatively

simple manner multi-photon radiation taking the quantum

nature of the irradiated field into account exactly but

considering the particle current classically. This means that we

neglect the back-reaction of the radiation to the current that

generates this radiation. Such an approximation may be

justified in some cases, for example for high-density electron

beams. From a technical point of view, this means that for

calculating the electromagnetic radiation induced by classical

electric currents we have to work with exact quantum states of

the electromagnetic field interacting with classical currents.

Such an approach is considered in the present work. For these

purposes, we first construct exact quantum states of the elec-

tromagnetic field interacting with classical currents and study

their properties. Then, with their help, we calculate the

probability of photon emission by a classical current from

the vacuum initial state (i.e. from the state without initial

photons). Then we obtain relatively simple formulas for one-

photon and multi-photon radiation. Using the specific circular

electric current we calculate the corresponding SR. We discuss

the relationship between the obtained results and those

already known, for example with the Schott formula, with

Schwinger calculations, with one-photon radiation of scalar

particles due to transitions between Landau levels, and with

some known results of calculating two-photon SR. Further

technical details can be found in Appendices A, B and C.

2. Quantum states of the radiation field interacting
with a classical current

Here we consider the quantized electromagnetic field inter-

acting with a classical current j� xð Þ (see Heitler, 1936;

Schweber, 1961; Bogoliubov & Shirkov, 1980a; Akhiyeser &

Berestetskii, 1981; Gitman & Tyutin, 1986, 1990). In the

Coulomb gauge this system is described by a Hamiltonian ĤH

which consists of two terms, a Hamiltonian of free transversal

photons ĤH� and an interaction Hamiltonian ĤHint,

ĤH ¼ ĤH� þ ĤHint; ĤH� ¼ ch-
X
�¼1;2

Z
dk k0ĉc

y
k�ĉck�;

ĤHint ¼
1

c

Z
ji xð ÞÂAi rð Þ þ

1

2
j0 xð ÞA0 xð Þ

� �
dr:

ð1Þ

Here ÂAi rð Þ are operators (in the Schrödinger representation)

of vector potentials of the transversal electromagnetic field,

ÂAi rð Þ ¼ 4�ch-ð Þ
1=2
X2

�¼1

Z
dk ĉck� f i

k� rð Þ þ ĉc
y
k� f i�

k� rð Þ
h i

;

i ¼ 1; 2; 3; ð2Þ

f i
k� rð Þ ¼

exp ikrð Þ

2k0 2�ð Þ3
� �1=2

�i
k�; k0 ¼ kj j; ð3Þ

where �i
k� are the polarization vectors of the photon with

wavevector k and polarization � = 1, 2. These vectors possess

the properties

���k����
�
k� ¼ 	��; ���k�k ¼ 0;

X2

�¼1

� i
k��

j�
k� ¼ 	

ij
�

k ik j

kj j2
: ð4Þ

Operators ĉck� and ĉc
y
k� are the annihilation and creation

operators of photons with a wavevector k and polarizations �.

These operators satisfy the commutation relations,

ĉck�; ĉc
y
k0�0

h i
¼ 	��0	 k� k0ð Þ;

ĉck�; ĉck0�0

� �
¼ ĉc
y
k�; ĉc
y
k0�0

h i
¼ 0:

ð5Þ

Using equations (2)–(4) one can verify that the operator ÂAi rð Þ

satisfies the condition div ÂA rð Þ = 0. We note that in the
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Coulomb gauge A0 xð Þ is a c-valued scalar function which

satisfies the following equations,

A0 xð Þ ¼

Z
dr0

j0 r0; tð Þ

r� r0j j
; �A0 xð Þ ¼ �4�j0 xð Þ: ð6Þ

Then the term j0 xð ÞA0 xð Þ=2 can be represented as

�2�j0 xð Þ��1j0 xð Þ, and, in the general case, is time dependent.

The evolution of state vectors � tð Þ
�� �

of the quantized

electromagnetic field is governed by the Schrödinger equa-

tion,

ih- @t � tð Þ
�� �

¼ ĤH � tð Þ
�� �

: ð7Þ

The general solution of equation (7) can be written in the

following form (see Bagrov et al., 1974, 1976, 2011),

� tð Þ
�� �

¼ U tð Þ � 0ð Þ
�� �

; ð8Þ

U tð Þ ¼ exp �ih- �1ĤH� t
� �

exp �ih- �1B̂B tð Þ
� �

;

B̂B tð Þ ¼
1

c

Zt

0

dt0
Z �

ji x0ð Þ ÂAi x0ð Þ þ
1

2
~AAi x0ð Þ

� �

þ
1

2
j0 x0ð ÞA0 x0ð Þ

	
dr0; ð9Þ

~AAi xð Þ ¼
1

h- c

Zt

0

dt0
Z

D0 x� x0ð Þ	ik
? j k x0ð Þ dr0;

ÂAi xð Þ ¼ 4�ch-ð Þ
1=2
X2

�¼1

Z
dk ĉck� f i

k� xð Þ þ ĉc
y
k� f i�

k� xð Þ
h i

;

f i
k� xð Þ ¼ f i

k� rð Þ exp �ik0ctð Þ;

where U tð Þ is an evolution operator, and � 0ð Þ
�� �

is an initial

state of the quantized electromagnetic field at the time instant

t = 0. The detailed proof that vector (8) is the solution of

equation (7) can be found in Appendix A.

