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X-ray speckle visibility spectroscopy using X-ray free-electron lasers has long

been proposed as a probe of fast dynamics in noncrystalline materials. In this

paper, numerical modeling is presented to show how the data interpretation of

visibility spectroscopy can be impacted by the nonidealities of real-life X-ray

detectors. Using simulated detector data, this work provides a detailed analysis

of the systematic errors of several contrast extraction algorithms in the context

of low-count-rate X-ray speckle visibility spectroscopy and their origins are

discussed. Here, it was found that the finite detector charge cloud and pixel size

lead to an unavoidable ‘degeneracy’ in photon position determination, and that

the contrasts extracted using different algorithms can all be corrected by a

simple linear model. The results suggest that experimental calibration of the

correction coefficient at the count rate of interest is possible and essential.

This allows computationally lightweight algorithms to be implemented for on-

the-fly analysis.

1. Introduction

X-ray photon correlation spectroscopy (XPCS) studies the

dynamics of amorphous and disordered material systems via

measuring the fluctuations of speckle patterns resulting from

coherent X-ray scattering (Grübel et al., 2008). Dynamics is

revealed through the time-dependent intermediate scattering

function extracted by calculating the intensity autocorrela-

tions between speckle patterns recorded in sequence. Alter-

natively, X-ray speckle visibility spectroscopy enables access

to the same information at faster time scales than the frame

rate of the detectors by examining the speckle visibility as a

function of detector exposure time (Inoue et al., 2012; DeCaro

et al., 2013; Li et al., 2014; Verwohlt et al., 2018; Möller et al.,

2019). The advent of X-ray free-electron lasers (FELs) opens

up the possibility for capturing ultrafast atomic-scale dynamics

with speckle visibility measurement by using a pair of femto-

second X-ray pulses with time separation ranging from

femtoseconds to nanoseconds to define the ‘exposure time’

(Gutt et al., 2009; Stephenson et al., 2009; Emma et al., 2010;

Altarelli, 2011; Ishikawa et al., 2012; Kang et al., 2017; Milne et

al., 2017).

In order to probe the dynamics of interest without

perturbing the system with the X-ray pulse itself, the single-

pulse radiation dose must be limited. This leads to one of the

main challenges for speckle visibility measurements at X-ray

FELs: the very low intensity of the speckle patterns (Hrusz-

kewycz et al., 2012; Perakis et al., 2018; Roseker et al., 2018).

In this limit, contrast cannot be easily determined via direct

autocorrelation calculations. Photon statistics analysis see

Appendix A) was found to be an effective alternative to
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estimate the speckle contrast, i.e. via quantifying the observed

probabilities of multiple photons per pixel events using pixe-

lated detectors with single-photon sensitivity. Spatial resolu-

tion of pixelated detectors can be compromised for hard

X-rays due to charge sharing between neighboring pixels

(Dufresne et al., 1995) which complicates the process of

assignment of photons to individual pixels. Hruszkewycz et al.

(2012) demonstrated that it is possible to overcome this effect

via a droplet algorithm (Livet et al., 2000) based analysis

protocol and determine the locations of each detected photon

for speckle contrast evaluation. Other experiments (Yoon,

2016; Perakis et al., 2018) adopted a faster algorithm that skips

the step of ‘dropletizing’ and counts the photon numbers of

each pixel directly from its readout based on a simpler model

of charge cloud in order to extract visibility from speckle

patterns. However, we discovered that these two contrast

extraction algorithms returned significantly different contrast

values from the same experimental dataset, prompting further

investigation and comparison between popular photon

assignment and speckle contrast extraction methods.

In this work, we present a systematic analysis of the accu-

racy of speckle visibility extraction by most frequently used

algorithms in the low photon count rate regime. The impact of

charge cloud sharing between pixels, pixel readout noise, gain

non-uniformity, among other nonidealities of current hard

X-ray detectors are considered. We show via simulation that,

although the contrast extraction algorithms rarely give the

correct ‘absolute’ contrast value, they can all be calibrated

using a simple linear model. Varying the detector simulation

parameters indicates that the procedure is generally applic-

able. Following the proposed calibration routine, computa-

tionally light-weight algorithms can be used to return

sufficiently accurate and near-real-time analysis during the

experiment to provide crucial live feedback.

