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A highly accurate method for calculating X-ray propagation is developed.

Within this approach, the propagating wave is represented as a superposition of

oriented Gaussian beams. The direction of wave propagation in each Gaussian

beam agrees with the local direction of propagation of the X-ray wavefront.

When calculating the propagation of X-ray waves through lenses, the thin lens

approximation is applied. In this approximation, the wave parameters change

discontinuously when the wave passes through a lens; the corresponding explicit

formulae are derived. The theory is applied to highly accurate calculation of the

focusing of X-rays by a system of many beryllium lenses. Fine structure of the

wave electric field on the focal plane is revealed and studied. The fine structure

is formed due to the diffraction of waves at the edges of the lens apertures. Tools

for controlling the calculation accuracy are proposed. The amplitude of the

electric field on the focal plane and the focal spot width are shown to be very

sensitive to the quality of the calculation, while the best focus position can be

obtained even from simple calculations.

1. Introduction

At present, X-ray optics are developing rapidly due to the

possibilities of visualization of very small objects that they

provide. To visualize the structure of a very small object, it is

first necessary to focus the X-rays. Currently, commonly used

focusing elements are bent crystals, multilayers or mirrors,

capillaries, waveguides, refractive lenses and diffraction

elements, such as Fresnel zone plates or Laue multilayer lenses

(Snigirev et al., 1996; Roth et al., 2017).

In this paper, focusing in X-ray optics using X-ray refraction

mechanisms will be considered. The first successes in this field

were presented by Snigirev et al. in 1996, where a composite

refractive lens was used (Snigirev et al., 1996). Since then,

many experiments have been performed using focused X-rays.

The use of lenses with a spherical or parabolic concave profile

is one of the most popular methods of X-ray focusing nowa-

days. Recently, researchers have also used diamond lenses for

X-ray focusing (Roth et al., 2017).

The materials used for X-ray focusing have some common

features. First of all, they are characterized by a complex

refractive index n = 1 � � + i�, where � is responsible for the

refraction of X-rays in lenses and � for the attenuation of the

X-ray intensity. The ideal material for making X-ray lenses

should have a � value as large as possible and an absorption

coefficient � as small as possible. In addition, the material

should allow the technological possibility of manufacturing
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lenses with a small curvature radius R. Knowing the material

properties, it is possible to calculate with high accuracy the

focal length f of an optical system consisting of N lenses with

a given surface curvature R using the formula f = R=ðN�Þ. In

addition to the listed properties, the materials must be strong

and inexpensive. Unfortunately, it is not easy to satisfy the

latter two conditions. Beryllium is one of the most popular

materials currently used for focusing X-rays; the cost of

manufacturing a beryllium lens is about 5000 euros. Unfortu-

nately, while the lens is in use the lens material is subject to

oxidation, and after a while the lens has to be replaced. In

order to effectively focus X-rays at relatively small distances

and for achieving a large magnification, use of complex optical

systems consisting of several dozen lenses is necessary.

Therefore, the experiments are associated with significant

costs. A way to reduce this cost would be to find or develop

cheaper and more effective materials for lens manufacturing.

Performing more extensive theoretical studies based on

mathematical modeling is another way. This work is devoted

to the development of a more advanced mathematical appa-

ratus for theoretical studies and the application of advanced

methods for calculating the X-ray focusing by a system of

many lenses.

At present, in theoretical studies in X-ray optics, the most

popular way to solve the paraxial wave equation is by fast

Fourier transform (FFT) (Goodman, 1996). FFT is a very

effective calculation method. However, the exact solution of

the paraxial equation has the form of an infinite Fourier series,

and this series has to be truncated when we move to the FFT,

which leads to error. The magnitude of the error obviously

depends on the circumstances, but the issue of accuracy and

reliability of calculation has been poorly investigated. The

methods for estimating the Fourier series truncating error are

well developed for functions specified analytically, and the

truncation error is expressed in terms of derivatives of the

decomposed function. In calculations in X-ray optics, we deal

with functions digitized on a mesh, and classical methods of

estimating the Fourier series truncation error are difficult to

apply to functions specified in such a form. The Nyquist

principle considers the necessary digitizing frequency of a

function, but this is not an estimate of the Fourier series

truncating error. In addition, studies show that various focal

spot characteristics have significantly different sensitivities

to the quality of the calculation (Kshevetskii et al., 2016).