The singular function D0 x� x0ð Þ can be obtained from the

Pauli–Jordan permutation function at m = 0 (see, for example,

Bogoliubov & Shirkov, 1980b),

D0 x� x0ð Þ ¼ 0;

D0 x� x0ð Þ ¼ 4�ch-
i

2�ð Þ3

Z
dk

2k0

n
exp �ik x� x0ð Þ½ �

� exp ik x� x0ð Þ½ �

o
: ð10Þ

It defines nonequal-time commutation relations for the

operators ÂAi xð Þ,

ÂAi xð Þ; ÂAj x0ð Þ
h i

¼ �i	ij
?D0 x� x0ð Þ;

	ij
? ¼ 	

ij
���1 @ i@ j; ð11Þ

and is related to the retarded Dret x� x0ð Þ and advanced

Dadv x� x0ð Þ Green’s functions of the D’Alembert equations,

Z t

0

dt0D0 x� x0ð Þ ¼

Z 1
0

dt0Dret x� x0ð Þ;

D0 x� x0ð Þ ¼ Dret x� x0ð Þ �Dadv x� x0ð Þ;

Dret x� x0ð Þ ¼ 
 t � t0ð ÞD0 x� x0ð Þ;

Dadv x� x0ð Þ ¼ 
 t0 � tð ÞD0 x� x0ð Þ;

Dret x� x0ð Þ ¼ Dadv x� x0ð Þ ¼ 	 x� x0ð Þ:

ð12Þ

Taking into account equations (12), one can see that the

functions ~AAi xð Þ represent retarded potentials created by a

classical current (see, for example, Landau & Lifshitz, 1971;

Galtsov et al., 1991).

It is useful to represent the evolution operator U tð Þ as

U tð Þ ¼ exp
�
i� tð Þ

�
exp �ih- �1ĤH� t


 �
D yð Þ; ð13Þ

D yð Þ ¼ exp
X2

�¼1

Z
dk yk� tð Þ ĉc

y
k� � y�k� tð Þ ĉck�

h i( )
; ð14Þ

� tð Þ ¼ �
1

2c

Z t

0

dt0
Z

ji x0ð Þ ~AAi x0ð Þ þ j0 x0ð ÞA0 x0ð Þ
� �

dr0;

yk� tð Þ ¼ �i
4�

h- c

� 
1=2Z t

0

dt0
Z

ji x0ð Þ f i�
k� x0ð Þ dr0: ð15Þ

In the following we omit the argument tð Þ in functions yk� tð Þ to

make the formulas more compact.

We recall some basic relations for the displacement

operator Dð�Þ in the Coulomb gauge,

D
y
ð�Þ ¼ D�1

ð�Þ; j�i ¼ Dð�Þj0i; ĉck�j�i ¼ �k�j�i; ð16Þ

D
y
ð�Þ ĉck�Dð�Þ ¼ ĉck� þ �k�; D

y
ð�Þĉc
y
k�Dð�Þ ¼ ĉc

y
k� þ �

�
k�:

With their help we obtain

DðyÞ 0j i ¼ exp �
1

2

X2

�¼1

Z
dk yk�

�� ��2 !

� exp
X2

�¼1

Z
dk yk�ĉc

y
k�

 !
0j i: ð17Þ

3. Electromagnetic radiation induced by a classical
current

One can use the constructed state vector (8) to study elec-

tromagnetic radiation induced by a classical current. For

simplicity, we choose the vacuum 0j i as the initial state � 0ð Þ
�� �

at t = 0 in equation (8). The time evolution of this initial state

follows from the latter equation,

� tð Þ
�� �

¼ exp
�
i� tð Þ

�
exp �ih- �1 ĤH� t

� �
D yð Þ 0j i: ð18Þ

Using equation (18), we can calculate the probability of

photon emission.

When operating in a continuous Fock space (see Schweber,

1961), a state with N photons is formed by the repeated action
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of the photon creation operators on the vacuum 0j i, and has

the form

Nf gj i ¼ N!ð Þ�1=2
YN

i¼1

ĉc
y
ki�i

0j i; ð19Þ

where ĉc
y
ki�i

are creation operators of photons with wavevector

ki and polarizations �i, Nf g = k1�1; k2�2; . . . ; kN�N


 �
.

A probability amplitude R Nf g; tð Þ of the transition from the

vacuum state 0j i to the state (19) for the time interval t reads

R Nf g; tð Þ ¼ exp
�
i� tð Þ

�
0h j N!ð Þ�1=2

YN

i¼1

ĉcki�i

 !

