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In-line X-ray phase-contrast computed tomography (IL-PCCT) is a valuable

tool for revealing the internal detailed structures in weakly absorbing objects

(e.g. biological soft tissues), and has a great potential to become clinically

applicable. However, the long scanning time for IL-PCCT will result in a high

radiation dose to biological samples, and thus impede the wider use of IL-PCCT

in clinical and biomedical imaging. To alleviate this problem, a new iterative CT

reconstruction algorithm is presented that aims to decrease the radiation dose

by reducing the projection views, while maintaining the high quality of

reconstructed images. The proposed algorithm combines the adaptive-weighted

anisotropic total p-variation (AwaTpV, 0 < p < 1) regularization technique with

projection onto convex sets (POCS) strategy. Noteworthy, the AwaTpV

regularization term not only contains the horizontal and vertical image

gradients but also adds the diagonal image gradients in order to enforce the

directional continuity in the gradient domain. To evaluate the effectiveness and

ability of the proposed algorithm, experiments with a numerical phantom and

synchrotron IL-PCCT were performed, respectively. The results demonstrated

that the proposed algorithm had the ability to significantly reduce the artefacts

caused by insufficient data and effectively preserved the edge details under

noise-free and noisy conditions, and thus could be used as an effective approach

to decrease the radiation dose for IL-PCCT.

1. Introduction

In-line X-ray phase-contrast imaging (IL-PCI), also called

propagation-based imaging, is a powerful nondestructive

imaging technique enabling high contrast between materials

with similar attenuation properties. In general, IL-PCI images

contain both absorption information and the second deriva-

tive (the Laplacian) of phase information, and the latter can

lead to strong contrast outlining the structural boundaries of

a sample (edge enhancement). Therefore, IL-PCI has a big

advantage in enhancing the contrast at boundaries, and this is

well suited for imaging biological tissues containing fibre-like

structures, such as hepatic fibrous tissue. In general, structural

changes of hepatic fibrous tissue are considered as one of the

most important pathophysiological features of cirrhosis, and

hence hepatic fibrous tissue can be used to accurately char-
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acterize cirrhosis (Sethasine et al., 2012). By extending IL-PCI

to computed tomography (IL-PCCT), CT images can be

produced with higher resolution and better contrast in biolo-

gical soft tissues compared with traditional CT (termed as

absorption-based CT) imaging techniques (Bravin & Coan,

2012), and thus can be used for high-resolution three-dimen-

sional (3D) visualization of the internal detailed structures

in weakly absorbing objects (e.g. biological soft tissues).

Currently, IL-PCCT has been widely applied to visualize

biological soft tissue details and has become one of the most

important pre-clinical imaging techniques (Horng et al., 2014;

Iyer et al., 2018; Labriet et al., 2018). Typically, the standard

filtered back projection (FBP) algorithm is used for CT

reconstruction in IL-PCCT. However, due to the Shannon

sampling theorem (Jerri, 1977), the FBP requires high

completeness of projection data to produce high-quality CT

images, which leads to a long total exposure time and thus a

high radiation dose. The high radiation dose will not only pose

health risks to subjects for in vivo imaging but also has the risk

of causing damage to the structures and biological properties

of the samples when used for ex vivo imaging (Fernández et al.,

2018), which may affect the accurate structure measurements

based on the CT images and even influence the subsequent use

of ex vivo biological samples (e.g. pathological analysis). It is

important for clinical or biomedical applications of IL-PCCT

to decrease the radiation dose while maintaining the high

quality of reconstructed images. For IL-PCCT, one strategy

to decrease the radiation dose is to reduce the amount of

sampling data, e.g. few-view projections and limited-angle

projections. However, few-view projections and limited-angle

projections will cause projection data insufficiency, and thus

result in reconstruction artefacts for FBP. To alleviate this

problem, many efforts have been directed to developing the

CT iterative reconstruction algorithms for IL-PCCT (Zhao et

al., 2012, 2018; Melli et al., 2018).

The algebraic reconstruction technique (ART), a classic CT

iterative reconstruction method, has the potential to be an

alternative approach to FBP, formulating the reconstruction

problem as a discrete linear system and enables reconstruction

of better results using the incomplete sampling data compared

with FBP. However, when the projection data are incomplete,

the discrete linear system will be ill-posed, and it may typically

be unstable with respect to small perturbations of the noise in

projection data (e.g. the low-dose noise). Therefore, it is rare

for ART to be independently used for CT reconstruction. To

improve the performance of ART, one possible strategy is to

combine ART with the total variation (TV) regularization

technique, and this strategy enables accurate image recovery

from very few measurements according to the compressive

sensing (CS) theory (Sidky et al., 2006). In general, the TV-

based CT reconstruction algorithm mainly relies on the

piecewise-constant assumption of the reconstructed images

and the sparsity of the reconstructed images in the discrete

gradient transform domain. In this study, for the IL-PCCT

images of the human cirrhosis sample stained with iodine,

where the iodine was used as contrast agent for contrast-

enhanced hepatic fibrous tissue imaging, they can be

approximated by a piecewise-constant function and, here, the

TV-based reconstruction algorithm can be applicable.

Generally, when using the TV-based reconstruction algo-

rithm, due to the piecewise-constant assumption for the image,

the edges of the reconstructed image can cause over-

smoothness and sometimes can result in staircase artefacts,

which can seriously degrade the quality of the images and

influence the subsequent image analysis (e.g. image segmen-

tation, texture analysis and structure measurement). In order

to improve this limitation of the TV-based reconstruction

algorithm, Liu et al. (2012) proposed an adaptive-weighted TV

with the projection data constraints (e.g. data consistency and

positivity) enforced by projection onto the convex sets

(AwTV-POCS) reconstruction algorithm. In the AwTV-POCS

algorithm, the AwTV minimization was performed by the

gradient descent method, and the algebraic reconstruction

procedure with nonnegative constraint could be considered as

the POCS strategy. The AwTV-POCS algorithm can preserve

the edge details of the reconstructed image to a certain extent,

and this is achieved by considering the anisotropic edge

property among neighbouring image pixels, where the asso-

ciated weights are computed with an edge indicator function

that could be adaptively adjusted via the local image gradient

magnitude. However, The AwTV term of the AwTV-POCS

algorithm is isotropic; namely, the finite difference operators

of the AwTV term in the horizontal and vertical directions

are unseparated, which may cause the mutual interference

between them and thus affect edge detection (Ji et al., 2017).

Therefore, limited by the isotropic property of the AwTV

term, the AwTV-POCS often has a limited ability to preserve

the complex textures and edges like liver images, and it also

has a poor capability to handle large-scale artefacts, such as

the limited-angle artefacts. Compared with the isotropic TV,

the anisotropic TV allows for an improved detection of edge

structure information and can also help to handle large-scale

artefacts (Chen, Jin, Li & Wang, 2013; Wang, Zhang et al.,

2017). However, the traditional anisotropic TV only seeks the

gradient sparsity horizontally and vertically, but fails to

enforce the directional continuity in the gradient domain. To

overcome the deficiency of the traditional anisotropic strategy,

Shu et al. proposed that the diagonal image gradients could

be incorporated into the original regularization term [further

details about the experimental certification are given by Shu &

Ahuja (2010) and Wu et al. (2017)]. In general, the total p-

variation (TpV, 0 < p < 1) regularization-based reconstruction

algorithm can perform better in terms of image quality and

reconstruction accuracy compared with the TV-based recon-

struction algorithm (Sidky et al., 2007, 2014; Miao & Yu, 2015).

Moreover, recent theoretical results showed that values of p

leading to nonconvex optimization problems may be practical

for CS applications (Chartrand & Staneva, 2010; Chartrand,

2012). This indicates that the exploitation and improvement of

the TpV regularization-based reconstruction algorithm will be

extremely valuable for practical CT reconstructions.

Inspired by the above-mentioned work, considering both

the piecewise-smooth characteristic and the anisotropic edge

property of IL-PCCT images of biological tissues (e.g. the
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hepatic fibrous tissue), a novel adaptive-weighted anisotropic

TpV-POCS reconstruction algorithm (AwaTpV-POCS) is

proposed. The proposed algorithm combines the AwaTpV

regularization technique with the POCS strategy, along with

two diagonal gradients adopted to enhance the directional

continuity in the gradient domain. To demonstrate the effec-

tiveness and capability of the AwaTpV-POCS algorithm, a

numerical liver-cirrhosis (LC) phantom simulation experiment

and a synchrotron IL-PCCT experiment on a human cirrhosis

sample stained with iodine were carried out.

2. Methods

2.1. IL-PCI and the phase retrieval

In IL-PCI, when the spatially coherent X-ray beams pass

through an object, a phase shift in the beam caused by the

object will arise. As the beams with the phase shift of the

object propagate in the near-field regime, due to Fresnel

diffraction, an interference pattern with ‘Fresnel fringes’ is

generated, and thus the phase shift can be transformed into

variations in intensity, which is finally recorded by a detector

set at a specific distance. In practice, the experimental setup of

IL-PCI consists of a light source that can provide the spatially

coherent X-ray beams, sample stage and detector, and no

other optical components are needed (see Fig. 1). Due to its

simple setup and the low stability requirements, IL-PCI shows

great potential to become clinically applicable.

To acquire the phase information distribution of the sample,

we need to extract the phase shift from the raw projection

images, and thus phase retrieval is required (Nugent et al.,

1996). However, to obtain the accurate phase shift, phase

retrieval typically requires at least two phase-contrast radio-

graphs, taken at two different sample-to-detector distances

(SDDs) (Cloetens et al., 1999). This method is difficult to

arrange experimentally, and causes a complicated registration

problem and delivers a high radiation dose to the biological

samples (Mohammadi et al., 2014). According to Gureyev’s

simulation study, phase retrieval from one SDD phase-

contrast radiograph is possible (Gureyev et al., 2004), and

several phase retrieval methods using one SDD phase-

contrast radiograph have been proposed, e.g. the modified

Bronnikov algorithm (MBA) method (Groso et al., 2006), the

phase-attenuation duality Bronnikov algorithm (PAD-BA)

(Chen, Rigon & Longo, 2013) etc.

In this study, the PAD-BA algorithm, which is usually useful

for imaging objects containing components with similar X-ray

attenuation coefficients, was implemented on the projection

images using PITRE software to extract quantitative phase-

shift information (Chen et al., 2012). The PAD-BA algorithm

is grounded in two assumptions on the material properties:

(i) that the imaging object is weakly absorbing and quasi-

homogeneous; and (ii) the PAD property, i.e. the � and � parts

of the complex refractive index n = 1� � + i� are proportional

to each other; here the � value is related to the absorption

information, whereas the � value is related to the phase

information. In this experiment, after some experimental

trials, it was found that the reconstructed result using a �/�
value of 400 had a high contrast between the adjacent tissues

(e.g. the hepatic fibrous tissue and the liver parenchyma) and

enabled the optimal visual effect for edge details and fine

features. Therefore, 400 was considered as the best �/� value.

After phase retrieval, the phase-shift distribution from the IL-

PCI of samples was acquired, and the corresponding IL-PCCT

images could then be obtained by the

CT reconstruction.