Therefore, considering the accuracy of calculating specific

parameters instead of the calculation accuracy on the whole

might be more appropriate. The function describing the

electric field of the X-ray wave passing through a system of

several tens of lenses becomes rapidly oscillating and requires

use of a very dense numerical mesh for its digitization and

many Fourier series terms in calculations. In addition, it has

been proved that, for a larger number of lenses, the faster the

oscillating wavefield after the lenses, and the more Fourier

series terms have to be taken into account for an acceptable

description (Kshevetskii et al., 2016). These circumstances

show the limited possibilities of Fourier methods and stimulate

the development of new methods for solving the problems of

X-ray optics. New methods should provide high accuracy of

calculations in complex cases and should be equipped with

tools for controlling the accuracy and reliability of calculations

(Kshevetskii et al., 2016; Kshevetskii & Wojda, 2015).

In this paper, a method for calculating the propagation and

focusing of X-ray waves based on the use of oriented Gaussian

beams is presented. The idea of using Gaussian beams in

optics is not new. The technique of using beams in optics has

been given elsewhere (Kogelnik, 1965; Keller & Streifer, 1971;

Deschamps, 1972; Deschamps et al., 1983). In later works

(Chabory et al., 2005, 2010; Ghannoum et al., 2009), Gaussian

beams (a Gaussian shooting algorithm) were used in radio-

location for finding the location of an object. X-ray waves are

characterized by an exceptionally high wave frequency;

therefore, the method using Gaussian beams needs to be

adapted to solve the problems of X-ray optics.

Here, we set the incident wave in the form of a simple

coherent wavefront, and we do not touch on the problem of

real sources of X-ray waves, partially coherent and non-strictly

monochromatic. However, Gaussian beams can also be used

to study partially coherent radiation beams, as exemplified by

the Gaussian Shell Model (Deschamps, 1972; Deschamps et al.,

1983). There exists a numerical method based on the analytical

stationary phase method (Bahrdt, 2007), which resembles to

some extent the method presented in this paper. It does not

use Gaussian beams but allows simulation of electric field

propagation ‘along geometrical rays’.

In X-ray optics, the paraxial wave equation (Goodman,

1996; Kohn, 2012) is now widely used for calculating the

electric wavefield. The paraxial equation is approximately

derived from the Helmholtz equation (Levy, 2000; Ishimaru,

1991; Babich & Buldyrev, 1991a,b). Gaussian beams are exact

solutions of the paraxial equation. Since the widths of the

beams are much larger than the X-ray wavelength, Gaussian

beams can also be treated as almost exact solutions of the

Helmholtz equation. As we shall see, practically all solutions

of the problems of X-ray optics can be constructed in the form

of specially selected sums of Gaussian beams. We use oriented

Gaussian beams, that is, Gaussian beams propagating at

certain angles to the optical axis of the optical system. The

condition that the propagation directions of the beams have

to be orthogonal to the phase front of the simulated wave

determines the inclination angles.

The developed approach combines properties of geometric

optics (the Gaussian beams have clear directions of wave

propagation and are localized in transverse directions) and of

wave optics (the Gaussian beams are almost exact solutions of

the Helmholtz wave equation). The method is well suited for

solving problems with many lenses, and allows us to highly

accurately calculate not only the focusing but also the fine-

structure effects on the focal plane that result from X-ray

diffraction at the edges of lens apertures.

Also, the paper proposes tools for controlling the calcula-

tion accuracy and shows the possibility of calculating various

focusing parameters with the required accuracy. It is revealed

that the half-width of the focal spot and, in particular, the

amplitude of the electric field on the focal plane are very
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sensitive to the calculation quality. The position of the best

focus can be obtained even with simple calculations.

2. Basic equations and starting points

The propagation of a monochromatic electromagnetic wave

with frequency !0 in a medium with complex refractive index

n = 1 � � + i� is described by the Helmholtz equation (Levy,

2000; Ishimaru, 1991; Babich & Buldyrev, 1991a,b),

�EðrÞ þ k2
0 n2EðrÞ ¼ 0; k0 ¼ !0=c; ð1Þ

where E is the electric field, r = (x, y, z), k0 is the wavenumber,

c is the speed of light, � is an absorption coefficient and � is a

refractive decrement (� and � are non-negative).