� exp �iĤH� t
� �

D yð Þ 0j i: ð20Þ

Using properties (16) and (17) of the displacement operator

D yð Þ, and commutation relations (5), one can represent

amplitude (20) as follows,

R Nf g; tð Þ ¼ R 0; tð Þ N!ð Þ�1=2
YN

i¼1

exp �i ki

�� ��ct
� �

yki�i
;

R 0; tð Þ ¼ h0 � tð Þ
�� �

¼ exp
�
i� tð Þ

�
exp �

1

2

X2

�¼1

Z
dk yk�

�� ��2 !
:

ð21Þ

Then the corresponding differential probability P Nf g; tð Þ of

such a transition (which we interpret as differential probability

of the photon emission) has the form

P Nf g; tð Þ ¼ R Nf g; tð Þ
�� ��2¼ p Nf g; tð ÞP 0; tð Þ;

p Nf g; tð Þ ¼ N!ð Þ�1
YN

i¼1

��yki�i

��2;
P 0; tð Þ ¼ jR 0; tð Þj2 ¼ exp �

X2

�¼1

Z
dk yk�

�� ��2 !
;

ð22Þ

where P 0; tð Þ is thevacuum-to-vacuum transition probability,

or the probability of a transition without any photon emission.

Thus, p Nf g; tð Þ is the relative probability of a process in which

N photons with quantum numbers ki�i are emitted (the rela-

tive differential probability).

One can obtain the total probability P N; tð Þ of the transition

from the vacuum state 0j i to the state with N arbitrary

photons, summing the quantity p Nf g; tð Þ over the sets Nf g.

Thus, we obtain1:

P N; tð Þ ¼
X

Nf g

P Nf g; tð Þ ¼ P 0; tð Þ p N; tð Þ;

X
Nf g

¼
YN

i¼1

X
�i

Z
dki

 !
;

p N; tð Þ ¼ N!ð Þ�1
YN

i¼1

X
�i

Z
dki

��yki�i

��2 !
:

ð23Þ

Introducing a total probability P tð Þ of the photon emission for

the time interval t as follows,

P tð Þ ¼
X1
N¼1

P N; tð Þ

¼ P 0; tð Þ
X1
N¼1

N!ð Þ�1
YN

i¼1

X
�i

Z
dki

��yki�i

��2 !
; ð24Þ

one can easily verify that the relation P 0; tð Þ þ P tð Þ = 1 holds

true.

The electromagnetic energy of Nf g photons with given

quantum numbers k�f g = (ki�i, i = 1; 2; . . . ;N) depends only

on their momenta kf g = (ki, i = 1; 2; . . . ;N) and does not

depend on their polarizations; it is equal to

W Nf gð Þ ¼ h- c
XN

i¼1

ki

�� ��" #
: ð25Þ

Then the total electromagnetic energy W N; tð Þ of N emitted

photons reads

W N; tð Þ ¼
X

Nf g

W Nf gð Þ p Nf g; tð Þ

¼ h- c N!ð Þ�1
X2

�1¼1

X2

�2¼1

. . .
X2

�N¼1

�

Z
dk1 dk2 . . . dkN

XN

j¼1

��ki

��" #YN

i¼1

��yki�i

��2: ð26Þ

It is easy to demonstrate (see Appendix B) that W N; tð Þ can be

represented as

W N; tð Þ ¼
A

N � 1ð Þ!

X2

�¼1

Z
dk yk�

�� ��2 !N�1

;

A ¼ h- c
X2

�¼1

Z
dk k0 yk�

�� ��2; k0 ¼ kj j:

ð27Þ

Finally, we calculate the total energy W tð Þ of emitted photons,

W tð Þ ¼
X1
N¼1

W N; tð Þ: ð28Þ

The sum (28) can be calculated exactly, taking into account

equation (27),

W tð Þ ¼ A exp
X2

�¼1

Z
dk yk�

�� ��2: ð29Þ

4. One-photon radiation by a circular current

Here we study one-photon radiation from the vacuum induced

by a specific circular current. Here we are interested in

calculating one-photon radiation, so we will discuss the

probability of the appearance of one photon with given

quantum numbers k and � = 1, 2. Thus, we consider a transi-
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tion amplitude from the state (18) to the final state of the form

(19) with N = 1. Using (26), we write one-photon emission as

W 1; tð Þ ¼ h- c
X2

�¼1

Z
dk k0 yk�

�� ��2; k0 ¼ kj j: ð30Þ

Let us consider a circular current formed by electrons moving

perpendicularly to an external uniform and constant magnetic

field H = 0; 0;Hð Þ with the velocity v along a circular trajec-

tory of radius R. Such a current has the following form

(Sokolov & Ternov, 1986),

j0 xð Þ ¼ q	 3ð Þ r� r tð Þ½ �; j xð Þ ¼ q_rr tð Þ 	 3ð Þ r� r tð Þ½ �;

r tð Þ ¼ R cos!t;R sin!t; 0ð Þ;

v tð Þ ¼ _rr tð Þ ¼ !R � sin!t; cos!t; 0ð Þ;

ð31Þ

where q = �e, e > 0 is the electron charge, and ! = eH=mc is

the cyclotron frequency. We disregard the back-reaction of the

radiation, i.e. we suppose that the current is maintained in its

original form during the time interval �t = t.

The energy W 1; tð Þ for the current (31) reads

W 1; tð Þ ¼
q2!2

2�

Xþ1
n¼�1

Z 1
0

dk0

�

Z �

0

sin 
 d
 n2J 2
n k?Rð Þ cot2 
 þ k2

0 R2J0 2n k?Rð Þ
� �

�

Z t

0

dt0 exp i ck0 � n!ð Þt0
� �����

����
2

: ð32Þ

The details on calculation of equation (31) can be found in

Appendix C.