2.2. The CT iterative reconstruction
method for IL-PCCT

Following phase retrieval, taking into

consideration that the synchrotron

radiation is a monochromatic source,

the general model of the IL-PCCT

imaging can be approximately

expressed as the following discrete

linear system,

Au ¼ g; ð1Þ

where A 2 R M�N is the projection

coefficient matrix that represents the

parallel-beam X-ray forward projection

(Siddon, 1985). The projection data

acquired from the detector are given by

g 2 R M , and u 2 R N denotes the phase

information distribution of the illumi-

nated object. The goal of IL-PCCT

reconstruction is to accurately recon-

struct u from g. Mathematically
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Figure 1
Schematic illustration (a) and photograph (b) of the IL-PCI experimental setup at BL13W1 at the
Shanghai Synchrotron Radiation Facility (SSRF). Here, the quasi-coherent parallel X-ray beams
are generated by the 3.5 GeV electron storage ring and are monochromated by a double-crystal
monochromator with Si(111) crystals, and then illuminate the sample on the rotation stage. When
the transmitted beams propagate from the sample, the density variation causes phase shifts. Because
of Fresnel diffraction, the phase shifts are transformed into detectable intensity variations and
subsequently recorded by a detector set at a specific distance. Finally, the projection image of IL-
PCI is displayed in the image acquisition system. For tomographic scans, the sample can be rotated
from 0� to 180� to collect the projection images from various views.



speaking, equation (1) is an ill-posed inverse problem for the

case that the projection data g is insufficient (e.g. few-view

projections and limited-angle projections), which means that

the unique solution for u cannot be obtained by directly

inverting equation (1). To solve the discrete linear system

represented in equation (1), an optimization-based strategy is

often adopted.

In this study, to find the optimal solution u� to the problem

in equation (1), we develop an optimization-based method,

and its cost function can be formulated as follows,

u� ¼ arg min
u

1

2
jjAu� gjj22 þ �

X4

n¼ 1

jj wnjrn ujð Þjj
p
p; ð2Þ

where 1
2jjAu� gjj22 is the data fidelity term,P4

n¼ 1 jjðwnjrn ujÞjj pp is the AwaTpV regularization term, and

� is a regularization parameter that controls the trade-off

between the data fidelity term and regularization term. r1 u =

fi;j � fi�1;j and r2 u = fi;j � fi;j�1 are the horizontal and vertical

gradients, respectively, which measure the gradient sparsity.

r3 u = fi;j � fi�1;j�1 and r4 u = fi;j�1 � fi�1;j are two diagonal

partial gradients, which measure the gradient continuity.

w1, w2, w3 and w4 are weights added on to r1 u, r2 u, r3 u and

r4 u, respectively, and can be adaptively calculated using an

edge indicator function, namely w1 = exp½�cðjr1 uj=�Þ2�, w2 =

exp½�cðjr2uj=�Þ2�, w3 = ð
ffiffiffi
2
p
=2Þ exp½�cðjr3uj=�Þ2� and w4 =

ð
ffiffiffi
2
p
=2Þ exp½�cðjr4uj=�Þ2�. Here, c and � in weights are scale

factors which control the strength of the diffusion. In this

study, the pth power of Lp norm was defined as Lp-quasinorm,

i.e. jjxjj pp :=
P

i

jxij
p; 0< p< 1, and the Lp-quasinorm of the

image gradients was formulated as a TpV function.

According to the proximal forward–backward splitting

optimization algorithm (Gao, 2016), the optimization problem

in equation (2) can be transformed into a few subproblems

which are calculated for the optimal solution of the original

optimization problem in an alternately iterative manner.

Here, the equivalent form of the optimization problem in

equation (2) can be formulated as the following two subpro-

blems,

z t ¼ u t �
1

at

AT Au t � gð Þ; ð3Þ

u tþ1
¼ arg min

u

1

2
jju� z t

jj
2
2 þ

�

at

X4

n¼ 1

jjðwnjrn ujÞjj pp; ð4Þ

where the step for calculating z t is a gradient descent update

with a step size of 1/at for the problem

z ¼ arg min
u

1

2
jjAu� gjj22 ;

the superscript T represents the transpose operator; the

superscripts t and t+1 denote the t th iteration and (t+1)th

iteration, respectively.

2.2.1. The POCS strategy. To solve the subproblem in

equation (3), the simultaneous algebraic reconstruction tech-

nique (SART), a major refinement of the ART, could be

utilized herein (Andersen & Kak, 1984), and this procedure

with nonnegative constraint was considered as the POCS

strategy, which is similar to the POCS implementation of the

AwTV-POCS algorithm (Liu et al., 2012). In this work, a

block-iterative SART technique is adopted (Hansen & Saxild-

Hansen, 2012), which has the potential to handle large-scale

linear inverse problems quickly, and is expressed as follows,

z t
¼ ut
þ �tV

�1AT Wðg� Au t
Þ; ð5Þ

where �t represents the relaxation parameter of the t th

iteration, and V and W are the diagonal matrixes with row

sums and column sums of A in the diagonal, respectively.

Considering that each component of z t is nonnegative, the

nonnegative constraint for the block-iterative SART is here

imposed. Let z t
j be defined as a component of z t, and the

nonnegative constraint can be written as follows,

z t
j ¼

z t
j ; z t

j � 0;
0; z t

j < 0;

�
j ¼ 1; 2; :::;N: ð6Þ

To improve the convergence performance of the SART

algorithm, the relaxation parameter in each iteration is chosen

using the line search scheme, which can be computed as

follows,

�t ¼ ðg� Au t
Þ

T
Wðg� Au t

Þ=jjAT
ðg� Au t

Þjj
2
2; ð7Þ

where jj . . . jj22 denotes the square of the L2 norm.

2.2.2. The AwaTpV regularization technique. The subpro-

blem in equation (4) represents the AwaTpV regularization

problem. Although it usually leads to a nonconvex optimiza-

tion problem and can obtain only local optimal solutions, it can

yield solutions sparser than the TV regularization (Sidky et al.,

2007; Chartrand, 2007). Moreover, some studies suggested

that the nonconvex optimization problems may be more

accurate for practical image inverse problems compared with

convex optimization problems, because the latter often

resulted in a biased sparsity approximation and inaccurate

reconstruction under some practical problems (Wang, Zhang

et al., 2017). According to previous work (Pan et al., 2013), the

new auxiliary variables corresponding to the weighted image

gradient magnitude were introduced, i.e. dn = wnjrn f j, n =

1, 2, 3, 4, and the equivalent form of the subproblem in

equation (4) could be written as follows,

u tþ1
¼ arg min

u;dn

1

2
jju� z t

jj
2
2 þ

�

2

X4

n¼ 1

jjdn � wnjrn ujjj22

þ ��
X4

n¼ 1

jjdnjj
p
p; ð8Þ

where � is a positive parameter that constraints the auxiliary

variables dn close to their corresponding gradients wnjrn f j;

�� denotes the ratio of the parameter � and at.

In this study, to solve the subproblem in equation (8), the

split Bregman iteration (SBI) algorithm (Goldstein & Osher,

2009) was implemented, and the dual variables with respect to

dn; n = 1, 2, 3, 4, were introduced, i.e. bn, n = 1, 2, 3, 4. Then, the

subproblem in equation (8) can be split into the following sub-

optimization problems which are then calculated in the

manner of alternating iteration,

research papers

J. Synchrotron Rad. (2019). 26, 1330–1342 Yuqing Zhao et al. � A new in-line X-ray PCCT reconstruction algorithm 1333



uðkþ1Þ ¼ arg min
u
jju� z tjj

2
2 þ �

X4

n¼ 1

jjd ðkÞn � wnjrn uj � b ðkÞn jj
2
2;

ð9Þ

d ðkþ1Þ
n ¼ arg min

dn

�

2

X4

n¼ 1

jjdn � wnjrn u ðkþ1Þj � b ðkÞn jj
2
2

þ ��
X4

n¼ 1

jjdnjj
p
p; ð10Þ

b ðkþ1Þ
n ¼ b ðkÞn þ wnjrn u ðkþ1Þ

j � d ðkþ1Þ
n ; ð11Þ

where k denotes the number of iteration for AwaTpV mini-

mization.

(i) u-subproblem. The objective function in equation (9) is

a quadratic function that can be solved by a conventional

gradient decent approach. In this study, the fast Fourier

transform (FFT) method was implemented to solve the sub-

optimization problem in equation (9), which can produce the

solution in closed form of the above-mentioned sub-optimi-

zation problem and enables acceleration of convergence

according to previous work (Wang et al., 2008). Then, the

solution to u could be obtained as follows,

u ðkþ1Þ
¼ F

�1

Fðz tÞ þ �
P4

n¼ 1

½F ðrnÞ
�
� Fðd ðkÞn � b ðkÞn Þ�

1þ �
P4

n¼ 1

½F ðrnÞ
�
� FðrnÞ�

2
664

3
775;

ð12Þ

where F and F �1 represent the 2D FFT and its inverse

operators, respectively; r = ½r1;r2;r3;r4� denote the hori-

zontals, vertical and two diagonal image gradient operators;

the superscript * denotes the complex conjugate, the symbol 1

represents a matrix where all the entries are 1, and the symbol

� is the component-wise multiplication operator; all operators

here (such as addition, multiplication and division) are

component-wise.

(ii) dn-subproblem. To solve the sub-optimization problem

in equation (10), an iterative p-shrinkage (IPS) method was

herein utilized (Woodworth & Chartrand, 2016). This method

could produce the exact solution to the sub-optimization

problem in equation (10), and it was also guaranteed to

converge (Zuo et al., 2013). Here, the IPS method was defined

as follows,

shrinkpð�; �Þ ¼ max j�j � �2�p j�j p�1; 0
� �

�=j�j; ð13Þ

where shrinkpð. . .Þ denotes the IPS operator; � is the

threshold; 0< p< 1, when p = 1, the IPS degrades as the

standard soft thresholding shrinkage (Daubechies et al., 2004).

Therefore, the solution of the sub-optimization problems in

equation (10) could be written as follows,

d ðkþ1Þ
n ¼ shrinkp wnjrn u ðkþ1Þ

j þ b ðkÞn ; ��=�
� �

: ð14Þ

2.3. Pseudocode for the AwaTpV-POCS algorithm

In order to explain the AwaTpV-POCS algorithm more

clearly, the corresponding pseudocode was provided, as illu-

strated in Algorithm 1.

.

2.4. Low-dose noise model in projections

To analyze the robustness and reliability of the AwaTpV-

POCS method in the presence of low-dose noise, the low-dose

noise was added to the projections and then the corresponding

CT reconstructions were carried out. In this experiment, the

low-dose noise in projections was defined as a combination of

the Poisson noise and Gaussian noise (Liu et al., 2012), and its

mathematical model could be formulated as depicted in

equation (15),

~IIi ¼ Poisson I0 exp �~yyið Þ
� �

þGaussian mie; �
2
ie

� �
; ð15Þ

where ~IIi represents the simulated noisy intensity measurement

of detector unit i at a projection view and I0 denotes the

incoming X-ray intensity, ~yyi is defined as the logarithmic

transform of ~IIi, mie and �2
ie are the mean value and variance of

the Gaussian noise, for detector unit i. In this experiment, the

photon number for Poisson noise I0 was set to 1.0 � 105, while

mie and �2
ie were set to 0 and 10, respectively.

2.5. Parameter selection

In this study, there are five parameters involved in the

AwaTpV-POCS method: p, �, �*, c and �. These parameters

have significant impact on the reconstructed image, and the

suitable selection for parameters can guarantee a favourable

reconstructed result. However, selecting optimal parameters

is a common difficulty for multi-parameter algorithms. In
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general, the best approach for determining the optimal values

of the above-mentioned five parameters is to find the global

optimal value of peak signal-to-noise ratio (PSNR) in the five-

dimensional parameter space, but this method requires a lot of

computation cost and thus is difficult to implement in reality.

To alleviate this problem, a greedy strategy to determine the

parameters one by one was used (Lohvithee et al., 2017).

Although this strategy may acquire a local optimum, it gives

an approximately optimal result. In this experiment, the

greedy strategy was implemented to select the optimal para-

meters. For the selection of the p value in the AwaTpV

regularization, the different p values were tuned while keeping

other parameters fixed to produce different image recon-

structions, and the optimal p value could be determined by

the highest PSNR value based on the corresponding image

reconstructions. The processes for the selection of p value are

shown later in Fig. 6(d). The other parameters can also be

determined in the above-mentioned way, including the para-

meter � that was defined as the regularization parameter

of the AwTV-POCS method. In the synchrotron IL-PCCT

experiment, the contrast-to-noise ratio (CNR) was used as the

evaluation measure. The parameters for the simulation and

synchrotron IL-PCCT experiment will be subsequently shown

in Tables 1 and 3, respectively.

2.6. Quantitative assessment

In this study, the PSNR, structural similarity index (SSIM),

relative error (RE), CNR and relative difference (RD) were

adopted as quantitative metrics. The PSNR is a traditional

measure for image quality, and a larger PSNR value represents

better quality. The SSIM is usually used to assess the similarity

between the reconstructed and reference image, which yields a

value between 0 and 1 that increases with increasing similarity

(Wang et al., 2004). The RE can be used to evaluate the

reconstruction error, and a smaller RE value indicates more

accuracy. The CNR can be adopted to evaluate contrast

between the adjacent tissues, and a larger CNR value repre-

sents higher contrast (Zeller-Plumhoff et al., 2017). The RD

can be used to measure the difference between two recon-

structed images of the same reconstruction method in

different iterations, and a greater RD value means a larger

difference.

(i) PSNR is widely used and defined as follows,

MSEðx; yÞ ¼
1

M � N

XM

i¼ 1

XN

j¼ 1

xi; j � yi; j

� �2
; ð16Þ

PSNRðx; yÞ ¼ 10 log10 Peak2=MSE
� �

; ð17Þ

where MSE is the mean square error function, x denotes the

reference image, y denotes the reconstructed image, and

M � N is the size of x and y; xi; j and yi; j, respectively, repre-

sent the pixel intensity of x and y in some pixel (i, j), and Peak

represents the largest pixel intensity in the normalized image;

in our study, Peak is 255.

(ii) SSIM is defined as follows,

SSIMðx; yÞ ¼
2uxuy þ c1

� �
2�xy þ c2

� �
u2

x þ u2
y þ c1

� �
�2

x þ �
2
y þ c2

� � ; ð18Þ

where ux, uy are the mean values of x and y, respectively; �2
x , �2

y

denote the variances of x and y, respectively; �xy represents

the standard deviation between x and y; c1 and c2 are two

constants to stabilize the division with weak denominator,

i.e. c1 = ðk1LÞ2, c2 = ðk2LÞ2; in our study, L was set to 255, k1 and

k2 were set to 0.01 and 0.03, respectively.

(iii) RE is defined as follows,

REðx; yÞ ¼
jjx� yjj2
jjxjj2

� 100%: ð19Þ

(iv) CNR is defined as follows,

CNR y1; y2ð Þ ¼
uy1
� uy2

0:5 �2
y1
þ �2

y2

� �� �1=2
; ð20Þ

where y1 and y2 represent the local pixel regions of the two

adjacent tissues in the same reconstructed image, uy1
and uy2

denote the mean value of y1 and y2, respectively, �2
y1

and �2
y2

are

the variances of y1 and y2, respectively.

(v) RD is defined as follows,

RD yt; ytþ1

� �
¼
jjytþ1 � ytjj2

jjytjj2
� 100%; ð21Þ

where yt and ytþ1 represent the reconstructed images in t th

and (t+1)th iterations, respectively.

3. Simulation experiment

3.1. Simulations

To evaluate the performance of the AwaTpV-POCS algo-

rithm, a numerical LC phantom designed via the pathological

section of the fibrous tissue in human cirrhosis sample was

employed, as shown in Fig. 2. The LC phantom is a grayscale

image with the grey value ranging from 0 to 255 and an overall

size of 512 � 512 pixels, which was used to simulate the phase

information distribution of the sample. The detector is

modelled as a straight-line array with 724 bins, and the size of

the reconstructed images is 512� 512 pixels. The 60 uniformly

distributed projections over 180� (full-scan range) were used

to simulate few-view projections. In addition, the 60 uniformly
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Figure 2
The LC phantom designed for testing CT reconstruction algorithms.
(a) The ground truth. (b) Enlarged image of green rectangle region in (a).



distributed noise-free and noisy projections scanned from 30�

to 120� were used to simulate limited-angle projections and

low-dose noisy limited-angle projections, respectively. The

low-dose noise model added into limited-angle projections

were introduced in detail in x2.4. The total iteration number

was selected as the stopping criterion and could be determined

according to the convergence curves, as shown in Fig. 6. Here,

the FBP, SART and AwTV-POCS algorithms were used for

comparison with the AwaTpV-POCS algorithm, and all

parameters were chosen for optimal performance, as shown in

Table 1. All experiments were carried out using the MATLAB

language on a personal computer equipped with Intel(R)

Core(TM) i5-4460 CPU at 3.2 GHz and 16 GB RAM.

3.2. Experimental results

In this section, the simulation experiments were performed

under three conditions of few-view projections, limited-angle

projections and low-dose noisy limited-angle projections.

The experimental results of the reconstructed images using

different CT reconstruction algorithms under different

conditions are given, as shown in Fig. 3. Among the recon-

structed images, those reconstructed using the FBP algorithm

contain the most severe artefacts due to the incomplete

projections or low-dose noise, as shown in Figs. 3(a,e,i). It can

be seen in Figs. 3(b, f, j) that there are still undesirable artefacts

in the SART results. In Figs. 3(c,g,k), it can be observed that

AwTV-POCS can suppress most of the streak artefacts;

however, there are still some artefacts in Figs. 3(g) and 3(k),

which were introduced by limited-angle projections or low-

dose noise. AwaTpV-POCS achieves the best visual effect in

Figs. 3(d,h, i), which show that AwaTpV-POCS eliminates all

the streak artefacts, and also eables to better preserve the edge

details and suppresses artefacts from limited-angle projections

and low-dose noise effectively. The regions of interest (ROIs)

were selected and enlarged to improve the visual effect for

better comparison, as shown in Fig. 4.

3.3. Assessments

To assess the accuracy of the four reconstruction approa-

ches under few-view, limited-angle and low-dose noisy limited-

angle conditions, the profiles of the same position in the

reconstructed images, the position marked with the red line in

Fig. 2(a), were utilized, as shown in Fig. 5. It can be easily
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Table 1
Parameters for simulation.

Method p � �* � c �

Few-view AwTV-POCS – – – 0.2 0.6 15
AwaTpV-POCS 0.2 0.8 0.008 – 0.6 15

Limited-angle AwTV-POCS – – – 0.3 0.7 25
AwaTpV-POCS 0.2 0.5 0.01 – 0.6 15

Low-dose noisy
limited-angle

AwTV-POCS – – – 0.7 0.6 15
AwaTpV-POCS 0.8 0.5 0.03 – 0.7 25

Figure 3
Reconstructed images of the LC phantom using the FBP (a, e, i), SART (b, f, j), AwTV-POCS (c,g, k) and AwaTpV-POCS (d,h, l) algorithms from 60-
view projections under few-view, limited-angle and low-dose noisy limited-angle conditions, respectively. Panels (a)–(d), (e)–(h) and (i)–(l) are
reconstructed images under few-view, limited-angle and low-dose noisy limited-angle conditions, respectively. The blue arrow denotes streak artefacts;
the green arrow denotes limited-angle artefacts. The pixel values of the above greyscale images were normalized to the range [0, 255]. The display
window is [0, 255].



observed that the profiles of the AwaTpV-POCS

approach are closest to the true result under the

three aforementioned conditions. In addition, the

PSNR, SSIM and RE values of the reconstructed

images (Fig. 3) were further calculated (Table 2), and

the results show that the quality of the images

reconstructed using the AwaTpV-POCS approach is

obviously the best.

To evaluate the convergence performance of the

SART, AwTV-POCS and AwaTpV-POCS approa-

ches under the few-view, limited-angle and low-dose

noisy limited-angle conditions, the PSNR-based and
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Figure 4
Enlarged regions of the reconstructed images of the LC phantom using the FBP (a,e, i), SART (b, f, j), AwTV-POCS (c, g, k) and AwaTpV-POCS (d, h, l)
algorithms from 60-view projections under few-view, limited-angle and low-dose noisy limited-angle conditions, respectively. The magnified images were
from the same regions in the reconstructed images, as marked with the green rectangle in Fig. 2(a). The pixel values of the above greyscale images were
normalized to the range [0, 255]. The display window is [0, 255].

Figure 5
Profiles of the LC phantom images reconstructed by different methods from 60
projections under few-view (a), limited-angle (b) and low-dose noisy limited-angle
(c) conditions. The profiles were located at the pixel position labelled with the red
line in Fig. 1(a).

Table 2
Quality metrics of reconstructed LC phantom images.

Method
PSNR
(dB) SSIM

RE
(%)

Few-view FBP 19.2982 0.3444 29.4000
SART 26.2997 0.7167 6.2800
AwTV-POCS 28.0770 0.8887 2.6500
AwaTpV-POCS 30.5168 0.9268 1.9700

Limited-angle FBP 18.0591 0.2918 35.4197
SART 22.6283 0.5902 13.9500
AwTV-POCS 24.1052 0.7917 10.8306
AwaTpV-POCS 25.1669 0.8259 7.6684

Low-dose noisy FBP 16.8145 0.2519 35.3500
limited-angle SART 22.0546 0.5166 14.0900

AwTV-POCS 23.0263 0.7026 12.8900
AwaTpV-POCS 23.8013 0.7314 10.2000



RE-based convergence curves of the above-mentioned

approaches are presented, as shown in Figs. 6(a)–6(c). It can

be observed that the SART, AwTV-POCS and AwaTpV-

POCS algorithms converged before the iterations reach 50

under the few-view condition, but converged before the

iterations reach 300 under other two conditions and,

obviously, the convergence performance of the AwaTpV-

POCS approach is the best.

4. Real experiment on synchrotron IL-PCCT data

4.1. Data acquisition

This study was approved by the Research Ethics Committee

of Beijing Friendship Hospital, Capital Medical University,

Beijing, China, and written informed consent was obtained

from all patients. In this study, the experimental ex vivo human

cirrhosis sample was provided by the Beijing Friendship

Hospital, and its histopathologic section and IL-PCCT image

are presented in Fig. 7. In this experiment, the iodine was used

as the contrast agent for the contrast-enhanced imaging of

fibrous tissue in the cirrhosis sample, and its IL-PCCT data

were acquired at the BL13W1 beamline at SSRF, Shanghai,

China. In this experiment, the energy of the incoming mono-

chromatic photons was adjusted to 33 keV, and the SDD

was set to 0.8 m. A charge-coupled device (CCD) camera

(VHR1:1; Photonic Science Ltd, Robertsbridge, UK) with a

36 mm (horizontal)� 5 mm (vertical) field of view (FOV) was

used as the imaging detector, with an effective pixel size of

9 mm � 9 mm. The full projection dataset (930-view projec-

tions) within a 180� CT scan range was collected with an

exposure time of 12 ms per projection and a projection image

size of 3992 � 513 pixels. In addition, ten dark-current images

(the offset signal recorded when no photons hit the detector)

were used to remove the dark signal in projections (dark-field

correction), while 20 flat-field images (the images with no

sample in the beam) were used to correct the pixel-to-pixel

nonuniformity in projections caused by beam’s intensity

inhomogeneity or non-uniform detector response (flat-field

correction) (Chen et al., 2012). After phase retrieval using the

PAD-BA method, the 186-view projections were uniformly

chosen from the full projection dataset and the 414-view

projections were uniformly chosen from the projection dataset

with respect to CT scan ranging from 10� to 170�. A sinogram

with 186 � 3992 pixels and a sinogram with 414 � 3992 pixels

could then be generated for few-view CT reconstruction and

limited-angle CT reconstruction, respectively. In this experi-

ment, all parameters were chosen for optimal performance, as

shown in Table 3.
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Figure 6
Convergence curves of the SART, AwTV-POCS and AwaTpV-POCS approaches under few-view (a), limited-angle (b) and low-dose noisy limited-angle
(c) conditions, and the performance of AwaTpV-POCS with respect to different values of p (d). In panels (a)–(c), the left-hand axes plot PSNR with
respect to different iteration number, and the right-hand plot RE with respect to different iteration number. The blue arrows and the red arrows mark
PSNR-based and RE-based convergence curves, respectively. In panel (d), the red line with rectangles, the green line with diamonds and the blue line
with triangles represent the performance of AwaTpV-POCS with respect to different values of p under few-view, limited-angle and low-dose noisy
limited-angle conditions, respectively.



4.2. Experimental results

Fig. 8 shows reconstructed images of the human cirrhosis

sample using the FBP, SART, AwTV-POCS and AwaTpV-

POCS algorithms. Figs. 8(a)–8(d) are a reconstructed slice of

human cirrhosis sample from 186-view projections under few-

view conditions using the FBP, SART, AwTV-POCS and

AwaTpV-POCS algorithms, respectively. Figs. 8(i)–8(l) are

reconstructed slices of human cirrhosis sample with 414-view

projections under limited-angle condition using the FBP,

SART, AwTV-POCS and AwaTpV-POCS algorithms,

respectively. Figs. 8(a) and 8(i) show that the reconstructed

slices using FBP have poor image quality and, where the detail

structures and edges are severely affected by artefacts, the

subsequent image segmentation and image analysis may be

influenced. Figs. 8(b) and 8( j) indicate that the SART algo-

rithm has the limited ability to deal with the few-view CT

reconstruction and the limited-angle CT reconstruction

problems. From Figs. 8(c) and 8(k), it can be clearly observed

that the image quality of the reconstructed images using the

AwTV-POCS has been improved significantly in comparison

with that from the FBP and SART algorithms, and this

suggests that the AwTV-POCS algorithms have good

capability when it comes to the few-view CT reconstruction

and the limited-angle CT reconstruction problems. However,

there are a few residual artefacts in the above-mentioned

results. Figs. 8(d) and 8(l) depict the reconstructed results

using the AwaTpV-POCS algorithm, and it can be easily

observed that the results of AwaTpV-POCS have the fewest

artefacts and the clearest edge details of the hepatic fibrous

tissue, and the best image quality compared with those of

other algorithms.

4.3. Result analysis

To evaluate the accuracy of the CT images (Fig. 8) recon-

structed using the FBP, SART, AwTV-POCS and AwaTpV-

POCS algorithms under few-view and limited-angle condi-

tions, the position labelled with the red line in Fig. 8(a), which

crossed through the fibrous tissue region, was used. The

profiles of the above-mentioned positions in Figs. 8(a)–8(d)

and 8(i)–8(l) are shown in Figs. 9(a) and Fig. 9(b), respectively.

In this experiment, Fig. 8(b) was chosen as the reference

image, and hence its profile was chosen as the reference line.

As shown in Figs. 9(a) and Fig. 9(b), the profiles and intensities

of the CT images reconstructed using FBP and SART have a

large deviation from the reference image, which may lead to

image distortion and thus affect the analysis and judgement

of the doctors or researchers. Additionally, the profiles and

intensities of the CT images reconstructed using AwTV-POCS

and AwaTpV-POCS are close to the reference image, indi-

cating that AwTV-POCS and AwaTpV-POCS have high

accuracy in practical CT reconstruction. However, when

compared with the profile of the CT images reconstructed

using AwTV-POCS, the profile of the CT images reconstructed

using AwaTpV-POCS is smoother in the fibrous tissue region

and, considering the homogeneous characteristic of the

fibrous tissue region, this demonstrates that the AwaTpV-

POCS performs better to remove artefacts in the fibrous tissue

region. In addition, to quantitatively evaluate the contrast

between the fibrous tissue and the liver parenchyma, the CNR

values of different reconstructed images were measured

[shown in Fig. 9(c)] using a pair of non-overlapping ROIs

marked with the blue and yellow boxes in Fig. 8(a), and the

CNR value of the reference image was chosen as the reference

value. From Fig. 9(c), it can be observed that the CNR values

of AwaTpV-POCS in few-view and limited-angle cases are

highest; namely, the contrast between the fibrous tissue and

the liver parenchyma in the reconstructed images of AwaTpV-

POCS is highest, and this helps to offer the best visual effect

for distinguishing the fibrous tissue from the liver parenchyma.

Therefore, the fibrous tissue in the reconstructed images of

AwaTpV-POCS is not only accurate but has the fewest arte-

facts and the best visual effect. This will help to accurately

measure and analyze the fibrous tissue for evaluating the

degree of the liver fibrosis or cirrhosis.
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Table 3
Parameters for the synchrotron IL-PCCT experiment.

Method p � �* � c �

Few-view AwTV-POCS – – – 0.9 0.6 15
AwaTpV-POCS 0.1 0.2 0. 8 – 0.6 15

Limited-angle AwTV-POCS – – – 1.2 0.7 25
AwaTpV-POCS 0.3 0.15 0.7 – 0.6 15

Figure 7
Histopathologic section stained with Sirius red of a human cirrhosis
sample (a) and its IL-PCCT image (b). Here, image (b) is the
reconstructed result using the FBP algorithm based on the full projection
dataset, and it can be utilized as the reference image for reconstructions.
Panels (a) and (d) are enlarged images of the green rectangle regions in
(a) and (b), respectively. The black arrows mark the fibrous tissue in the
human cirrhosis sample. The scale bar represents 500 mm. It can be seen
that the IL-PCCT image of hepatic fibrous tissue shows good agreement
with its pathological section.



To test the convergence performance of the SART, AwTV-

POCS and AwaTpV-POCS algorithms in practical CT recon-

struction under few-view and limited-angle conditions, the

RD-based convergence curves of the above-mentioned three

methods are drawn, as shown in Figs. 10(a) and 10(b),

respectively. It can be clearly observed that the SART, AwTV-

POCS and AwaTpV-POCS algorithms converged before the

iterations reach 30 under few-view and limited-angle condi-

tions, demonstrating that the solutions to the above-

mentioned three methods in practical CTreconstruction under

few-view and limited-angle conditions can converge.

5. Discussion and conclusion

In this study, an AwaTpV-POCS algorithm was proposed for

accurate CTreconstruction based on the few-view and limited-

angle projections. In the experiment,

the LC phantom and the synchrotron

IL-PCCT data of the human cirrhosis

sample were used to evaluate the accu-

racy and the feasibility of this algorithm,

and the FBP, SART and AwTV-POCS

algorithms were utilized for compar-

ison. The results confirmed that the

AwaTpV-POCS algorithm was an

effective approach to decrease the

radiation dose for IL-PCCT, which had

the ability to significantly reduce the

artefacts introduced by the few-view

and limited-angle sampling, and

enabled the edge details to be preserved

and the low-dose noise to be

suppressed.

Although the AwaTpV-POCS algo-

rithm is a nonconvex optimization

method, which can obtain only local

optimal solutions in general, it can yield

more accurate solutions than the

AwTV-POCS regularization with the

guaranteed convergence to the local

optimal solution. Recently, with the

rapid development of the nonconvex

optimization method in image proces-

sing, its medical application has drawn

widespread attention (Zhang et al.,

2018; Chen & Anastasio, 2018). To our

knowledge, it was the first to implement

the iterative CT reconstruction algo-

rithm based on nonconvex optimization

to the IL-PCCT, and the accuracy and

the feasibility of this algorithm is

demonstrated in this research. Taking

into account that the small difference in

X-ray attenuation coefficients between

the adjacent soft tissues still constitutes

a significant problem for diagnostic

interpretation, a limitation for absorption-based CT in the soft

tissues, the phase-based IL-PCCT has outstanding perfor-

mance in revealing small variations inside soft tissues. It

therefore has the potential to be an alternative method to

conventional CT for imaging the soft tissues. Recently, IL-PCI

experiments carried out on conventional X-ray sources have

demonstrated that comparable image quality could be

obtained from the benchtop imaging system (Zysk et al., 2012;

Larsson et al., 2016). Moreover, the IL-PCI experiments

utilizing live animal subjects have made great headway (Wang

et al., 2013; Preissner et al., 2018). These progresses may pave

the way for the realization of preclinical or clinical IL-PCI

systems. However, many obstacles still remain for the reali-

zation of preclinical or clinical IL-PCI systems, e.g. the small

FOV, motion artefacts due to heartbeat and breathing, high

radiation dose, etc. Corresponding solutions to the above

problems are currently being researched. This current work

research papers

1340 Yuqing Zhao et al. � A new in-line X-ray PCCT reconstruction algorithm J. Synchrotron Rad. (2019). 26, 1330–1342

Figure 8
Reconstructed images of the human cirrhosis sample using the FBP (a) and (i), SART (b) and ( j),
AwTV-POCS (c) and (k), and AwaTpV-POCS (d) and (l) algorithms from 186-view projections
under few-view condition and 414-view projections under limited-angle condition, respectively.
Panels (e)–(h) are enlarged images in reconstructed images (a)–(d), respectively. Panels (m)–(p) are
enlarged images in reconstructed images (i)–(l), respectively. The enlarged images were from the
same regions in the reconstructed images, as marked with the green rectangle in Fig. 7(b). The blue
rectangle with the size of 80 � 50 marks the fibrous tissue in cirrhosis sample, and the yellow
rectangle with the size of 80 � 50 marks the liver parenchyma tissue in cirrhosis sample. The black
arrows mark the fibrous tissue in cirrhosis sample. The pixel values of the above greyscale images
were normalized to the range [0, 255]. The display window is [25, 225].



aims to reduce the radiation dose of IL-PCCT while main-

taining excellent image quality using newly iterative CT

reconstruction algorithms. In this work, a high-quality slice of

the human cirrhosis sample stained with iodine was recon-

structed using the AwaTpV-POCS algorithm from the highly

undersampled IL-PCCT projections, indicating that the

proposed method is a valuable tool for low-dose CT recon-

struction of the fibrous tissue and can then be used to evaluate

the degree of the liver fibrosis or cirrhosis. It is particularly

worth noting that the proposed method also enables recon-

struction of other IL-PCCT images and other modal CT

images under the assumptions that they are piecewise-smooth.

In further research, the graphic processing unit (GPU)-based

parallel computing techniques will be implemented to increase

the computing speed of the AwaTpV-

POCS algorithm and, additionally, the

adaptivity of the parameters in the

AwaTpV-POCS algorithm will be

researched. Furthermore, future studies

will be carried out to assess whether the

AwaTpV-POCS algorithm also applies

for in vivo data, along with testing to

employ more non-convex iterative CT

reconstruction algorithms to the IL-PCI

and other PCI methods, such as the

speckle-based PCI technique (Bérujon

et al., 2012; Bérujon & Ziegler, 2016).

In summary, the main features and

contributions of the present work are

summarized as follows: (i) hepatic

fibrous tissue is clearly visualized in the

IL-PCCT image by means of iodine

contrast agent, and it shows good

agreement with its pathological section;

(ii) a new nonconvex IL-PCCT recon-

struction algorithm that eables the

preservation of the edge details for

biological tissues is presented, and it can

be applicable for insufficient projection

data; (iii) the proposed algorithm can be

potentially used to decrease radiation

dose for IL-PCCT, and promote the

wider use of IL-PCCT in clinical and

biomedical imaging.
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