More convenient for practical applications, a simplified

wave equation can be derived from the Helmholtz equation

(1) (Leontovich, 1944). Let us consider the case when the

wave propagates along the x-axis, and the characteristic scales

ly, lz of the wave along the axes y and z are much larger than

the characteristic scale lx of the wave along the x-axis: lx � ly,

lx � lz. In this case, equation (1) can be greatly simplified. If

we substitute

E rð Þ ¼ A rð Þ exp ik0xð Þ; ð2Þ

into equation (1) we obtain the equation for the function

A(r). We suppose that A(r) varies only slowly with variable r.

Neglecting the small term of a second derivative of the func-

tion A(r) with respect to the x-variable, we arrive at the

paraxial equation

@A

@x
þ

k0 n2 � 1ð Þ

2i
Aþ

1

2ik0

@2A

@y2
þ
@2A

@z2

� �
¼ 0: ð3Þ

Equation (3) was first proposed by Leontovich in 1944

(Leontovich, 1944) for describing the propagation of a

monochromatic electromagnetic wave within the paraxial

approach. Equation (3) is often called the paraxial equation.

Equations (1) and (3) describe the propagation of mono-

chromatic waves with frequency !0. Considering quasimono-

chromatic waves characterized by a set of frequencies ! close

to !0, we can construct the solution of such a problem in the

form of a superposition of waves with different !. Thus, a

solution of the general problem of propagation of nonmono-

chromatic waves still leads to equations (1) or (3).

3. The propagation of X-rays in a vacuum

Let us consider equation (3) for the case of a vacuum, that is,

for complex refractive index n = 1, then equation (3) takes the

following form,

@A

@x
¼

i

2k0

@2A

@y2
þ
@2A

@z2

� �
: ð4Þ

This equation has important applications in optics in general

(Goodman, 1996; Levy, 2000), where it describes the propa-

gation of electromagnetic waves, and in acoustics (Babich &

Buldyrev, 1991a,b). Equation (4) has an exact partial solution

in the form of a Gaussian beam (Kogelnik, 1965),

Hðx; y; z; x0; y0; z0Þ ¼
1

1þ i x� x0ð Þ=ðk0�
2Þ

� exp �
ðy� y0Þ

2
þ ðz� z0Þ

2

2 �2 þ i x� x0ð Þ=k0

� �
( )

: ð5Þ

Here � is a real parameter, which controls the Gaussian beam

width. At x = x0, the solution (5) takes the form of a usual

Gauss function,

Hðx0; y; z; x0; y0; z0Þ ¼ exp �
1

2�2
y� y0ð Þ

2
þ z� z0ð Þ

2
� �� �

:

ð6Þ

We can consider (6) as a boundary condition given at the plane

x = 0 to the equation (4). In this case, the formula (5) gives a

solution to equation (4) that meets the boundary condition

(6). Numerical examples of solutions of equation (4) with

other boundary conditions can be found elsewhere (Kshe-

vetskii et al., 2016; Kshevetskii & Wojda, 2015).

Applying the formula (5) to the formula (2), we obtain an

approximate solution

G r; x0; y0; z0ð Þ ¼ exp ik0 x� x0ð Þ
� � 1

1þ i x� x0ð Þ= k0�
2ð Þ

� exp �
y� y0ð Þ

2
þ z� z0ð Þ

2

2 �2 þ i x� x0ð Þ=k0

� �
( )

ð7Þ

of the Helmholtz equation (1). In our investigation, the

condition (�k0)2
’ 109

� 1 is satisfied, and this means that the

function (7) satisfies the Helmholtz equation (1) with very

high accuracy; this is an almost exact solution of equation (1).

Therefore, we shall often name (7) as a solution of the

Helmholtz equation, for convenience’s sake. We also shall call

for convenience the solution (7) of the Helmholtz equation a

Gaussian beam. The solution (7) of the Helmholtz equation

(1) describes the wave propagation along the OX-axis; we

assume that this axis coincides with the optical axis of the

optical system.

Waves in X-ray optics can propagate at small angles to the

OX-axis. Therefore, it is desirable to generalize the particular

solution (7) of the Helmholtz equation (1) to the case when

the wave propagates at an arbitrary angle to the OX-axis. Let

the vector e1 indicate the direction of wave propagation and

let the vector j be directed along the OZ-axis. We denote e2 =

j� e1, e3 = e1 � e2. Then the generalization of the formula (7)

to the case when the wave propagates along the direction

indicated by the vector e1 is written as follows,

G r; r0; e1ð Þ ¼ exp i k r� r0ð Þ
� � 1

1þ i r� r0ð Þ e1

� �
= jkj�2ð Þ

� exp �
r� r0ð Þ e2

� �2
þ r� r0ð Þ e3

� �2

2 �2 þ i r� r0ð Þ e1

� �
=jkj

� 	
 !

: ð8Þ

Here r0 = (x0, y0, z0), k = k0e1. Since we are only interested in

Gaussian beams propagating at small angles to the OX-axis,

then with high accuracy kx ’ k0. In the general case, however,

ky 6¼ 0 and kz 6¼ 0. As before, � is the parameter that deter-

mines the Gaussian beam width.
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Since the formula (8) yields an almost exact particular

solution of the Helmholtz equation (1) in the case (k0�)2
� 1,

there is a temptation to construct a general solution of

equation (8) of the problem of X-ray propagation in the form

of a superposition of particular solutions of the kind (8), with

appropriately chosen parameters.

We introduce in space a system of lines given by the

equations (y = ym, z = zl), where ym and zl are real numbers

and ym+1 = ym + h, zl+1 = zl + h, and h is the step of the mesh �.

Also, we denote each of the introduced lines by the pair

(ym, zl).

Suppose we know the digitized electric wave field E on the

plane x = x0. That is, on the plane x = x0, we have the mesh � of

points (ym, zl) where we know the values of the field E. We

denote E0ml = E(x0, ym, zl). The problem is to find out the field

E in the whole space. In principle, at each mesh point (ym, zl)

we can specify its own direction e1;ml of the Gaussian beam

propagation determined from physical considerations. The

general solution of the X-ray wave propagation problem

Eapprox rð Þ ¼
X
m;l

CmlG r; rml; e1;ml


 �
: ð9Þ

Here rml = ðx0; ym; zlÞ, kml is a wavevector of the (m, l)-beam,

Cml is the factor that determines the (m, l)-beam amplitude,

and e1;ml is a unit vector determining the propagation direction

of waves in the (m, l)-beam.

We have to reasonably determine the wavevectors kml, the

multipliers Cml, the unit vectors e1;ml and the parameter � of

Gaussian beams. First of all, we define the wavevectors kml of

the Gaussian beams used. We represent the X-ray wavefield

in the plane x = x0 in the neighborhood of the point rml =

ðx0; ym; zlÞ in the form E = E0ml exp½ik0ðx� x0Þ� expði�Þ, where

� is a real local phase of the wave. Expanding the wave phase

� in a Taylor series in the neighborhood of the point rml, we

obtain

E ¼ E0ml exp ik0 x� x0ð Þ
� �

exp i�ð Þ

’ E0ml exp

(
i

"
� rmlð Þ þ k0 þ

@�

@x

����
r¼rml

 !
x� x0ð Þ

þ
@�

@y

����
r¼rml

y� ymð Þ þ
@�

@z

����
r¼rml

z� zlð Þ

#)
: ð10Þ

We see that the definition of the local wavevector kml by the

relations

kml;y ¼
@�

@y

����
rml

; kml;z ¼
@�

@z

����
rml

; kml;x ¼ k0 þ
@�

@x

����
rml

ð11Þ

is reasonable. From equation (4) it follows that kml, x can be

represented as

kml;x ¼ k0 �
k2

ml;y þ k2
ml;z

2k0

:

Obviously, the unit vectors e1;ml in (9) are directed along the

kml vector, that is, e1;ml = kml=jkmlj. It is also obvious that e2;ml =

j� e1;ml, e3;ml = e1;ml � e2;ml. On the � grid, the components of

the vector kml can be approximated by the finite differences

kml;y ’ ð�mþ1;l � �m�1;lÞ=2h, kml;z ’ ð�m;lþ1 � �m;l�1Þ=2h,

where h is the mesh step.

In our work, the X-rays propagate at very small angles

to the OX-axis and for all points of the plane x = x0 the

approximate relations kmlðr� rmlÞ ’ 0 are valid because the

vectors kml are almost orthogonal to the plane x = x0;

respectively, we obtain

E x ¼ x0; y; zð Þ ’
X
m;l

Cml exp �
y� ymð Þ

2
þ z� zlð Þ2

2�2

 �
: ð12Þ

We consider on the plane x = x0 an arbitrary closed star

domain � containing the point ðm0; l 0Þ of the grid and we find

the coefficients Cml from the conditionZ
�

E x ¼ x0; y; zð Þ dy dz ’