2. Detector simulation

In this section, we describe the numerical model we used to

simulate the detector response to X-ray photons and discuss

the process of photon position determination. We first

generated speckle patterns with well defined speckle size and

visibility. Many independent speckle patterns were simulated

by adding random phases to point scatterers, followed by a fast

Fourier transform corresponding to the X-ray scattering

process. The speckle size is controlled by the size of the region

where scatterers are placed, effectively adjusting the over-

sampling ratio. Well defined visibility is achieved by summing

up different numbers of independent speckle patterns

(Goodman, 2007). Positions of photons, or photon maps, were

then created to replicate an average count rate at the sparse

photon limit (�1 photon per pixel) using the intensity

variation of the speckle pattern as the probability density

of the photon events following Poisson statistics. These can

be seen as the bright spots in Fig. 1(a) which are the results

of individual photoionization events that took place in

the sensor.

Each photoionization event inside the sensor material

creates a charge cloud that is then collected by the electrodes

of individual pixels. In a typical hard X-ray detector used for

XPCS measurements, the charge cloud size is similar to the

pixel size. As a result, frequently, when the photoionization

takes place near the pixel boundaries, the charges generated

will be split up and collected by a few neighboring pixels. This

is the so-called charge-sharing effect. As photons can arrive

at any position within a detector pixel, the photon map was

initially generated based on a larger and much more finely

sampled speckle pattern, 2048 � 2048 in our case. Charge

sharing was then modeled with the convolutions of the photon

maps with kernels of different shapes, e.g. Gaussian, Lorent-

zian, Super-Gaussian, etc. with S being the FWHM of the

shape. Sub-pixel image shift with interpolation was used to

further reduce the impact of the ‘digitization’ of the charge

cloud before assigning the charges to the pixel level. We next

divided up the charges into a lower resolution grid (64 � 64)

that represents the pixels as shown in Fig. 1(b).

After distributing the X-ray generated charges to the pixel

grid, the gain inhomogeneity and readout noise are intro-

duced. The inhomogeneity of the detector in terms of the

pixel-to-pixel gain variation is modeled by multiplying the
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Figure 1
Charge sharing in pixelated X-ray detectors and photon location
recovery. (a) Simulated sparse Gaussian charge clouds generated from
weak X-ray scattering. (b) Magnified view of a region of interest from (a),
showing an 8 � 8 pixel area. The solid white lines indicate the pixel
boundaries. One can see photons that straddle across pixel boundaries.
(c) Simulated detector image by binning (b) down to the outlined pixel
grid and adding readout noise. Centers of the charge cloud representing
the photon locations are indicated by circles. (d) Detector image after
setting pixel readouts below a threshold to 0. In total four droplets are
identified as indicated by the boundaries drawn in white. Photon positions
recovered by the algorithm used in the work by Hruszkewycz et al. (2012)
are plotted with ‘+’. The color bar is shared by (c) and (d). The nominal
one photon readout is 151 in our simulation.



detector image with a gain map which has a variation defined

as a Gaussian distribution centered around 1 and with �g as

its standard deviation. Electronic readout noise is introduced

pixel-wise following also a Gaussian distribution with an

average value 0 and a tunable standard deviation �r . A typical

simulated pixelated signal map is shown in Fig. 1(c), together

with the real positions of photons denoted by the black-edged

circles. The github repository for generating the detector

images is located at https://github.com/Yanwen-Sun/detector

Simulation.

The algorithms for tracing back where the photons landed

on the detector consist of two main steps. The first step is

called ‘dropletizing’ which identifies connected pixels with

signals above the detector noise, as illustrated in Fig. 1(d)

outlined by white boundaries. The second step is called

‘photon assignment’ where, for example, a fitting algorithm is

used to estimate photon positions, which are denoted with a

‘+’ sign in Fig. 1(d). One usually sees small discrepancies

between the real and fitted photon positions. This in turn can

impact the speckle visibility analysis in experiments.

Following the process discussed above, we were able to

replicate the general behavior of the ePix100 (Sikorski et al.,

2016) in terms of the analog-to-digital unit (ADU) histogram,

at the mean photon density of �kk ¼ 0:01 photons per pixel as

shown in Fig. 2(a). The gray solid line is the experimental data

recorded by the ePix100 detector during a speckle visibility

measurement. One photon generates an equivalent of 151

ADUs. The histogram presented here is normalized by that

value in the horizontal axis. A Gaussian charge cloud shape

with S = 0.385 (in units of pixel size), �g = 0.5%, �r = 3.0 closely

reproduced this histogram as indicated by the blue crosses and

are defined as the nominal values for our simulation of

detector images. Using the same values for these three para-

meters, we are also able to closely reproduce the pixel histo-

grams at other count rates within the dynamic range of the

detector. We also estimate that the variation of the charge

cloud size is dominated by the diffusion of charges within the

sensor resulting from different absorption depth of photons

(Ren et al., 2018). Given the ePix100 silicon sensor thickness

of 500 mm, for 8 keV photons, the r.m.s. charge cloud size

variation is 15% of the average size, producing a negligible

impact to the pixel ADU histogram. The pixel readout

histogram is very sensitive to the parameters chosen here. The

green, red and orange curves are the simulated histograms

when either S, �g or �r is individually changed to 0.1925, 0

and 5% while keeping the other parameters the same as

the nominal values. More distinctive photon peaks generally

correspond to smaller values of the three parameters.

We now look at the extent of charge sharing based on

the identified simulation parameters. A charge cloud size

S = 0.385 pixels corresponds to a 1/e2 diameter of 2w0 =

S(2/log2)1/2
’ 0.654. The percentage PC of charges contained

within a boundary defined by x1, x2, y1, y2 and photon location

x0, y0 can be estimated as

PCðx1; x2; y1; y2; x0; y0Þ ¼Rx2
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PCð�0:42; 0:42;�0:42; 0:42; 0:0; 0:0Þ ’ 98% suggests that 148

out of 151 of the pixel readout units will fall into a square of

0.84 � 0.84 pixels, which is the level of charge loss indis-

tinguishable from the readout noise �r = 3. The boundary for

one photon to contribute to more than 98% of the charge

within one pixel is plotted in Fig. 2(b), determined by finding

x0, y0 which can satisfy PCð�0:5; 0:5;�0:5; 0:5; x0; y0Þ > 0:98.

The size of the enclosed area in black is a measure of accuracy

of the photon position determination within a pixel for any

algorithm. One additional conclusion we can draw from the

calculation is that the charges of one photon can at most be

shared by 2 � 2 pixels. A further check can be obtained by

looking at the single-photon droplets, as the fraction of single-

pixel droplets among all one-photon droplets will agree with

the fraction of the 98% region.

With the identified parameters that mimic the ePix100

detector, we next simulated weak speckle patterns with known

contrasts and compare with contrast values extracted from a

few commonly used photon assignment algorithms.

3. Contrast evaluation algorithm comparison

Using the procedure discussed in the previous sections we

were able to simulate a large quantity of detector images at
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Figure 2
Pixel histogram of ePix100 data (gray) at �kk ¼ 0:01 photons per pixel.
(a) Blue crosses, green, red and orange lines are histograms from the
detector simulations with different parameters. The histograms are
normalized to the first photon peak for easier comparison. Panels (b) and
(c) map out regions within a single pixel that have different single-photon
contribution fractions. The black area denotes the region where a photon
will contribute 98% of its generated charges to the readout of this pixel.
The gray area denotes the region for more than 50% of the charges to be
collected by this pixel. The dashed black lines are the 50% charge
contribution boundary for the LSF model. The corners defined by the
solid black lines are the areas where one photon contributes at least 2%
(3 out of 151 ADUs) of the total charges to each of its three neighboring
pixels. Panel (b) assumes a charge cloud size of S = 0.385 (units in pixel
size). The percentages of the black, gray, white and corner areas are
namely 8.3%, 82.3% and 10.4% and 21.4%, respectively. Panel (c)
assumes S = 0.193, or a factor of two smaller than (b). The percentages of
the black, gray, white and corner areas are 43.6%, 97.5%, 2.5% and 5.3%,
respectively.



different contrast and intensity levels based on the nominal

parameters which replicate the ePix100 detector behavior. We

chose a simulated speckle size of 2 pixels, which is defined as

the FWHM of the intensity spatial correlations of the speckle

pattern. This represents the typical oversampling ratio for

speckle visibility spectroscopy experiments. Three commonly

used algorithms are applied to correct for charge sharing and

assign photons to a pixel following their respective rules. We

can extract the one- and two-photon probabilities P(k = 1) and

P(k = 2) given an adequate number of images, from which the

contrast can be calculated through the following equation,

� ’
2Pð2Þ½1� Pð1Þ�

Pð1Þ2
� 1: ð1Þ

This equation can be derived by the Taylor expansion of the

negative binomial distribution of k = 1, 2 photons per pixel

with respect to �kk when �kk� 1. We present the detailed deri-

vations in Appendix A.

The error bar for the contrast determination �� is estimated

by the number of photons measured and the actual contrast

�0, the accuracy of our measurement is thus

��
�0

’
1

�0
�kk

2ð1þ �0Þ

Npixel Nframe

" #1=2

: ð2Þ

For our simulation, as mentioned in the previous section, the

number of pixels for each detector image is Npixel = 64 � 64.

We chose Nframe, which allows us to achieve a 10% r.m.s.

precision for each contrast point, and consider this as the

adequate number of images, which are plotted in Fig. 4(a).

We used three different photon assignment algorithms to

evaluate contrast of the simulated datasets, labeled: Greedy

Guess (GG), Least Squares Fit (LSF) (Hruszkewycz et al.,

2012), and Psana Photon Convertor (PPC) (Yoon, 2016;

Thayer et al., 2017); below we present a brief description of

each.

Greedy Guess. Step 1: set all pixels below the noise

threshold 5�r to 0. Identify each connected region of pixels

with non-zero signal as a ‘droplet’. Step 2: identify one photon

readout intensity, r1, from the droplet readout histogram and

thus determine the number of photons in each droplet from its

total readout. Step 3: for one-photon or one-pixel droplets, the

photon position is assigned to the center of mass calculated

directly from the pixel readout. Step 4: for all the other

droplets: (i) if the brightest pixel has a readout value corre-

sponding to at least one photon, assign the position of one

photon to that pixel and subtract r1 from the pixel value;

(ii) if the brightest pixel (i, j) has readout r less than r1, find its

brightest neighboring pixel. A photon is assigned along the

line connecting the centers of the two pixels, and the distance

to pixel (i, j) is determined by (r1 � r)/r1. Step 5: repeat Step 4

until the photons found in Step 2 are all assigned.

Least Squares Fit. Step 1: use the photon assignment from

GG as a starting point. Then use the calculated center of mass

as the photon positions for the one-photon or one-pixel

droplets. Step 2: (i) add a random number from �0.75 to 0.75

to the starting photon positions generated in GG for both

the horizontal and vertical. (ii) From the starting positions,

calculate the ADU values for each pixel within the droplet.

The function for calculating r 0i,j [the calculated readout value

of pixel (i, j)] is based on the photon positions. With a photon

at position (i + �1, j + �2) (0 < �1 < 1; 0 < �2 < 1), split the

charges over four pixels: r0i;j ¼ r1ð1� �1Þð1� �2Þ, r0iþ1;j =

r1�1ð1� �2Þ, r0i;jþ1 ¼ r1ð1� �1Þ�2, r0iþ1;jþ1 ¼ r1�1�2. (iii) Use ri,j

to denote the readout of pixel (i, j). The error of the fitting

is �2 ¼
P

i;j ðri;j � r0i;jÞ
2=�2

e . A least-squares fit is applied to

minimize �2 by iterating the photon positions. Step 3: repeat

Step 2, fitting with new random starting positions until �2 of

the fitting is sufficiently small (�2 < 0.5 with �e = 20) or until

the maximum number of iterations (50 in our case) is reached.

Psana Photon Converter. Step 1: divide the pixel readout by

r1 and split the readout into whole photons and fractional

photons. Step 2: for the fractional photon map, search for a

pixel that has at least 0.5 photons with an adjacent pixel that

sum up to above 0.9 photons. Take the highest valued pixel if

multiple pixels meet this requirement. Merge the two pixels

values into the pixel with the higher value. Step 3: round

the fractional photon map and combine with the whole

photon map.

Equation (1) indicates that the speckle contrast is mainly

determined by obtaining an accurate measurement of the two

photons per pixel events probability P(2) and the estimation

of the count rate �P(1). For the GG algorithm, two primary

factors can lead to its inaccuracy. First, as photons are assigned

sequentially, subtracting the ADU equivalent to one photon

or r1 from the pixel readout might be overestimating the

contribution of the one photon that falls into that pixel but out

of the 98% boundary. This leaves a high possibility that the

residue readout will be less than 0.5r1 even if a second photon

is present in this same pixel. One example of this is drawn

in Fig. 3(a). This leads to an underestimate of P(2) and the

contrast estimation. Second, when a photon hits the corner
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Figure 3
(a, b) Examples illustrating the two types of errors of photon assignment
by the GG and PPC algorithms. (c, d) Photon position degeneracy. The
numbers in white denote the pixel readout values assuming a single-
photon ADU value of r1 = 151. Here all the examples are simulated
assuming �r = 0 and �g = 0. The white circles, white ‘�’ and black ‘+’ are
the real photon positions, and the estimated positions by GG and
LSF separately.



area enclosed by the solid black line, as in Fig. 2(b), the

charges generated are shared by a 2 � 2 pixel droplet.

As illustrated in Fig. 3(b), these ‘corner’ photons might not

necessarily distribute charges more than 0.5r1 into the pixel

where the photon arrived. In this case, instead of assigning a

photon to this pixel, the GG algorithm will assign a photon to

its brightest neighboring pixel. The two scenarios apply to the

PPC algorithm as well, with an additional consequence that

the second photon will not be counted because no pixel has

a readout bigger than half a photon after substracting one

photon from the brightest pixel. For the examples in Figs. 3(a)

and 3(b), only one photon will be assigned. Both cases will

result in a biased estimation of P(1) and P(2).

The errors of the LSF algorithm have different origins. It is

more accurate as it fits to the readout values of all the pixels

within each droplet rather than merely two adjacent pixels, as

done in the GG and PPC algorithms. However, it has different

bias during photon assignment due to two additional factors.

First, in LSF Step 2 (ii), calculation of the pixel readout values

is dependent on the assumptions of the charge cloud proper-

ties including shape and size. We can see the difference via

the 50% charge contribution boundary shown in Fig. 2(b).

Compared with the boundary calculated from the nominal

parameters, it gives tighter space for a photon to supply at

least half a photon charge to the pixel. This effectively clusters

the photons towards the center of the pixels. Second, due to

the finite detector pixel size and thus the down-sampling of the

charges, there is a ‘degeneracy’ in the photon positions. Two

configurations of photon positions can generate the same

readout value for two-photon two-pixel droplets as shown in

Figs. 3(c) and 3(d). The GG approach will always put one

photon in each pixel, thus underestimating P(2) due to under-

counting the Fig. 3(d) scenario. On the other hand, for the

fitting method, moving the two photons’ fitting positions

towards each other from Fig. 3(d) by the same amount gives

the same r 0i,j calculated for fitting following LSF Step 2(ii). As

a result, all these positions have the same �2. Fitting this same

droplet 10 000 times with random initialization gives us a 21%

chance of getting two-photon events. While the occurrences of

the photon positions of scenarios like Fig. 3(d) compared with

Fig. 3(c) are less frequent. In order to quantify the impact, we

randomly generated a large number of two-photon two-pixel

droplets and used the LSF algorithm to estimate the photon

positions. The occurrences of both photons being assigned to

the same pixel was found to be overestimated by 10%.

Shown in Fig. 4(b) are the extracted contrast values using

the three different algorithms described above. All detector

images are simulated with a uniform �kk ¼ 0:01 photons per

pixel. The gray dashed line is the real contrast �0 we obtain by

the definition of contrast,

�0 ¼
varðIÞ

�II2
: ð3Þ

Here I is the intensity distribution of the speckle patterns used

for simulating weak speckles. The extracted contrasts from all

three algorithms show systematic deviations from the real

contrasts. LSF overestimates the contrast while GG and PPC

underestimate it. Yet all three methods show linear responses

to changes in contrast. LSF has a fitted value for the slope that

is greater than 1, while the slopes for the other two methods

are less than 1. To explain this, we use �i to denote the

overestimate percentage of i photons per pixel events and

derive its influence analytically. To the first order, �i is related

to the location where each photon hits the pixel and should

have weak dependence on contrast. GG and LSF both include

droplet identification as a first step and are thus more accurate

with regards to the total number of photons or P(1), �1 ’ 0.

For the PPC algorithm, �1 < 0 as discussed earlier. Using

equation (1), we estimate that the contrast � follows

1þ �

1þ �0

’
1þ�2

ð1þ�1Þ
2 ¼ �;

or

� ’ ��0 � 1þ �: ð4Þ

This indicates that the intercept and slope of the linear model

are to the first order different by 1. The vertical offset at �0 = 0

can be determined experimentally by the P(1) and P(2)

measurements of scattering signal with very low visibility such

as when the scattering volume is enlarged to produce a very

high level of undersampling of the speckle size.
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Figure 4
(a) Number of frames needed to achieve a 10% r.m.s. accuracy of contrast
determination given Npixel = 64 � 64. (b) Extracted contrast values from
the three algorithms (LSF, GG and PPC) versus the real contrasts at a
fixed count rate �kk ¼ 0:01 photons per pixel. The gray dashed line
indicates the correct solution. The slopes for the three fitted lines for the
extracted contrasts using LSF, GG and PPC are 1.2� 0.1, 0.93� 0.09 and
0.72 � 0.07, respectively.



4. Discussion on biased contrast

In this section, we evaluate the influence of the three primary

nonidealities of the detectors one by one. By varying the

amplitude of one parameter while fixing the other two in our

simulation of the detector images, we can understand how

each parameter will influence the extracted contrast value.

4.1. Gain non-uniformity

When the detector gain inhomogeneity �g is increased by a

factor of ten from 0.5 to 5%, the detector pixel readout

histogram changes significantly, as shown in Fig. 2(a) by

the orange curve. However, when comparing the contrast

extracted from these two scenarios, all three algorithms show

very little sensitivity to this change. This is not surprising as the

readout noise �r � r1 ; we thus can set the boundaries for

photon number identification wider than �g, namely 50% of

the nominal one-photon readout for a droplet for LSF and GG

algorithms, and 10% for two neighboring pixels for PPC. As a

result, the algorithms give consistent results even with a few

percent variations of the pixel readout values due to their non-

uniformity (see Fig. 5).

4.2. Readout noise

To understand the impact of detector readout noise, we

start by considering a detector with zero electronic readout

noise, i.e. �r = 0. The corresponding ADU histogram is plotted

in Fig. 2(a) in green. In this case, we no longer need to

threshold the detector readout values for the GG and LSF

algorithms. The rest of the data processing stays the same.

Plotted in Fig. 6 is the comparison between the noiseless

detector case and our previous simulation with �r = 3 for the

three algorithms. For GG and PPC, as they both have a

tendency to assign photons to pixels with larger values [or to

pixel (i, j) with ri,j > 0.5r1 	 �r], they show little dependence

on �r when r1 	 �r . This shows that a detector with lower

readout noise is not expected to improve the accuracy of these

two algorithms. On the other hand, for the LSF algorithm, a

more accurate droplet readout distribution does improve the

precision of the photon assignment. Moreover, when the

detector readout noise is above 0, in the thresholding step with

the boundary pixels peeled off, it effectively pushes the signal

distribution towards the center of the droplets, thus has the

tendency to overestimate the occurrences of multiple photons

falling into the same pixel. This effect will be eliminated with a

noiseless detector. However, the intrinsic degeneracy of pixel

readout values is not expected to improve without a finer

sampling of the charge cloud. As a result, in this case we see a

fitted slope value of � ’ 1.1 in Fig. 6. This corresponds to

�2 ’ 10%, which agrees with our prediction of the over-

estimate percentage due to the degeneracy in the two-photon

two-pixel droplets discussed earlier.

4.3. Charge cloud size

Finally, we look at the impact of the charge cloud size to the

contrast evaluation. As the charge cloud shrinks, the prob-

ability of the droplets taking the same forms as in Figs. 3(a)

and 3(b) decreases due to the expansion of the 98% and 50%

area and the reduction of the corner area as plotted in Fig. 2(c).

This explains why the extracted contrasts by GG and PPC

both get close to the real contrast as we reduce the charge

cloud size by 50% as shown in Fig. 7. For LSF, even though the

probability of the ‘degeneracy’ becomes lower, the placement

of photons in LSF Step 2(ii) deviates from the exact fit even

more. This is because for smaller charge cloud sizes, the charge

cloud is less well measured by the pixel grid and thus the fitting

becomes less precise. Moreover, the comparison of the 50%
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Figure 6
The extracted contrast values from different algorithms at fixed count
rate �kk ¼ 0:01 photons per pixel are for �r = 3 and �r = 0. For both cases,
�g = 0.5% and S = 0.385. The gray dashed line indicates the correct
solution. The slopes for the four fitted lines for the extracted contrast
values using LSF with �r = 3, LSF with �r = 0, GG and PPC for both �r

values are 1.2 � 0.1, 1.1 � 0.1, 0.93 � 0.09 and 0.72 � 0.07, respectively.

Figure 5
The extracted contrast values from different algorithms at fixed count
rate �kk ¼ 0:01 photons per pixel for both nominal gain variation �g = 0.5%
and ten times larger �g = 5%. The gray dashed line indicates the correct
solution. The three lines are fitted to extracted contrasts for �g = 5% using
LSF, GG and PPC and their slopes are 1.2 � 0.1, 0.87 � 0.08 and 0.65 �
0.07, respectively.



charge contribution boundary plotted in Figs. 2(b) and 2(c)

suggests that the LSF algorithm has a larger tendency to

cluster the photons to the center of the pixel. As a result, the

LSF algorithm still overestimates the number of two-photon

events.

5. Contrast extraction considering pulse energy
fluctuations

The discussions so far have been conducted in the context of

having a stable average count rate, i.e. �kk ¼ 0:01 photons per

pixel. In a real-life XPCS experiment, the X-ray FEL pulses

originating from the self-amplified spontaneous emission

process are often further reduced in bandwidth by a mono-

chromator. The intensities of the output pulses on the sample

follows the Gamma distribution (Sun et al., 2019). Maximum-

likelihood estimation was formulated to provide an unbiased

fit considering frames with a non-uniform count rate (Roseker

et al., 2018). One of the prerequisites is that the algorithm for

extracting photon probabilities has no dependency on scat-

tering intensities. However, �2 can depend on the count rate

as it changes the distribution of droplets: the average droplet

size is expected to grow as the photon density increases. The

various photon assignment algorithms can have a different

bias for droplets of different sizes and shapes.

We recreated datasets that mimic the real experimental

conditions assuming an incoming pulse energy distribution

that corresponds to a mean mode number of 1.3 (Gutt et al.,

2009), which also produces an average scattering intensity
�kk ¼ 0:01 photons per pixel on the detector. Speckle patterns

with two slightly different contrast values are generated (0.06

and 0.03). Each simulated dataset contains 0.8 million frames

of 64 � 64 pixel speckle patterns. We bin our data based on �kk
determined by the three algorithms and then use the linear fit

in Fig. 4 to correct the contrast evaluation. The calibrated

contrasts of LSF, GG and PPC are plotted in Figs. 8(a)–8(c)

as a function of �kk. In the count rate regime with sufficient

statistics, all three methods show sensitivity to distinguish

between the two datasets. The calibrated contrasts at the same

contrast but with different �kk deviate from a straight horizontal

line, indicating an intensity dependent systematic error. The

LSF and GG algorithms have a precise determination of

photon numbers for each frame, while the PPC algorithm has

a biased estimation on the number of photons. This is evident

in the deviation of their histograms of the mean count rate as

displayed in Fig. 8(d). This also explains why PPC is most

influenced by the average count rate in its contrast evaluation.

The finding here is that one should always compare the

extracted contrast values at the same average detector inten-

sity level experimentally to assert that the observed contrast

change originates from dynamics rather than the systematic

errors of contrast extraction algorithms.

6. Conclusions

In conclusion, using numerical simulation of detector

response, we were able to identify a set of parameters to
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Figure 8
Calibrated contrast values as a function of mean photon count rate �kk
obtained from (a) LSF in orange, (b) GG in green and (c) PPC in purple
for two datasets with known different contrast levels. The two known
contrast levels are plotted in gray dashed lines. (d) Histogram of
the number of simulated detector frames falling into each �kk bin for the
three algorithms.

Figure 7
The extracted contrast values from different algorithms at fixed count
rate �kk ¼ 0:01 photons per pixel for both nominal charge cloud size S =
0.385 and half that size S = 0.193. The gray dashed line indicates the
correction solution. The three fitted lines for S = 0.193 using LSF
(orange), GG (light green) and PPC (light purple) give slope values of
1.2 � 0.1, 0.99 � 0.1 and 0.88 � 0.09, respectively.



closely mimic the behavior of real hard X-ray detectors. Using

these parameters, we simulated a large number of low-count-

rate speckles and performed error analysis of the commonly

used photon locating algorithms. The three algorithms exam-

ined all have systematic errors but all show a consistent linear

response to contrast changes with similar signal-to-noise

performance. This suggests that calibration using scattering

with known contrast, especially the 0 contrast point, is

essential for measurement of a ‘normalized’ or correct

contrast value, otherwise data interpretation can be signifi-

cantly biased. The simple algorithms which can be easily run

on-the-fly, i.e. Greedy Guess and Psana Photon Converter, will

enable live feedback in the experiment (see Appendix B).

They are also much easier to implement at the hardware level

for next generation MHz Mega-pixel sensors to produce

processed information with highly reduced size, rather than

the raw data. We further compare the systematic errors

(deviation of extracted contrast from real contrast) by varying

the parameter values of detector ‘nonidealities’. We found

that the charge cloud size has the largest impact, yet, for all

three algorithms, this did not severely impact the sensitivity

to contrast change measurements. Finally, when the pulse-to-

pulse energy fluctuations are taken into consideration, our

analysis suggests that algorithms based on droplets show more

consistency, probably due to their accurate determination of

the total number of photons.

APPENDIX A
Photon statistics for contrast error estimation

The probabilities of multiple photons per pixel events follow a

negative binomial distribution (Goodman, 2007),

PðkjM; �kkÞ ¼
�ðkþMÞ

�ðMÞ�ðkþ 1Þ

�kk

�kkþM

� �k
M

�kkþM

� �M
" #

:

Here M is related to the measured speckle visibility with

� = 1/M. At the sparse photon limit or �kk� 1, the Taylor

expansion of the probabilities for k = 1 and k = 2 are

Pð1Þ ¼ �kk� ð1þ �Þ �kk2
þ
ð1þ �Þð1þ 2�Þ �kk3

2
þOð �kk4

Þ

and

Pð2Þ ’
ð1þ �Þ �kk2

2
�
ð1þ �Þð1þ 2�Þ �kk3

2
þOð �kk4

Þ:

From this, we can derive an estimation of visibility,

� ¼
2Pð2Þ½1� Pð1Þ�

Pð1Þ2
� 1þOð �kk2Þ:

For a region of interest containing Npixel pixels on the detector,

the number of frames needed (Nframe) in order to determine

the contrast � with a r.m.s. error �� can be calculated by the

derivative of P(2),

�Pð2Þ

Pð2Þ
’

��

1þ �
;

and considering the signal-to-noise ratio of photon counting

�Pð2Þ

Pð2Þ
’

1

Pð2ÞNpixel Nframe

� �1=2
:

We therefore have

��

�
’

1

� �kk

2ð1þ �Þ

Npixel Nframe

 !1=2

:

APPENDIX B
Computation time

Displayed in Table 1 is the computation time comparison

between the three algorithms for three different average

photon count rates. We note here that as the photon assign-

ment process is highly parallelizable, all three algorithms can

be easily scaled to provide live feedback. Nevertheless, simple

algorithms such as PPC and GG are much more computa-

tionally economical, and potentially more realistic to deploy at

the detector hardware/firmware level.
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Grübel, G., Madsen, A. & Robert, A. (2008). X-ray Photon
Correlation Spectroscopy (XPCS) in Soft Matter Characterization,
edited by R. Borsali and B. Pecora, pp. 954–995. Heidelberg:
Springer.

Gutt, C., Stadler, L.-M., Duri, A., Autenrieth, T., Leupold, O.,
Chushkin, Y. & Grübel, G. (2009). Opt. Express, 17, 55–61.

Hruszkewycz, S., Sutton, M., Fuoss, P., Adams, B., Rosenkranz, S.,
Ludwig, K. Jr, Roseker, W., Fritz, D., Cammarata, M., Zhu, D., Lee,
S., Lemke, H., Gutt, C., Robert, A., Grübel, G. & Stephenson, G. B.
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