4.1. Derivation of the Schott formula

Let us study the time behaviour of the energy W 1; tð Þ of the

one-photon emission (32). One can see that at t!1 this

quantity as a function of time is not well defined. However, a

real physical meaning has the rate w tð Þ of the energy emission,

which is the time derivative of W 1; tð Þ,

w tð Þ ¼ @tW 1; tð Þ ¼
q2!2

2�

Xþ1
n¼�1

K tð Þ

Z 1
0

dk0

�

Z �

0

sin 
 n2J2
n k?Rð Þ cot2 
 þ k2

0R2J0 2n k?Rð Þ
� �

d
; ð33Þ

K tð Þ ¼
@

@t

Z t

0

dt0 exp i ck0 � n!ð Þt0
� �����

����
2

:

To compare with the Schott result, we have to consider w tð Þ as

t!1. In fact the problem is reduced to calculating

limt!1K tð Þ: This limit can be easily calculated,

lim
t!1

K tð Þ ¼ lim
t!1

2 sin ck0 � n!ð Þ t

ck0 � n!
¼ 2�	 ck0 � n!ð Þ ð34Þ

(see, for example, Sokolov & Ternov, 1986). Taking equation

(34) into account and the fact that the delta-function on the

right-hand side of equation (34) vanishes for negative n, we

obtain

lim
t!1

w tð Þ ¼
q2!2

c

Xþ1
n¼1

n2

Z �

0

sin 


�
J2

n

n!R

c
sin 


� 

cot2 


þ
!2R2

c2
J0 2n

n!R

c
sin 


� 
�
d
: ð35Þ

The result (35) reproduces literally the Schott formula for the

rate of the energy radiation by a classical current.

4.2. Schwinger calculations of the one-photon radiation

Schwinger (1949) considered classical SR, using a method

based on an examination of the energy transfer rate from the

electron to the electromagnetic field. Later he calculated the

quantum corrections of the first order in h- to the classical

formula, taking into account the quantum nature of the

radiating particle but neglecting its spin properties

(Schwinger, 1954). In 1973 he reexamined the problem,

utilizing the source theory to obtain the quantum expression

for the spectral distribution of the radiated power (Schwinger,

1973a).

Schwinger (1949) presented several different distributions

of the instantaneous power. Among them was an expression

for the power radiated into a unit solid angle about the

direction n = cos’ cos 
; sin ’ cos 
; sin 
ð Þ and contained a

unit angular frequency interval about the frequency ck0,

P n; k0ð Þ ¼
X1
n¼1

	 ck0 � n!ð ÞPn nð Þ;

Pn nð Þ ¼
!2R

c2

q2

2�
n2

�
!2R2

c2
J0 2n

n!R

c
cos 


� 


þ
sin2 


cos2 

Jn

n!R

c
cos 


� 
�
:

ð36Þ

The total radiated power can be calculated as

P ¼

Z 1
0

c dk0

Z
P n; k0ð Þ d�: ð37Þ

Considering the high-frequency radiation,

1�
!2R2

c2
� 1; 
 � 1; n� 1; ð38Þ

and using the connection between the Airy and Bessel func-

tions, Schwinger obtained an alternative representation for his

result in the form

Pn nð Þ ¼
q2!

6�2R
n2 1� !2R2=c2 þ 
2

 �2

� K2
2=3 �ð Þ þ


2K2
1=3 �ð Þ

1� !2R2=c2 þ 
2

� �
;

� ¼
n

nc

1� !2R2=c2 þ 
2

1� !2R2=c2

� 
3=2

;

ð39Þ

and nc is a critical harmonic number (Schwinger, 1949). Note

that a formal difference in angular distribution between (36)

and (35) appear due to different notation and does not lead to

any differences in the final values.

Schwinger (1954) considered the quantum corrections of

the first order in h- to the classical formula, taking into account
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the quantum nature of the radiating electron. He neglected

the spin properties as at this level of accuracy the spin degrees

of freedom play no role for unpolarized particles. The first-

order in the h- correction to the classical formula (37) can be

obtained from the classical expression for the differential

radiation probability ck0ð Þ
�1

P n; ck0ð Þ (Schwinger, 1954) by

making the substitution

ck0 ! ck0 1þ
h- ck0

E

� 

: ð40Þ

The total radiated power with the first-order quantum

corrections obtained by Schwinger reads

w ¼
2

3
!

q2

R

E

mc2

� 
4

1�
ffiffiffi
3
p 55

16

h-

mcR

E

mc2

� 
2

þO h- 2

 �" #

: ð41Þ

Schwinger (1973a) considered the radiation of a spinless

charged particle in a homogeneous magnetic field, and

obtained the spectral distribution of the radiated power w k0ð Þ

(here c = h- = 1) in the form

w k0ð Þ ¼
ck0q2

�m

m2

E2

� Z 1
0

dx

x
1þ 2x2

 �

� sin
ck0

!

m

E

� �3

x�
x3

3

� 
� �
�

1

2
�

	
;

x ¼
1

2
!t

E

m
: ð42Þ

According to the author, equation (42) in the classical limit

reproduces the Schott formula.

Note that the formulas (43) and (42) include both the

corrections due to electron recoil and the effects of quanti-

zation of the electromagnetic field. As for the comparison with

our result, the angular distributions coincide with the Schott

formula and are not affected by quantum corrections.

4.3. One-photon radiation of scalar particles due to
transitions between Landau levels

When presenting the results obtained by other authors, we

use the same system of units that was utilized in the cited

articles.

There is a different approach to calculation of radiation of

the spinless charged particle due to one-photon transitions

between the energy levels presented by Bordovitsyn (2002)

and Bagrov (1965). These calculations are based on the exact

solutions of the Klein–Gordon equation in a uniform magnetic

field (the Furry picture approach). The spectral angular

distribution of the radiated power in this approach has the

form

w ¼
27

16�2
w0


2"�5=2
0

Z 1
0

dy

Z �

0

sin 
 d


1þ 
yð Þ
3 y2

� "2K2
2=3 z0ð Þ þ " cos 
K2

1=3 z0ð Þ
� �

;

ð43Þ

w0 ¼
8

27

q2m2c2

h- 2
; 
 ¼

3

2

eh- H

m2c3

E

mc2
; "0 ¼

mc2

E

� 
2

;

z0 ¼
y

2

"

"0

� 
3=2

; " ¼ 1�
!2R2

c2
sin2 
; E ¼

mc2

1� !2R2=c2ð Þ
1=2
;

where Kn z0ð Þ are Airy functions, and E is the electron energy.

Unfortunately, no representation of (43) in terms of the Bessel

functions is given by the authors; however, it is claimed that

equation (43) in the limit h- ! 0 reproduces the classical

result.

5. Two-photon radiation

The probability p 2; tð Þ and the energy W 2; tð Þ of the two-

photon radiation for a circular current (31) have the form

p 2; tð Þ ¼
�2

2�ð Þ2

Z
dk

2k0

k�2
0 F1 k; tð Þ cot2 
 þ R2F2 k; tð Þ

� �� 	2

;

W 2; tð Þ ¼
�2h- c

2�ð Þ2

Z
dk k�2

0 F1 k; tð Þ cot2 
 þ R2F2 k; tð Þ
� �� 	

ð44Þ

�

Z
dk0

k00
k0�2

0 F1 k0; tð Þ cot2 
0 þ R2F2 k0; tð Þ
� �� 	

;

where

F1ðk; tÞ ¼
Xþ1

n¼�1

nJn k?Rð ÞF n
k ’; tð Þ

�����
�����

2

;

F2ðk; tÞ ¼
Xþ1

n¼�1

J0n k?Rð ÞF n
k ’; tð Þ

�����
�����

2

:

ð45Þ

It is useful to compare our results with the calculations of two-

photon radiation presented in other works. Voloshchenko et

al. (1976) considered the bremsstrahlung of relativistic elec-

trons in the so-called approximation of soft photons (the total

energy of emitted photons is much less than the energy of a

relativistic electron). Our initial assumption, that the classical

current jðxÞ remains unchanged, despite the radiation losses,

matches with this approximation. Voloshchenko et al. (1976)

had used the expression for the instantaneous spectral distri-

bution of the radiation energy of an electron using the

Liénard–Wiechert potentials. In such a way they obtained the

total electromagnetic energy of the one-photon radiation. If

the electric current in the latter quantity is taken in the form

(31), it coincides with our result W 1; tð Þ given by equation

(32). Then the probability of emitting a photon is defined by

the authors as p 1f g; tð Þ = W f1g; tð Þ= h- ck0ð Þ [here W f1g; tð Þ is the

integrand of W 1; tð Þ] and the probability p Nf g; tð Þ of emitting

Nf g soft photons in a narrow range of angles along the elec-

tron motion direction reads

p Nf g; tð Þ ¼
YN

i¼1

p 1ki�i
; t


 �
¼
YN

i¼1

yki�i

��� ���2: ð46Þ

According to the authors, ‘when integrating in a finite interval

of frequencies and directions, one must introduce a factor

N!ð Þ�1 that takes into account the identity of the photons’.

Thus, they arrive at our result (22), which contains such a

factor for any momenta k without heuristic prescriptions. It is
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easy to verify that using the same approximation of the small

difference between the angles ’1 and ’2 of photons emitted,

�’ = ’1 � ’2ð Þ � 1, we obtain from equation (32) for the

probability of the two-photon radiation the following result,

p 2; tð Þ ¼
25

24
�2!��’; � ¼ 1� !2R2=c2


 ��1=2
: ð47Þ

It coincides with that of the work (Voloshchenko et al., 1976).

It should be noted that Sokolov et al. (1976a),b) calculated

two-photon synchrotron emission considering electron tran-

sitions between Landau levels by the help of the corre-

sponding solutions of the Dirac equation. In the

approximation accepted in the work (Voloshchenko et al.,

1976) they derived corrections to equation (47) of the order h-

due to the quantum nature of the electron and due to its spin.

6. Concluding remarks

As was noted in the Introduction, SR was originally studied by

classical methods using the Liénard–Wiechert potentials of

electric currents. Subsequently, it became clear that in some

cases quantum corrections to classical results may be impor-

tant. These corrections were studied considering the emission

of photons arising from electronic transitions between spectral

levels, described in terms of the Dirac equation. In this paper,

we have considered an intermediate approach, in which

electric currents generating the radiation are treated classi-

cally while the quantum nature of the radiation is taken into

account exactly. Such an approximate approach allows one

to study one-photon and multi-photon radiation without

complicating calculations using corresponding solutions of the

Dirac equation. We have constructed exact quantum states (8)

of the electromagnetic field interacting with classical currents

and studied their properties. With their help, we have calcu-

lated the probability of photon emission by classical currents

from the vacuum initial state and obtained relatively simple

general formulas for one-photon and multi-photon radiation.

Using the specific circular electric current, we have calculated

the corresponding one-photon and two-photon SR. It was

demonstrated that the emitted single-photon power per unit

time in the limit t!1 coincides with the classical expression

obtained by Schott. This is not strange, since Schott’s result

was already semi-classical, since he treated the electro-

magnetic field in terms of Maxwell’s equations. It is well

known that (see, for example, Akhiyeser & Berestetskii,

1981), in fact, Maxwell equations can be interpreted as the

Schrödinger equation for a single photon; the absence of the

Planck constant h- in these equations as well as in the Schott

formula is associated with the masslessness of the photon. The

consideration of the electromagnetic radiation in a semi-

classical manner, using Maxwell’s equations, often allows one

to study quantum effects of radiation (Jaynes & Cummings,

1963). Schwinger’s calculations of SR contain h- since he used

elements of quantum field theory that take into account the

quantum character of electron motion and in the limit h- ! 0

lead to the Schott result. The same situation takes place with

calculations of the SR of a spinless charged particle due to

transitions between energy levels with one-photon emission

presented by Bordovitsyn (2002) and Bagrov (1965). The

proposed approach provides an opportunity to separate the

effects of radiation associated with the quantum nature of the

electromagnetic field from the effects caused by the quantum

nature of the electron. The calculation of multiphoton

corrections is significantly simplified compared, for example,

with the approach described by Sokolov et al. (1976a,b) and

Voloshchenko et al. (1976), where a two-photon correction to

the radiation of an electron moving in a circular orbit in a

constant uniform magnetic field is calculated within the

framework of the Furry picture. Finally, it becomes possible to

study the initial states of the system other than the vacuum

initial state (the state without initial photons). Using these

state vectors, the probabilities p N; tð Þ (23) and the energy

W N; tð Þ (27) of N photon radiation induced by classical

currents are derived. The latter quantity can be summed

exactly representing the total energy W tð Þ (29) of emitted

photons. The obtained results can be used for the systematic

study of the multiphoton SR.

APPENDIX A
Solution of the Schrödinger equation with classical
current

Let us verify directly that state vector (8) satisfies equation (7).

Foremost, as the operator ĤH� is time-independent, we have

ih- @t exp �ih- �1ĤH� t

 �� �

¼ ĤH� exp �ih- �1ĤH� t

 �

: ð48Þ

However, the derivative @t ÂAi xð Þ does not commute with the

operators ÂAi x0ð Þ, so when calculating the derivative ih- @t of the

second exponent in the right-hand side of equation (9) one

has to use Feynman’s method of disentangling operators

(Feynman, 1951). Calculating the derivative ih- @t in such a way,

we find

ih- @t exp �ih- �1B̂B tð Þ
� �

¼ K̂K tð Þ exp �iB̂B tð Þ
� �

;

K̂K tð Þ ¼

Z 1

0

ds exp �ish- �1B̂B tð Þ
� �

@tB̂B tð Þ
� �

exp ish- �1B̂B tð Þ
� �

; ð49Þ

@tB̂B tð Þ ¼
1

c

Z
ji xð Þ ÂAi xð Þ þ

1

2
~AAi xð Þ

� �
þ

1

2
j0 xð ÞA0 xð Þ

� 	
dr:

Using the operator relation

expðÂAÞ M̂M expð�ÂAÞ ¼ M̂M þ ÂA; M̂M
h i

þ
1

2!
ÂA; ÂA; M̂M
h ih i

þ . . .

we represent the integrand in the right-hand side of K̂K tð Þ as

follows,

exp �ish- �1B̂B tð Þ
� �

@tB̂B tð Þ
� �

exp ish- �1B̂B tð Þ
� �

¼

@t B̂B tð Þ þ �ish- �1B̂B tð Þ; @tB̂B tð Þ
� �

ð50Þ

þ
1

2!
�ish- �1B̂B tð Þ; �ish- �1B̂B tð Þ; @tB̂B tð Þ

� �� �
þ . . . :

Calculating the first commutator in this series, we obtain
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h
B̂B tð Þ; @tB̂B tð Þ

i
¼ ð51Þ

1

c2

Z t

0

dt0
ZZ

ji x0ð Þ ÂAi x0ð Þ; ÂAj xð Þ
h i

jj xð Þ
n o

dr dr0:

The nonequal-time commutation relations for the operators

ÂAi xð Þ are given by equation (11). Then (51) takes the formh
B̂B tð Þ; @tB̂B tð Þ

i
¼ ð52Þ

�
i

c2

Z t

0

dt0
Z

dr jj xð Þ

Z
dr0ji x0ð Þ 	ij

?D0 x� x0ð Þ:

We suppose, as usual, that currents under consideration vanish

at spatial infinities. In this case,Z
dr0 ji x0ð Þ 	ij

?D0 x� x0ð Þ ¼

Z
dr0D0 x� x0ð Þ 	ij

?ji x0ð Þ: ð53Þ

Then, recalling the definition of ~AAi xð Þ from the evolution

operator equation (9), we obtain

B̂B tð Þ; @tB̂B tð Þ
� �

¼ �
i

c

Z
ji xð Þ ~AAi xð Þ dr: ð54Þ

Since the right-hand side of equation (54) is not an operator,

the only first commutator in the right-hand side of equation

(50) survives. Substituting equation (50) and equation (54)

into equation (49) and then integrating over s, we find

K̂K tð Þ ¼
1

c

Z
ji xð Þ ÂAi xð Þ þ

1

2
j0 xð ÞA0 xð Þ

� �
dr: ð55Þ

Using the fact that in the Coulomb gauge

exp �ih- �1ĤH� t
� �

K̂K tð Þ ¼
1

c

Z
ji xð ÞÂAi rð Þ þ

1

2
j0 xð ÞA0 xð Þ

� �
dr

� exp �ih- �1ĤH� t
� �

; ð56Þ

and taking into account equation (48) we make sure that state

vector (8) does satisfy equation (7).

APPENDIX B
Total energy of photon radiation

Here we show that the sum (28) can be calculated analytically

with the help of representation (26). We start at the definition

of W N; tð Þ from equation (26),

W N; tð Þ ¼ h- c N!ð Þ�1
X2

�1¼1

X2

�2¼1

. . .
X2

�N¼1

Z
dk1dk2 . . . dkN

�

�XN

j¼1

kj

�� ���YN

i¼1

��yki�i

��2: ð57Þ

We first consider the term with j = 1. In the entire integrand

(57), only the factor k1

�� ��jyk1�1
j
2 depends on �1 and k1.

Therefore, everything except the factor jk1jjyk1�1
2̂2 can be

taken out from the signs of the sum over �1 and the integral

over dk1. Since the indices i are dummy (the limits of all

summations and integrations are the same), we can cyclically

shift their numbering (i ! i� 1, i.e. 2 ! 1, 3 ! 2, . . . ,

N ! N � 1, 1 ! N). We do the same with each term from

the sum j = 2; 3; 4; . . . ;N � 1. Now it is obvious that the sum

over j in (57) degenerates into a factor N, and the quantity

W N; tð Þ takes the form

W N; tð Þ ¼
h- c

N � 1ð Þ!

X2

�1¼1

X2

�2¼1

. . .
X2

�N¼1

Z
dk1dk2 . . . dkN kN

�� ��
�
YN

i¼1

��yki�i

��2: ð58Þ

It is easy to see that equation (58) can be written as

W N; tð Þ ¼
h- c

N � 1ð Þ!

X2

�N¼1

Z
dkN kN

�� ����ykN�N

��2

�
YN

i¼2

X2

�i¼1

Z
dki

��yki�i

��2" #
: ð59Þ

Finally, getting rid of dummy indices, we obtain

W N; tð Þ ¼
A

N � 1ð Þ!

X2

�¼1

Z
dk yk�

�� ��2" #N�1

;

A ¼ h- c
X2

�¼1

Z
dk k0 yk�

�� ��2; k0 ¼ kj j: ð60Þ

The total energy W tð Þ reads

W tð Þ ¼
X1
N¼1

W N; tð Þ

¼ A
X1
N¼1

N � 1ð Þ!½ �
�1

X2

�¼1

Z
dk yk�

�� ��2" #N�1

: ð61Þ

The sum over N can be reduced to an exponent by the change

N = M � 1. Thus, we justify equation (29).

APPENDIX C
Some details on one-photon radiation calculations

Functions yk� (13) for the current (31) have the form

yk� ¼ iq

Zt

0

dt0
v t0ð Þ ����k�

h- ck0 2�ð Þ2
� �1=2

exp i k0ct0 � kr t0ð Þ
� �� �

; ð62Þ

k ¼ k? cos ’; k? sin ’; kk

 �

;

k? ¼ k0 sin 
; kk ¼ k0 cos 
:
ð63Þ

Here ’ is the angle between the x axis and the projection of

the vector k onto the xy plane, and 
 is the angle between the

z axis and k. Thus,

W 1; tð Þ ¼
h- c

2�ð Þ2

Z
dk k0

Z
dt0 j x0ð Þ ����k� exp ik0ct0 � kr t0ð Þ

� �����
����

2

:

ð64Þ

Then

exp �ikr t0ð Þ½ � ¼ exp �ik?R sin �
� �

;
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exp ik0ct0ð Þ ¼ exp ick0!
�1 ’� �=2ð Þ

� �
exp ick0!

�1�

 �

;

v �ð Þ ¼ !R cos � þ ’ð Þ; sin � þ ’ð Þ; 0½ �;

� ¼ �i þ !t0; �i ¼ �=2� ’;
Rt
0

dt0 !
R�iþ!t

�i

!�1 d�: ð65Þ

In the case under consideration, we chose linear polarization

vectors ���k� as

���k1 ¼ cos’ cos 
; sin ’ cos 
;� sin 
ð Þ;

���k2 ¼ � sin ’; cos ’; 0ð Þ;

���k1���k1 ¼ ���k2���k2 ¼ 1; ���k1���k2 ¼ ���k1k ¼ ���k2k ¼ 0: ð66Þ

One can easily verify that the following relations hold,

v t0ð Þ ����k1 ¼ !R cos 
 cos �; v t0ð Þ ����k2 ¼ !R sin �: ð67Þ

Now it follows from equation (62) that

yk1 ¼
iqR cos 


k0 2�ð Þ2h- c
� �1=2

Yk ’ð Þ

�

Z�iþ!t

�i

d� exp ick0!
�1�


 �
cos � exp �ik?R sin �ð Þ;

yk2 ¼
iqR

k0 2�ð Þ2h- c
� �1=2

Yk ’ð Þ

�

Z�iþ!t

�i

d� exp ick0!
�1�


 �
sin � exp �ik?R sin �ð Þ;

Yk ’ð Þ ¼ exp ick0!
�1 ’� �=2ð Þ

� �
: ð68Þ

At this stage, we utilize a well known plane wave expansion of

the Bessel functions Jn xð Þ (see, for example, Sokolov &

Ternov, 1986),

exp �ik?R sin �ð Þ ¼
Xþ1

n¼�1

Jn k?Rð Þ exp �in�ð Þ;

sin � exp �ik?R sin �ð Þ ¼ i
Xþ1

n¼�1

J0n k?Rð Þ exp �in�ð Þ; ð69Þ

cos � exp �ik?R sin �ð Þ ¼
Xþ1

n¼�1

n

k?R
Jn k?Rð Þ exp �in�ð Þ:

Using (69) in (68), we obtain

yk1 ¼ i
qR cos 


k0 2�ð Þ2h- c
� �1=2

Yk ’ð Þ
Xþ1

n¼�1

nJn k?Rð Þ

k?R
F n

k ’; tð Þ;

yk2 ¼ �
qR

k0 2�ð Þ2h- c
� �1=2

Yk ’ð Þ
Xþ1

n¼�1

J0n k?Rð ÞF n
k ’; tð Þ;

F n
k ’; tð Þ ¼

Z�iþ!t

�i

d� exp i ck0!
�1 � n


 �
�

� �
; ð70Þ

we can rewrite equation (70) as follows,

yk1 ¼
iq cot 


k3
0 2�ð Þ2h- c

� �1=2
Yk ’ð Þ

Xþ1
n¼�1

nJn k?Rð ÞF n
k ’; tð Þ;

yk2 ¼ �
qR

k0 2�ð Þ2h- c
� �1=2

Yk ’ð Þ
Xþ1

n¼�1

J0n k?Rð ÞF n
k ’; tð Þ: ð71Þ

Now, we can calculate the corresponding probabilities jyk�j
2,

yk1

�� ��2¼ q2

h- c

cot2 


k3
0 2�ð Þ2

Xþ1
n¼�1

nJn k?Rð ÞF n
k ’; tð Þ

�����
�����

2

;

yk2

�� ��2¼ q2

h- c

R2

k0 2�ð Þ2
Xþ1

n¼�1

J0n k?Rð ÞF n
k ’; tð Þ

�����
�����

2

: ð72Þ

The radiated energy (30) has to be calculated in the following

manner,

W 1; tð Þ ¼ W1 1; tð Þ þW2 1; tð Þ;

W1 1; tð Þ ¼ h- c

Z
dk k0 yk1

�� ��2

¼

Z
dk

q2 cot2 


k2
0 2�ð Þ2

Xþ1
n¼�1

nJn k?Rð ÞF n
k ’; tð Þ

�����
�����

2

;

W2 1; tð Þ ¼ h- c

Z
dk k0 yk2

�� ��2 ð73Þ

¼

Z
dk

q2R2

2�ð Þ2
Xþ1

n¼�1

J0n k?Rð ÞF n
k ’; tð Þ

�����
�����

2

:

Note that the functions F n
k ’; tð Þ can be represented as

F n
k ’; tð Þ ¼ ! exp �i ck0!

�1
� n


 �
’

� �
exp i

�

2
ck0!

�1
� n


 �h i

�

Zt

0

dt0 exp i ck0 � n!ð Þ t0
� �

: ð74Þ

Using the well known integral representation of Kronecker’s

delta function, I
d’ exp i n� n0ð Þ ’½ � ¼ 2�	nn0; ð75Þ

we can transform the quantities W1 1; tð Þ and W2 1; tð Þ as

follows,

W1 1; tð Þ ¼ q2!2
Xþ1

n¼�1

Z 1
0

dk0

2�

Z �

0

sin 
 d
 cot2 
 n2J2
n k?Rð Þ

�

Z t

0

dt0 exp i ck0 � n!ð Þ t0
� �����

����
2

;
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W2 1; tð Þ ¼ q2!2R2
Xþ1

n¼�1

Z 1
0

dk0

2�

Z �

0

sin 
 d
 k2
0 J0 2n k?Rð Þ

�

Z t

0

dt0 exp i ck0 � n!ð Þ t0
� �����

����
2

: ð76Þ

Subsituting the functions W1 1; tð Þ and W2 1; tð Þ into equation

(73), we obtain the final result equation (32)
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