Z
�

X
m;l

Cml exp �
y� ymð Þ

2
þ z� zlð Þ

2

2�2

 �
dy dz: ð13Þ

The relation (13) is assumed to be valid for any domain �
whose diameter is much greater than both h and �. From (13)

then follows X
m;lð Þ 2�

E0mlh
2
’

X
m;lð Þ 2�

2��2Cml: ð14Þ

From (14) it follows that Cml ’ E0ml h
2/(2��2), where E0ml ’

E(x0, ym, zl). The left-hand side of the formula (14) is obtained

by applying the usual quadrature formula to (13) for calcu-

lating the integral over the region �. When calculating the

integrals on the right side of (14), assuming the beam width �
to be small compared with the diameter of the � region, we

used the fact that the Gaussian functions decrease quickly

with increase of [(y � ym)2 + (z � zl)
2], and we replaced the

integrals over � of the Gaussian functions with integrals over

the entire plane R2.

In the derivation (14) we used the simplifying approxima-

tion kml k OX . In a more general case, the wave can propagate

at a small angle to the OX-axis. Understanding the principle

of derivation of the formula for the factors Cml, we below

formulate the reasoning that does not use the assumption

kml k OX . We draw through the point ðx0; ym0 ; zl 0 Þ a plane �
perpendicular to the vector km0 l 0 . We introduce a special local

coordinate system. Let the OX 0-axis be along the direction

indicated by the vector e1;m0 l 0 , the OY 0-axis be along e2;m0l 0 =

j� e1;m0 l 0 and the OZ0-axis be along e3;m0 l 0 = e1;m0 l 0 � e2;m0l 0 . We

have taken into account here that the vector km0 l 0 may be

nonparallel to the optical axis of the system. We consider

an arbitrary closed star-shape domain �0 in the plane �
containing the point ðm0; l 0Þ of the plane �. We assume that

the domain �0 is not very large; in this case, kml ’ km0 l 0 is

fulfilled for all points ðm; lÞ of the mesh inside �0.
We repeat the above derivation for �0 and obtain for Cml a

formula that coincides with the previous one,

Cml ¼ E0mlh
2= 2��2

 �

; ð15Þ
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but the new derivation of the formula (15) is more accurate

and takes into account that the vectors kml may be nonparallel

to the optical axis, but can form small angles with the optical

axis.

In Fig. 1 for the planar case, an example of approximation

of the function Eðx0; yÞ = E0 expf i ½k0ðx� x0Þ�g expð�y2=2�2Þ

(E0 = 1.6 � 107 V m�1, � = 100 mm, k0 = !0 /c, !0 = 6� �
1018 Hz) on the line x = x0, using a linear combination of the

functions

exp i km r� rmð Þ
� � 1

1þ i r� rmð Þ e1;m

� �
= jkmj�

2ð Þ

� exp �
r� rmð Þ e2;m

� �2

2 �2 þ i r� rmð Þ e1;m

� �
=jkmj

� 	
 !

; ð16Þ

is shown. The coefficients of the linear superposition are

determined by the formula Cm = E0m h/[(2�)1/2�], the

components of the wavevector km are determined by the

formula (11), rm = (x0, ym), km = |km|, e1;m = km=km. Some

difference between these formulas and the above formulae (9)

and (15) is explained by the fact that in this example we have

only one transverse coordinate. We see that the system of

functions (16) used allows us to approximate a given function

very accurately on the line x = x0. Since we apply a super-

position of almost exact solutions of the Helmholtz equation,

which satisfy the boundary condition with high accuracy, this

method allows solving the problem with high accuracy.

4. Oriented Gaussian beams for describing the X-ray
propagation through optical elements

Now consider the propagation of X-rays through lenses. To

begin with, the consideration of the propagation of X-rays

through a single lens will suffice. X-rays penetrate any material

and propagate in any material with very little reflection and

absorption. This allows the boundary condition of the conti-

nuity of the function E to be used at the lens–air boundaries

(Kohn, 2002; Lengeler et al., 1999). Materials used in X-ray

optics for lens manufacturing have such small parameters �
and � that equation (3) in the case of propagation of an X-ray

wave inside the lens can be represented in the following form,

@A

@x
� ik0ð��þ i�ÞA ¼

i

2k0

@2A

@y2
þ
@2A

@z2

� �
: ð17Þ

The substitution

Aðx; y; zÞ ¼ Bðx; y; zÞ exp
�
ik0ð��þ i�Þ x

�
ð18Þ

transforms equation (17) into a standard paraxial equation,

@B

@x
¼

i

2k0

@2B

@y2
þ
@2B

@z2

� �
: ð19Þ

The method of solving equation (19), and also the Helmholtz

equation (1), is described in Section 2. We can use the

formulas (18), (5), (7), (10) and (11) for obtaining the solution

to equation (1) to describe the propagation of an X-ray wave

through a lens.

The formulas (18) and (19) show that if an X-ray wave

encounters a lens with a local thickness d(y, z) then at the exit

from the lens at the lens surface the X-ray wave obtains an

additional phase �(y, z) = k0(�� + i�)d(y, z), which is also

equivalent to the fact that the function describing the electric

field obtains the factor exp½ik0ð��þ i�Þ dðy; zÞ�. The scheme

explaining the local thickness of the lens is shown in Fig. 2.

Since the lens thickness is much less than the focal length,

using the thin lens approximation is permissible and conve-

nient. Within this approximation we take the lens center at the

coordinate xC of the lens on the OX-axis and assume that the

lens lies on the plane x = xC. Let the notations (xC � 0) and

(xC + 0) call the limit on the left and the limit on the right to

the point xC; these notations will be used for writing the wave

fallen on the thin lens from the left and the wave passed
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Figure 1
Approximation of the wave electric field on the line x = x0 by a linear
superposition of functions of the form (16). The blue dots denote the grid
points, and they are also the centers of the Gaussian functions. h = � =
20 mm. The exact function and the approximating function practically
merge.

Figure 2
Schematic representation of the lens and its local thickness. The functions
xL(y, z), xR(y, z) describe the surface of the lens closer to the light source
and the lens surface farther from the light source. For the parabolic
biconcave lens xL(y,z) = maxfxC � ð1=2RÞðy2 þ z2Þ � ðWsm=2Þ,
xC � ðW=2Þg, xR(y, z) = minfxC + ð1=2RÞðy2 þ z2Þ + ðWsm=2Þ, xC +
ðW=2Þg, where R denotes the curvature radius of the lens, W is the
maximum thickness of the lens and Wsm is the minimum thickness of the
lens; xC is a position of the geometric center of the lens.



through the thin lens to the right. When an X-ray wave passes

through a thin lens, the wave phase (and, correspondingly, the

electric field) changes abruptly. We suppose that a narrow

Gaussian beam G(r, xC � 0, ym, zl) described by the formula

(7) falls onto the lens from the left. Also, let the width � of a

Gaussian beam be much smaller than the lens aperture. At the

lens output at the lens surface, we obtain the wave

exp

(
ik0ð��þ i�Þ

"
d ym; zlð Þ þ

@d ym;zl


 �
@y

y� ymð Þ

þ
@d ym;zl


 �
@z

z� zlð Þ

#)
G r; xC þ 0; ym; zl


 �
: ð20Þ

We have expanded the lens thickness in a Taylor series in the

neighborhood of (ym, zl) and have taken into account linear

terms of the series. Since the lens is considered as a thin one,

the wave parameters changed a lot when the wave passed

through the lens.

Now we consider the same question in terms of oriented

Gaussian beams (8). The X-ray wave Gðr; rml; e1;mlÞ, having

rml = (xC, ym, , zl) and the unit vector e1, ml indicating the

direction of wave propagation parallel to the OX-axis, fell on

the lens from the left. At the output, after the lens, we

obtained the wave exp½ik0ð��þ i�Þ dðym; zlÞ�Gðr; rml; e 01;mlÞ.

The parameters of this wave are determined by the formula

(10), which leads to

k 0ml;y ¼ kml;y � k0 �
@d ym; zlð Þ

@y
;

k 0ml;z ¼ kml;z � k0 �
@d ym; zlð Þ

@z
;

k 0ml;x ¼ k0 �
k 0 2ml;y þ k 0 2ml;z

2k0

:

ð21Þ

Thus, the wave has changed its propagation direction and

phase, but otherwise has remained unchanged. The addition to

the wavevector kml in (21) has been generated by the factor

before G(r, xC + 0, ym, zl) in (20).

Now we generalize the obtained result to the case when the

wave in the form of a superposition of narrow Gaussian beams

E rð Þ ¼
P

m;l CmlGðr; rml; e1;mlÞ falls from the left on the plane

x = xC containing a lens. Then after the lens we obtain the

wave

E rð Þ ¼
X
m;l

C 0mlG r; rml; e01;ml


 �
: ð22Þ

This wave is a superposition of oriented Gaussian beams

Gðr; rml; e01;mlÞ in which the parameters k0ml and e01;ml are

determined by the formula (21) and

C 0ml ¼ exp
�
ik0ð��þ i�Þ d ym; zlð Þ

�
Cml: ð23Þ

In the approach used, the formula (22) describes very accu-

rately the propagation of X-ray waves in the air after the lens.

High accuracy of the formulas (22), (23) and (21) is due to the

lens symmetry, so that the lens center is clear. Also, the explicit

formulas for very narrow Gaussian X-ray beams make it

possible to calculate explicitly the phase shifts with allowance

for fine details.

In the derivation of the formulas (21) and (23), we assumed

that the X-ray wave propagates in the lens along the optical

axis. This is a justified approximation, since X-ray waves have

a great penetrating power and practically do not change their

propagation direction. Nevertheless, if we use a lot of lenses,

about a hundred or more, the focal length of the optical system

is relatively small. In this case, when calculating the local

phase shifts, it is necessary to take into account the local slopes

of the wave propagation direction with respect to the optical

axis. Corresponding amendments can be taken into account;

they will somewhat complicate the formulas. If we use only a

few dozen lenses, the local slopes of the direction of wave

propagation inside the lens are very small and practically do

not affect the result.

We hope that the calculation method presented here will

be convenient and adequate for studying the effects of lens

defects (foreign inclusions, oxides, caverns) on focusing and

imaging. A theoretical study of the influence of lens defects on

focusing and imaging may yield more results than an experi-

mental one, since we are unlikely to be able to obtain from the

experiments the internal lens structure in detail. We believe

that modeling the internal structure of lenses as random would

be preferable. Obviously, the effect of one small defect in the

lens will be small, but the effects of many defects in the lens

can accumulate, especially if we apply a lot of lenses. There-

fore, in calculations, high accuracy is required. When exam-

ining the impact of lens defects on the focusing and imaging, it

is reasonable to not consider lenses as thin ones but to cut the

lenses into layers. This will allow the introduction of a local

wavevector inside each lens, and a better understanding of the

wave behavior when the wave will meet a defect or multiple

defects.

5. An estimate of the acceptable step h and the method
error

When (k0�)2
’ 109

� 1, the Gaussian beams (8) satisfy well

the Helmholtz equation (1). Therefore, we can consider them

as practically exact solutions of the Helmholtz equation (1). A

linear superposition of exact solutions (12) for x � x0 gives an

exact solution (9) of the Helmholtz equation (1). Thus, the

error of the approximate solution is determined by the error in

calculating kml and the error of approximating the boundary

condition with a series (12). From the formula (10) it follows

that the error in calculating the local wavevectors is O(h2).

This means that the error decreases in proportion to h2 when

h decreases. As for the approximations (12)–(15), the analysis

shows that the error in this case also decreases in proportion

to h2. Below we will apply the Runge rule (28) to check the

calculation accuracy. The derivation of the Runge rule is given

by Kshevetskii et al. (2016) and Kraus & Langer (2007). We

have to substitute k = 2 into the Runge rule formula (28)

because the approximation order is equal to two.

The problem of focusing X-rays is solved step by step. First

we calculate the wavefield in the plane in front of the lenses.
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Then we compute the X-ray propagation through the lenses.

After that we calculate the wavefield after the lenses on the

plane perpendicular to the optical axis. We finally use the wave

electric field on the plane after the lenses for calculating the

focusing. As shown in the work of Kshevetskii et al. (2016), in

the case of many lenses the wavefield on the plane after the

lenses is fast-oscillating. The calculation quality is determined

by how accurately we are able to describe this fast-oscillating

field.

To obtain an estimate of the acceptable step h, we assume

that the phase of the wave incident on the lens system is

approximately constant. The wave phase is changed signifi-

cantly after the X-ray wave has passed through the lenses. The

formula

dðy; zÞ ¼
y2 þ z2

R
þWsm ð24Þ

describes the dependence on the transverse coordinates of the

thickness of each lens within the aperture. Here Wsm is the

smallest distance between the parabolic surfaces of the lens

and R is the curvature radius of the lens surfaces. According to

the formulas (18) and (19), when the X-ray wave has propa-

gated through a system of N lenses, the X-ray wave has the

phase

� ’ k0�N
y2 þ z2

R
þWsm

� �
; ð25Þ

dependent on the transverse coordinates. We have neglected

the wave attenuation.

The approximation (9) assumes that the function (25)

locally in some neighborhood of each point and at distances

much larger the grid steps h can be approximated by a plane.

Then we can introduce the local wavevector k x; y; zð Þ and the

approximation (9) is effective. Obviously, the function (25) can

be approximated in the neighborhood of each mesh point with

a plane if within the aperture the conditions

@2’

@y2
h2

����
����� 1;

@2’

@z2
h2

����
����� 1 ð26Þ

are satisfied. The conditions (26) give a restriction on the step

h of the mesh �,

h�
cR

2!0�N

� �1=2

: ð27Þ

Actually we use h ’ ½ð0:05cRÞ=ð!0�NÞ�
1=2 in our calculations.

In the work of Kshevetskii et al. (2016), the question of a

fundamental restriction to the step h was considered, and the

condition h� ðcR=!0Þ �Na was derived. Here a is the lens

aperture. The condition (27) does not depend on the lens

aperture and in practice it turns out to be substantially softer

than the condition described by Kshevetskii et al. (2016). It

allows the grid step h to be increased by about an order of

magnitude. This possibility is explained by the fact that we use

in (9) inclined Gaussian beams, which, due to their slopes, take

into account fast oscillations on the OYZ-plane of the wave

electric field. In the derivation of (27), the lenses are assumed

to be ideal, having a parabolic shape. When calculating the

X-ray propagation through non-ideal-shaped lenses, the h step

may have to be reduced for catching and investigating the

effects of non-ideal lenses.

A special issue concerns the influence of the edges of lens

apertures on focusing and imaging. The derivatives of the

refractive index n change abruptly at the edges of the lens

apertures, and the wave phase ’ also changes abruptly.

Therefore, the condition (26) is violated at the edges of lens

apertures, and even @2’=@x2
�� ��, @2’=@z2

�� �� tend to infinity. Let us

consider all points (m, l) in the sum (9), which are in a thin ring

of width " containing the contribution of the edge of the lens

aperture. The contribution of this thin ring into the total

wavefield does not exceed E*"/�2. Here E* is the maximum

value of |E | in this ring. Since the width " of the considered

ring can be taken as arbitrarily small, the contribution of the

edge of the lens aperture in the formula (9) to the general

wave picture can be neglected. This conclusion can also be

justified by the fact that the beam of X-ray waves incident on

the lens usually has an effective width that is smaller than the

lens aperture size.

Nevertheless, the influence of the edges of lens apertures on

the wave propagation and focusing exists. Formula (9) allows

calculation with high accuracy of this influence on the wave-

field in the focal plane; this will be demonstrated later.

5.1. Volume of calculations

The computational complexity (number of operations) of

the presented method using Gaussian beams is estimated as

MIMF. Here MI is the number of points digitizing the electric

field after the lenses. MF is the number of points at which we

calculate the electric field after the lenses at the distance we

are interested in. After the X-rays have propagated through a

system of several tens of lenses, the wavefield becomes fast-

oscillating, and a rather dense numerical grid is required for its

digitization, which determines the number MI. The number

MF is determined only by the desirable resolution of the

picture of interest.

At present, Fourier methods are often used for calculations

in X-ray optics. It is known that the computational complexity

of the FFT is estimated as M log2 ðMÞ, where M is the number

of points used in the FFT method (Cooley et al., 1967). The

FFT method is very fast. However, the FFT technology based

on FFT is somewhat lacking in numerical robustness and

stability (Chubar et al., 2017). Currently, work is underway to

develop software that allows automatic control of the accuracy

of calculations using FFT (Chubar et al., 2017). Therefore, the

question of calculation accuracy control is an important part

of modern research related to the computational problems

of X-ray optics. When the number of lenses increases, the

frequency of oscillations of the wavefield in the plane behind

the lenses perpendicular to optical axis increases fast. There-

fore, the number of Fourier terms that have to be taken into

account also increases fast. Standard methods for estimating

the error of truncating Fourier series are applied to functions

specified analytically, and they are expressed in terms of
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derivatives of the decomposed function. In X-ray optics, we

deal with functions digitized on a mesh on a plane, and

applying standard formulas for estimating the truncating error

is difficult. In addition, studies on the calculation accuracy of

X-ray focusing have revealed that the sensitivity of various

parameters characterizing the focusing to the calculation

quality is very different (Kshevetskii et al., 2016). