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Giovanni Fevola,a Erik Bergbäck Knudsen,b Tiago Ramos,a Dina Carbonec and

Jens Wenzel Andreasena*

aDepartment of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, Roskilde 4000,

Denmark, bDepartment of Physics, Technical University of Denmark, Fysikvej 311, Kgs Lyngby 2800, Denmark, and
cMAX IV Laboratory, Lund University, 22484 Lund, Sweden. *Correspondence e-mail: jewa@dtu.dk

Coherent diffractive imaging (CDI) experiments are adequately simulated

assuming the thin sample approximation and using a Fresnel or Fraunhofer

wavefront propagator to obtain the diffraction pattern. Although this method

is used in wave-based or hybrid X-ray simulators, here the applicability and

effectiveness of an alternative approach that is based solely on ray tracing of

Huygens wavelets are investigated. It is shown that diffraction fringes of a

grating-like source are accurately predicted and that diffraction patterns of a

ptychography dataset from an experiment with realistic parameters can be

sampled well enough to be retrieved by a standard phase-retrieval algorithm.

Potentials and limits of this approach are highlighted. It is suggested that it could

be applied to study imperfect or non-standard CDI configurations lacking a

satisfactory theoretical formulation. The considerable computational effort

required by this method is justified by the great flexibility provided for easy

simulation of a large-parameter space.

1. Introduction

Coherent diffractive imaging (CDI) techniques have become

increasingly popular in the X-ray community over the last two

decades, to the point that most synchrotrons have at least one

beamline dedicated to them (Miao et al., 2015). CDI techni-

ques are based on the inversion of coherent X-ray intensity

data to obtain an image of the diffracting sample. This inver-

sion is performed through algorithms that utilize boundary

conditions in both real and reciprocal space, e.g. sample size

and measured data, respectively, for the recovery of amplitude

and phase of the sample-diffracted field (Veen & Pfeiffer,

2004). Thus, the recovered images are obtained without the

use of lenses (Chapman & Nugent, 2010), which represents the

most appealing feature of CDI, implying that the theoretical

limit for the image resolution is determined only by the extent

of reciprocal space that can be recorded with statistical

significance (Noh et al., 2016). The actual resolution, however,

is affected by other factors related both to the physics of the

experiment and to the processing of the collected data. Non-

ideal conditions, such as partial coherence, mechanical

instabilities and electronic noise, all contribute to the degra-

dation of resolution by decreasing data quality. Although

these can be accounted for in the reconstruction algorithms,

and several strategies to mitigate their detrimental effects

have been proposed in the literature (Thibault & Guizar-

Sicairos, 2012; Godard et al., 2012; Chang et al., 2019), they still

represent a strong limitation for the ultimate achievable

resolution. This is demonstrated by the fact that, although

remarkable for a non-destructive technique, the current
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record resolutions for tomographic reconstructions based on

full-field CDI [�10 nm (Takahashi et al., 2010)] or ptycho-

graphic projections [14.6 nm (Holler et al., 2017), 13.6 nm

(Ramos et al., 2017)] are probably an order of magnitude

higher than the theoretical limit (Marchesini et al., 2003;

Dietze & Shpyrko, 2015), at least for inorganic materials

(Howells et al., 2009).

Due to the limited availability of coherent X-ray sources,

it becomes of primary importance to be able to perform

an offline optimisation of the experiment, prepare the data

acquisition and predict the quality of its outcome. Therefore,

reliable tools for the simulation of CDI experiments become

an essential ingredient for the success of the experiment. The

ability to reproduce data acquired under realistic conditions is

essential to test and optimize retrieval algorithms and,

furthermore, it helps to identify factors that could potentially

limit the resolution and enables exploration of novel experi-

mental configurations.

In the case of CDI, an inverse problem needs to be solved to

retrieve the phase of the wavefield measured only through its

intensities. What defines this inverse problem is the model that

relates the object to the measurement: this model describes

the interaction of X-rays with the sample and the propagation

of the produced ‘exit’ wavefield to the detector, both of which

depend on the chosen technique, e.g. measurement geometry,

detector distance and X-ray wavelength. A typical example of

such interaction is the attenuation and phase delay experi-

enced by the X-ray beam when transmitted through a sample

in the so-called forward scattering geometry. In this case, the

propagation is well described by the Fresnel or the Fraunhofer

propagator depending on whether the patterns are collected in

the near- or far-field regime, respectively. These models can be

used to simulate an experiment, and noise can be added to the

simulated data by scaling the wavefields according to the

expected flux and extracting values for shot noise from a

Poisson distribution. Electronic noise can be added as well

using, for example, a model of Gaussian distribution.

However, the described approach uses, for the inversion of

data, the same model used to produce them [inverse crime

(Colton & Kress, 1992)]; moreover, all noise is based on

models and great care has to be taken to ensure that it is

propagated correctly, however accurate they might be. Finally,

other physical variables that might affect the experimental

results, such as optical aberrations or the presence of other

optical elements on the beam path, e.g. pinholes or beam-

defining slits (Mastropietro et al., 2011), are difficult to account

for unless a specific and accurate model can be created to

describe analytically their impact, which can in itself be a

relatively complex task. We introduce here an alternative

geometrical means for the simulation of coherent X-ray

diffraction data, entirely based on ray tracing. This very

general framework offers the possibility to customize the

model of sample interaction (each intercepted element of the

sample can modify any parameter of the ray), to include

elements of the setup that affect data quality (optical

elements, slits, pinholes, windows) and, for diffraction, relies

on a very general and simple propagator based on Huygens

wavelets. This approach has the double advantage of produ-

cing diffraction data that are intrinsically noisy due to the

Monte Carlo method used, and totally independent of the

forward model on which reconstruction algorithms might rely,

ensuring prevention of the inverse crime. The scheme for

diffraction is not radically different from the already reported

scheme for diffraction in McXtrace (Bergbäck Knudsen et al.,

2013), but it contains an important modification which is

detailed in the following and, importantly, is applied for

comparison to a realistic test case for which solutions from

other approaches are available.

With respect to other tools available in the existing X-ray

diffraction simulation software portfolio, our approach

provides purely ray-tracing-based simulations for fully

coherent X-ray diffraction experiments, which are still absent

in the existing literature. While some notable tools such as

ShadowOUI (Rebuffi & Sánchez del Rı́o, 2016) and OASYS

(Sanchez del Rio & Rebuffi, 2019) rely on hybrid models using

both approaches, available software tools are mainly divided

into those based on wave-propagation methods [e.g. XRT

(Klementiev & Chernikov, 2014), SRW (Chubar et al., 2013),

PHASE/REDUCE (Bahrdt, 2007)] and those based on ray

tracing [e.g. SHADOW (Lai & Cerrina, 1986), RAY (Schäfers,

2008)]. The former exploit the laws of physical optics and

Fourier integrals whereas the latter exploit the laws of

geometrical optics. McXtrace (Bergbäck Knudsen et al., 2013)

falls into this second category and is, furthermore, Monte

Carlo based. The ray-tracing approach might not appear the

most suitable to describe diffraction, which is typically viewed

as an undulatory phenomenon and is qualitatively explained

by Huygens’ principle. On the other hand, when comple-

mented with a Monte Carlo based approach, ray tracing

provides all degrees of freedom when it comes to the difficult

task of describing non-ideal conditions from first principles.

For instance, partial coherence, extremely relevant for our

study, has been suitably addressed in this context (Prodi et

al., 2011; Cipiccia et al., 2014), and beam monochromaticity,

divergence and polarization effects are particularly easy to

simulate. Furthermore, this method does not rely on paraxial

approximation and can be particularly effective for simulation

of CDI datasets that extend far in the reciprocal space

(Shapiro et al., 2014). This will be relevant for experiments

carried out with high flux in the soft X-ray regime that aim at

extreme resolutions as will certainly be the case at the new

diffraction-limited sources (Hettel, 2014).

Outside of the X-ray context, the use of a geometrical

approach for simulating diffraction dates back to the work of

Young & Keller (see Kumar & Ranganath, 1991) and ray-

tracing simulation of diffraction is widely explored: Mahan et

al. (2018) established the conditions under which a Fresnel–

Huygens principle is well described; Andreas et al. (2015)

reported a vectorial ray tracer applied to laser interferometry

in non-paraxial cases; Mout et al. (2016, 2018) have described

the theory that makes Monte Carlo ray-tracing consistent,

demonstrating diffraction of a multiple-component micro-

scope in this framework. These works bear strong similarities

with the ray-tracing scheme we have used here to simulate
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CDI, which will be described. In this manuscript, we demon-

strate the efficacy of our approach by focusing on a couple of

simple cases of CDI measured in forward geometry and under

far-field conditions. For demonstrative purposes, we choose

examples that can be solved with existing approaches for

comparison. Our approach, however, can be extended to other

more complex cases where other methods fail and its impact

is potentially the highest. These include simulation of novel

approaches such as near-field CDI, grazing-incidence

ptychography, or where the use of standard inversion algo-

rithms fails to converge. This is the case of CDI under the

Bragg condition and in the presence of strongly distorted

phase fields. In this case the knowledge obtained from the

simulations could help to reduce the space of possible solu-

tions with a hybrid approach of inversion and fitting proce-

dures (Mastropietro et al., 2013). Other cases include the

simulation of wavefronts from imperfect optics, where it would

be useful to disentangle contributions from sample and

wavefield. Simulations from low-contrast samples would help

to identify the minimum dose necessary for inversion of data,

and to optimize beforehand the setup of the experiments.

2. Methods – ray tracing of CDI

We focus on the simulation of CDI measured under far-field

conditions. The implementation of a proper simulation, in this

case, is achieved by ensuring that the two main requirements

for CDI are satisfied. The first proviso of CDI is the thin

sample assumption (Rodenburg, 2008), which allows the

sample to be described with a 2D object function [the condi-

tions for meeting this assumption are discussed by Dierolf et

al. (2010)]. That withstanding, the multiplication approxima-

tion also holds, i.e.  (the wavefield immediately after the

sample) can be expressed as the product of P, the wavefield

immediately before the sample (also referred to as the probe),

and O, the object function. Namely,

 ðx; yÞ ¼ Pðx; yÞOðx; yÞ; ð1Þ

where (x, y) indicates the position vector in the sample plane.

The second condition is that the intensity measured in the

Fraunhofer, or far-field, regime, has a Fourier transform

relation with the wavefield  , i.e. the intensity I in the far field

should respect the following relation,

IðX;YÞ ¼ �ðX;YÞ½ �
�� ��2 ¼ F Pðx; yÞOðx; yÞ½ �

�� ��2; ð2Þ

where F denotes the Fourier transform and (X, Y) is the

position vector in the detector plane. In the following, we

discuss how the multiplication approximation and the trans-

formation into the far field were implemented and tested in

McXtrace. Before entering into the details, we need to recall

some key concepts regarding ray tracing, i.e. the Monte Carlo

approach and the computational flow. Further details can be

found in the work by Bergbäck Knudsen et al. (2013). In

McXtrace, a ray is described by 12 variables, including its

position (x, y, z), propagation vector k ¼ kx; ky; kz

� �
, weight p

and phase �. It can conceptually be viewed as an ensemble of

photons sharing the same position in space, the same propa-

gation vector and the same phase. The weight of a ray

accounts for the number of photons that it represents. We

neglect the remaining four variables for a ray, which relate to

time and polarization, as they are not relevant for our

discussion. Polarization has little effect for small scattering

angles of the beam in both the horizontal and vertical direc-

tions. The time accounts for the longitudinal coherence, which

in the thin object approximation is not relevant. Synthetically,

we can write a set of rays as

ri ¼ x; y; z; kx; ky; kz; p; �
� �

; i ¼ 1; . . . ;N; ð3Þ

where N defines the size of such set and is an input parameter.

We define the ‘trace’ as the set of values that a ray assumes at

all possible abscissae. If z is defined as the propagation

direction, we define the trace Ti of the ith ray as

Ti ¼ ðx; y; z; kx; ky; kz; p; �Þ; z0 � z � zend

� �
; ð4Þ

where z0 and zend denote the boundaries of the region of

interest. In this description, each component of an X-ray

instrument can be introduced sequentially by placing it at

specific positions (zc) along the beam path, with its own

customizable parameters, effectively translating any (relevant)

element of a beamline into software code. Formally, the

instrument defines a rule BL to compute the trace of a ray,

BL : ri ! Ti ; i ¼ 1; . . . ;N: ð5Þ

BL describes the interaction of every specific component with

the ray, and how it affects the propagation of the rays as well

as of propagation in free space. A trace is updated as a result

of simple propagation in space or as a result of a particular

interaction with a component. As with all Monte Carlo

methods, a single trace does not provide relevant information

per se, but cumulative statistics of all traces do. In McXtrace

the computational flow of a simulation is, in general,

sequential and static, i.e. a pre-defined number of independent

traces are computed in a sequential way. In some limited cases,

the sequence may be purposely broken at discrete logical

points in the simulation, but we have no need for this feature

in our discussion.

Fig. 1 illustrates the components of a setup for a CDI

measurement with a focused X-ray beam. The simulation of

this measurement with McXtrace follows the path of the rays

through the four components. For each ray the following

operations are performed in order:

(i) A ray is instanced by the source according to constraints

input by the user. For a source satisfying ideal plane wave

conditions, all rays have identical k-vectors (monochromatic

and parallel beam), phases and weights.

(ii) The ray interacts with the focusing optics via diffraction:

effectively it takes a new direction, mimicking a Huygens’

wavelet (this step is described in detail later).

(iii) The ray interacts with the sample: after being propa-

gated from the exit of the focusing optics to the sample

section, the exit ray is computed according to equation (1). If,

instead of its transfer function, the sample is specified in terms

of refractive indices, the amplitude and phase of the object

function are computed using exp(�k��) and exp( jk��), in

research papers

136 Fevola et al. � A Monte Carlo ray-tracing simulation of CDI J. Synchrotron Rad. (2020). 27, 134–145



which k and � indicate the wavenumber and the thickness of

the sample, respectively, and � and � are the real and

imaginary parts of the refractive index ( j denotes the

imaginary unit).

(iv) The ray is propagated to a numerical detector, referred

to in the following as Phase Sensitive Detector (PSD), where

it keeps its phase information and is accumulated coherently

on the target pixel. Namely,

PSD� m; nð Þ ¼
X

i2Tm;n

ci pi expð j�iÞ; ð6Þ

where Tm, n is the subset of traces hitting a pixel with indices

m, n. Rays with a weight p and phase � accumulate, with a

scale factor c, over the coherent sum PSD�; c is dependent on

the distance between the pixel and ray origin. Interference

among rays is produced at this step.

Operations (ii) and (iv) deserve more space for an accurate

description because they contain the core model of diffraction

that we use to simulate a realistic coherent X-ray experiment

properly. For simplicity, in the following we consider that the

sample in step (iii) does not induce any further modification to

the rays, i.e. it is O(x, y) = 1 in equation (1). In conventional

‘incoherent’ ray-tracing simulations, rays travel in a straight

line and constructive interference between different rays is not

accounted for, i.e. all rays hitting the area of the detector pixel

are summed incoherently. Here, instead we are interested in

adding rays coherently to predict the correct interference

diffraction pattern. The diffraction of the rays in our model is

described by Huygens’ principle, which phenomenologically

explains diffraction by modelling a plane wave as a sum of

elemental spherical waves. Although it is possible to split one

ray into many and rely on the law of large numbers and Monte

Carlo sampling to generate the wavefront on a semicircle, in

practice the procedure is impractical due to the number of

rays required for sufficient sampling of the wavefront. Instead,

we have developed an approach that considers diffraction

from the detector perspective, in which all detector pixels

collect diffraction from every ray. Furthermore, diffraction is

collected only on a sub-pixel level. This may be done effi-

ciently as it amounts to locally substituting a ray with an

associated spherical wavefront, and sampling that wavefront

at the sites of detector sub-pixels. An additional upshot of this

reverse procedure is that it inherently avoids sampling points

outside the detector.

Besides computational efficiency, the need to define an

appropriate sub-pixel size stems from the following argument.

Let �(X, Y) be the wavefield in the detector plane. Then the

recorded value PSD� on the pixel with indices (m, n) can be

written as

PSD� m; nð Þ ¼

Z Zþ1

�1

� X;Yð Þ�W mW � X; nW � Yð Þ dX dY

¼ � ?�W

� �
mW; nWð Þ; ð7Þ

where ? denotes the convolution operator, (X, Y) are the

coordinates in the detector plane and �W is the 2D top-hat

function of size W,

�W X;Yð Þ ¼
1; if XYj j < 1;
0; otherwise:

�
ð8Þ

Equation (7) states that the matrix of the recorded values is

given by the convolution of the actual wavefield function

with the pixel area, which causes an effective blurring of the

wavefield at the detector plane that strongly depends on the

value of W (see the example in Section S1 of the supporting

information). One way to prevent blurring is to impose

W � a, where a is the smallest feature in the object or illu-

mination. In this way, the top-hat function can be approxi-

mated by a Dirac delta and its effect in the convolution

becomes negligible. Another option to circumvent this

problem is to translate all rays hitting a pixel to its centre

(W ¼ 0). This is followed in the work by Mout et al. (2018),

and has also been tested by us, yielding the same results. We

emphasize that this requirement, and the way it is addressed in

both cases, only relates to the way interference is evaluated in

a ray-tracing context and should not be confused with the

Nyquist sampling requirement of CDI.

Concerning the propagation mentioned in step (iv), we

point out that no paraxial approximation is made. Instead, the

distance between wavelet origin and detector pixel is deter-

mined on a pixel-by-pixel and ray-by-ray basis, and thus the

exact distance is taken into account. The factor ci in equation

(6) scales the weight accordingly, i.e. ci / 1/r, where r is the

distance between the ray origin and (sub)pixel. This term can

be held constant in the far-field approximation and set to 1/z

for each ray, whereas it must be evaluated for each ray in the

near-field. However, this is carried out at no extra cost in a ray-

tracing context as the distances (r) are computed regardless.

research papers

J. Synchrotron Rad. (2020). 27, 134–145 Fevola et al. � A Monte Carlo ray-tracing simulation of CDI 137

Figure 1
Illustration of a general setup for simulation of CDI in McXtrace. The
beam, focus, sample and detector are components in the graphical user
interface, each consisting of a set of lines of code modifying parameters of
the rays in the simulation. The dice illustrate components where a Monte
Carlo process takes place. We refer to  as the wavefield immediately
after the sample, and to � as the wavefield on the detector.



3. Results and discussion

We describe three study cases we have examined to show the

correctness and the applicability of our approach: diffraction

from a grating, full-field CDI from a complex object illumi-

nated by a uniform beam with flat wavefront, and ptycho-

graphy of a complex object with an experimental probe

function (unpublished data). For all examples, the wavelength

� and the sub-pixel size W are set to 1 Å and the sample-to-

detector distance z is set to 5 m. The diffraction patterns, when

noted, are reported on a logarithmic scale, whereas they are

always normalized with respect to the number of simulated

rays N to allow a comparison. Details of the analysis of the

more basic case of diffraction from a single slit are reported in

Appendix A and Appendix B.

3.1. Grating-like source

As a first test, we show the simulation of a 5 � 5 grating in

Fig. 2. The grating consists of a square grid of square apertures

of size w = 1 nm separated by a distance d = 1 mm. Each

aperture is an elementary source where a ray is emitted from

a randomly chosen position within the region defined by the

aperture. The simulated diffraction pattern of the grating

presents all the characteristics predicted by theory. Namely:

n � 2 subsidiary maxima between two main peaks can be

observed when the illumination function is a grid of n � n

apertures; the distance y between the main peaks is related to

the distance between the apertures d by the following equa-

tion,

d sin � ¼ d
y

z
¼ l�; ð9Þ

in which l is an integer and z is the sample-to-detector

distance; the envelope observable in the diffraction pattern

depends on the size of the apertures and follows the expected

trend of

sinc
w

z�
X

� 	
sinc

w

z�
Y

� 	
; ð10Þ

where w is the size of the aperture and X;Y are coordinates in

the detector plane. In particular, we show in Fig. 2 that, for a

sufficiently high number of simulated rays (N = 1010 in this

case), the simulated trend follows closely the one predicted by

theory,

j� X; 0ð Þj ¼ �0 sin
N�dX

�z

� 	
sin

�dX

�z

� 	����
����: ð11Þ

The same results are obtained by using a Fourier transform as

in equation (2) with P(r) = 1. This test is an extension of the

basic diffraction experiments of single and double slits already

reported by Bergbäck Knudsen et al. (2013). It demonstrates

that interference of multiple point-like sources distributed on

a grid placed at a given section is properly modelled and

recorded with our approach and, therefore, represents a test-

bench simulation. Moreover, it serves us to roughly estimate

the number of rays needed for simulation of imaging cases,

which we have learned is dependent on the density of rays at

the source and at the detector. However, this is difficult to

extend to more general cases. We find in this case that a choice

of N = 108 leads to poor cancellation of the zeros and fluc-

tuations in the profile with standard deviation 	 = 0.054,

whereas N = 109 already gives satisfactory results (	 = 0.035),

and N = 1010 can be regarded as an ideal noiseless case (	 =

0.033). For an estimation of values and trend of the error as a

function of N, see Appendix B, where we evaluate it in a

simpler case.

This also allows us to assert that, despite the high number of

phase evolutions, the machine numerical precision does not

seem to interfere with the phasor accumulation, as we are

eventually able to obtain accurate cancellations of zeros and

no systematic errors on the profile. This we have tested and

observed for several reasonable detector distances and sizes.

3.2. Full-field CDI

In a full-field CDI (Miao et al., 1999) experiment, the entire

sample is illuminated by a coherent beam and the diffraction

pattern is recorded in the Fraunhofer regime. As the infor-

mation about the structure of the object is encoded in the

phase and only intensity measurements are available, a phase
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Figure 2
Simulated diffraction of a 5 � 5 grating. The distance between the
apertures is 1 mm, and an 800 � 800 pixel detector of 0.5 cm size is used.
Intensities are on a linear scale, and the ray weight is normalized to N,
thus allowing the comparison for simulations with varying N. The three
cases N = 108, 109 and 1010 are considered for comparison in the inset and
the 1D plot. The diffraction patterns show slight blur and non-zero
background for the first case, whereas they become clear in the others.
The profile comparison (bottom plot) shows in detail the fluctuations for
the three cases.



retrieval algorithm is required to recover the initial object.

This algorithm exploits the setup configuration by imposing

the support constraint, which provides the a priori knowledge

that the object is limited in size and fully illuminated by the

beam as well as the exact knowledge of the diffracted intensity

data.

To illustrate the outcome of our tests we refer to Fig. 3.

In this simulation, we assume the validity of the multiplicative

assumption to verify the second requirement of CDI techni-

ques — the correct propagation in the far-field zone. For this

reason, we used a two-dimensional mask of complex refractive

indices, with amplitude and phase mimicking popular test

images (baboon and man) to demonstrate how the informa-

tion of attenuation and phase shift of a thin sample is

propagated by the simulator into reciprocal space. In this case,

the setup is that of a full-field CDI experiment. The images are

input with 480 � 480 pixel square masks of 8 mm lateral size;

the object is fully covered by a slightly larger beam, with a

uniform intensity profile and constant phase to allow for a

direct visual comparison.1 A 400 � 400 pixel detector with

2 cm lateral size is set at a distance of 5 m from the sample.

The object and detector sizes determine the sampling

requirement for CDI (Spence et al., 2004), which yields in this

case �30 mm as the minimum pixel size, lower than the 50 mm

pixel size of this detector. Therefore, this configuration

produces the undersampled diffraction patterns represented

in the second column of Fig. 3 (an example of an oversampled

simulation follows below). Given the use of a constant phase

beam, the validity of our simulation can be verified by simple

inverse Fourier transform of the simulated patterns. The

result, depicted in the last column of the same figure, with a

reconstructed pixel size of 25 nm, proves that the information

about the object has been properly encoded. The initial object

can be clearly recognized. The noise introduced by the Monte

Carlo process produces a mixing of amplitude and phase of the

retrieved object which can be observed for a lower number

of traced rays.

Our simulation tool allows us to assess how the Monte

Carlo approach affects the quality of the patterns. To illustrate

this, we use a detector with a pixel size of 10 mm, which is

hence oversampling and small enough to resolve the speckles

produced by the largest dimensions of the sample. The speckle

size is expected to be 62.5 mm in this case. In Fig. 4 we illustrate

how speckle visibility is affected by the number of simulated

rays. The higher the number of simulated rays the better the

speckles are resolved, particularly the least intense ones

farthest out in reciprocal space. The effect of enhanced

speckle visibility with increasing N on a retrieved image is

reported in Section S2.2 of the supporting information,

together with an estimation of the noise.

3.3. Ptychography

In ptychography (Rodenburg & Faulkner, 2004; Pfeiffer,

2018), the sample is illuminated by the beam one portion at a

time and the object size is not limited by the size of the beam.

A scan pattern is defined to illuminate the object at different
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Figure 3
Full-field CDI. Columns, left to right: wavefield immediately after the object; far field, recorded on a 2 cm-size detector (second column) and zoom on the
inner portion (third column); inverse Fourier transform of the diffraction pattern in column 2. Upper and lower figures display amplitude and phase of
each recorded wavefield, respectively. Wavelength and sample-to-detector distances are 1 Å and 5 m, respectively. A uniform amplitude and constant
phase have been selected for the illuminating beam to allow an immediate visual comparison of the results.

1 The constant phase is not in general a requirement of a CDI experiment.
Conceptually, it is not a useful addition to use a realistic probe in this case, as
CDI phase retrieval algorithms do not typically retrieve the probe function
(but only the wavefield  ) and because we are using a Fourier transform to
invert the pattern.



positions in overlapping areas and a set of diffraction patterns

is collected. With respect to the definition of the setup, a

sufficient amount of overlap between the illuminated portions

of the sample must be ensured, and any symmetry of the

scanning pattern that may cause raster-grid pathology

(Thibault et al., 2008) must be broken.

Here we discuss the implementation of our method for a

ptychography scan applied to the same object of Fig. 3. In

this case, we use the probe produced by Fresnel zone plate

focusing optics and obtained with phase retrieval approaches

from experimental data obtained in a previous experiment

[Fig. 5(a)]. These data are used to describe the complex mask

component that is inserted right before the sample in our

instrument. The same probe could be produced by our simu-

lation package by using a complete description of the focusing

optics in Fig. 1. We prefer to use a real experimentally

determined probe for our simulation. Some projections of the

ptychography dataset generated in this test are reported in

Fig. 5(c). The probe is shifted over the sample according to the

Fermat spiral scheme depicted in Fig. 5(b), with steps suffi-

ciently small to ensure 80% probe overlap [evaluated as in

Huang et al. (2014)] and complete, uniform coverage (except

for the corners). In this particular case, 160 steps are sufficient.

We prefer the Fermat spiral scheme over a Cartesian grid or

other geometries as it efficiently mitigates reconstruction

artefacts. In this simulation, the specimen is�3.1 mm� 3.1 mm

in size and its transfer function input is a 480 � 480 matrix. A

200 � 200 pixel detector of 3.5 cm lateral size [similar to

Pilatus 100 K (Bech et al., 2008)] is used. A total of 1010 rays

are used for each scan position. Each step runs for 12 min on a

16-core node. The phase and amplitude of the object are

reconstructed via the inversion of the simulated diffraction

patterns using cSAXS Matlab code. The result of the

ptychography phase retrieval is shown in Fig. 6 and was

obtained by running 300 iterations (with as many probe and

object updates) of the algorithm ePIE (Maiden & Rodenburg,

2009). A good guess of the probe, its real part in our case, had

to be provided to ensure convergence. The level of noise

introduced by the simulation is acceptable for the pattern to

return a fair reconstruction of the specimen and the probe

(refer to Section S2 of the supporting information for a

resolution assessment).

The reconstruction quality is comparable with that of the

full-field case (see Section S2 of the supporting information

for a resolution assessment). In this case, the single diffraction

patterns are obtained with one-tenth of the rays used in Fig. 3.

However, because of the multiple illuminations, a significantly

larger total number of rays impinge on the sample. This results

in estimates of the average signal-to-noise ratio being on the

same order of magnitude (5.4 in CDI versus 3.3 in ptycho-

graphy). We find that decreasing N by one order of magnitude

in the ptychography case (i.e. going from 1010 to 109) leads to

research papers

140 Fevola et al. � A Monte Carlo ray-tracing simulation of CDI J. Synchrotron Rad. (2020). 27, 134–145

Figure 4
Full-field CDI. Speckle resolution as a function of simulated rays. Three test cases are shown for a 4 mm-sized detector with 400 pixels set at a 5 m
distance from the sample. All plots are on a logarithmic scale, with the same color bar. The profile is plotted along the X direction and is averaged on a
length of seven pixels along the Y direction. Averaging helps to distinguish between speckles and fluctuations on a smaller scale due to noise. The
speckles at higher spatial frequency are better resolved for increasing numbers of simulated rays N, whereas they are buried into background noise with
fewer rays.



failure of the reconstruction, although the diffraction patterns

do not suffer considerable loss in quality. As in Fig. 4, the

difference between the cases 1010 and 1011 does not appear

substantial, but can nonetheless mark the threshold for

convergence in phase retrieval.

4. Outlook

Relevant features of the method reported by Mout et al.

(2018) can be applied to our implementation for further

testing of more complex and unsolved cases. Specifically, the

vectorial expression for the accumula-

tion of rays at each step allowing for a

cascaded system indicates a viable path

for the implementation of thick samples

through cascaded objects. Given the

similarity of our framework, we

presume that this procedure is applic-

able to our case, at least with respect to

the forward imaging mode. Concerning

the general 3D case, we note that CDI

techniques can already be simulated on

a 3D object with the support of the

ASTRA toolbox (van Aarle et al., 2015).

The line integration of the refractive

indices represents a computationally

expensive operation that could in prin-

ciple be performed in McXtrace, but not

as efficiently as in ASTRA. If the sample

is thin enough, the internal scattering is

negligible and it is recommended to use

ASTRA, otherwise a 3D sample can be

represented by a stack of masks along

the ray direction, using a multi-slice

approach as in the work by Maiden et al.

(2012). Simulation of 3D volumes would

allow a comparison with experimental

data and would provide definitive

evidence of the validity of this tool.

Another interesting case is the grazing incidence setup,

where the theoretical analytical expression has proved

significantly distant from actual measurement in some cases

and seems only applicable to describe the height function of

truncated crystals (Zhu et al., 2015). Imperfect temporal

coherence is also easily simulated by assigning different

wavelengths to the rays. In particular, it is possible to assign to

the rays energy values distributed on a Gaussian centered on

the main energy, with a deviation. In principle, non-paraxial

cases and near-field cases can be tested but have not been

explored in this work for imaging (Appendix A reports a
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Figure 5
Ptychography: (a) amplitude and phase of the probe used for illumination, 500 � 500 pixels;
(b) illumination scheme of Fermat spiral scan; (c) some results from the simulated ptychography
dataset. The exit waves are in the top row, with each relative diffraction pattern below. The exit
waves are recorded on a �1 mm-wide detector covering most of the probe. Aside from high-
frequency features, some near-field features are still visible in the diffraction patterns.

Figure 6
Left to right: amplitude and phase of the retrieved object; plot of the retrieved probe, amplitude (top) and phase (bottom). The phase retrieval is
performed with 300 iterations of ePIE after providing a good guess of the probe.



comparison with the Fraunhofer propagator in the case of

wider angles with diffraction from a single slit). The model

does not in fact assume paraxial propagation, and the sphe-

rical factor in the amplitude is accounted for each ray rather

than set to the detector distance as in the far-field hypothesis.

Mout et al. (2018) also used a general expression for the

weight of the rays, which could help to optimize the number of

traced rays to achieve an adequate signal-to-noise ratio,

reducing the computational cost of this method. We show in a

basic example in Appendix B that not all portions of a

detector are affected equally by Monte Carlo noise, which

points to the study of specific, dynamical sampling strategies.

The other main route to decrease computational cost is

through parallelization. Formulated in this framework, any

setup is easily parallelized, and GPU parallelized code can

easily reduce processing time. Furthermore, the number of

rays modern hardware can afford to simulate has increased

exponentially over the years, making the cost of ray tracing

for imaging within reach and with good prospects. While

we routinely run simulations of billions of rays, the first

SHADOW publication quotes 5000 as the maximum number

of traceable rays, and as a result regards simulation of imaging

experiments as ‘unsuitable’ (Lai & Cerrina, 1986). If one is

only interested in a single portion of the reciprocal space, this

method can already have a reasonable cost.

We finally note that future work should generally aim to:

assess the signal-to-noise ratio of simulated diffraction

patterns of a volume of refractive indices, representing

realistic volumetric samples; simulate CDI experiments with

complex sample-interaction mechanisms (Vartanyants et al.,

2007), and in combination with tomography and focusing

optics. With respect to the simulated noise, it is of interest to

characterize it statistically and assess whether it is Poisson-like

as in real experiments and to relate the number of simulated

rays to the simulated signal-to-noise ratio.

5. Conclusions

We reported a scheme for simulating CDI techniques in a ray-

tracing framework. We have implemented it in the open-

source simulator McXtrace and demonstrated its function for

a novel problem in the configurations of full-field CDI and

ptychography in the far field and using a forward direction

geometry. Possibly the main advantage of this method is to

assist non-specialists in the simulation of coherent imaging

experiments. All user-defined distances and parameters are

real space quantities and do not need conversion to reciprocal

coordinates, and allow for deviation from ideal test situations

(translation or rotation of a component).

We acknowledge that like all Monte Carlo methods this one

does not stand out for elegance (as it is not based on a physical

insight of a setup) or efficiency and is hardly recommendable

for standard cases where an analytical solution is available.

However, this simple approach bears no attached hypothesis

and is possibly extendable to less standard, unsolved cases; the

scheme is suitable for GPU parallelization and therefore has

wide room for improvement with regard to efficiency. The

rationale behind our endeavour is to eventually offload the

complexity of a special setup to brute computational force.

The main contribution of this paper lies in the definition of

adequate constraints for simulation of diffraction, such as the

sampling requirements and an estimate of the number of rays

to trace to achieve a satisfactory signal-to-noise ratio. We

believe that these are potentially applicable to the simulation

of other untested CDI variants, although more tests are still to

be made. In line with the open-source spirit of McXtrace, we

trust that current and future users can exploit and help to

develop the lines of inquiry mentioned in the outlook.

6. Related literature

The following references, not cited in the main body of the

paper, have been cited in the supporting information: Nieu-

wenhuizen et al. (2013); Van Heel & Schatz (2005); Vila-

Comamala et al. (2011); Huang et al. (2009).

APPENDIX A
Comparison with Fraunhofer propagator

In this section, we compare the ray-tracing simulation of

diffraction from a single slit with the solution obtained with a

numerical implementation of the Fraunhofer propagator,

�ðX;YÞ ¼ �
j expð jkzÞffiffiffiffiffiffiffiffiffiffiffi

NxNy

p exp jk
X2 þ Y2

z

� 	
Fð Þ; ð12Þ

in which NX and NY are the number of pixels in the horizontal

and vertical directions. The single slit has 100 nm width; the

detector has 200 � 200 square pixels of 400 mm size, corre-

sponding to a detector size of 8 cm � 8 cm at a distance z =

4 m from the slits. These parameters produce a real space pixel

size of 5 nm, which is relatively far in reciprocal space. The

comparison of the two cases is illustrated in Fig. 7. An overall

agreement is found at low frequencies, whereas a slightly

faster decay of intensity is observed for the Fraunhofer

propagator solution, and a worse cancellation of the zeros is

observed for the ray tracing due to the stochastical way it is

achieved. The faster decay is highlighted in Fig. 8. A third

comparison is made with the sinc pattern derived from

geometrical optics, here recalled,

� X;Yð Þ ¼ sinc
wX

�z

� 	
sinc

wY

�z

� 	
; ð13Þ

where w denotes the slit width, � the wavelength and z the

detector distance. The ray-tracing simulation shows a closer

resemblance with this last function and shows significant

relative deviation from the Fraunhofer approach at high

angles. The decay is similar when other line profiles are

evaluated. It is interesting in this case to define a cut-off

in detector space where the two approaches match. We find

that for |X| < 2 cm the relative difference between them is

below 10%.
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APPENDIX B
Characterization of noise in Monte Carlo ray tracing

We evaluate noise in the above-mentioned case of the single

slit where satisfactory results are obtained even with a rela-

tively low number of rays and, additionally, an analytical

solution exists. For the analysis, we focus solely on the simu-

lated amplitude of the diffraction patterns. Error is evaluated

as the difference from the true solution. For that we refer to

two options: the simulation of the highest number of rays and

the sinc pattern from equation (13). We test numbers of rays

ranging from 108 to 1011, whereas the best guess of a solution

has 1012 rays.

Figs. 9 and 10 show the strong signal–noise dependence (i.e.

the noise pattern reflects the single slit patterns in Fig. 9) with

the largest relative error for low signal, which is also a char-

acteristic of Poisson counting statistics and points to a useful

modelling of noise. Mean and variance of this noise do not

match in this case in general, as it should be for a Poisson-like

noise, but they obviously match for the event (the number of

rays hitting a pixel) numbers on the detector [Fig. 11(a)]. This

second fact implies that when the flux is

set to match the number of rays, and

there is fully constructive interference,

the counts are Poisson distributed.

Aside from this case, the variance is not

observed to match the mean counts for

all pixels.

The norm of the error decreases as

1=
ffiffiffiffi
N
p

[Fig. 11(b)], as expected for a

Monte Carlo method. The same

conclusions apply whether the error is

evaluated as the difference from the

best guess with N = 1012, or as the

difference from the sinc pattern.
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Figure 8
Line-cut of a single-slit diffraction pattern taken in the centre of the diffraction at y = 0. The ray-
tracing simulation is compared with the solution obtained with the Fraunhofer propagator and with
the sinc function from geometrical optics. (a) Profile across the entire detector, showing an overall
agreement among the three solutions; (b) the ray-tracing simulation matches the sinc pattern but
deviates significantly from the Fraunhofer propagator solution at high frequencies; (c) plot of the
difference between the Fraunhofer solution and ray tracing for a single line-cut. The difference is
below 10% of the Fraunhofer solution for |X| < 2 cm.

Figure 7
Comparison of diffraction patterns from the Fraunhofer propagator and
ray-tracing simulations from a single slit. N = 1012 rays are traced in the
McXtrace simulation.

Figure 9
Diffraction patterns of a single slit for an increasing number of simulated rays (N = 108–1011). The same colour axis and scale refers to the four log scale
plots. The weight of the rays is normalized by N so that the sum of all weights equals unity.
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Figure 11
(a) Event statistics, which follow a Poisson distribution; the reported case
refers to N = 1011. (b) Error trend on logarithmic axes. The total error is
evaluated as L2-norm of the difference with the sinc pattern. The points
fit on a straight line with �0.5 slope.

Figure 10
Relative error patterns. The same colour axis and scale refers to the four log scale plots. The simulated patterns from Fig. 9 are subtracted from and
normalized by the simulation with the largest number of traced rays (N = 1012). The total error decreases with increasing N and is higher where the signal
is lower.
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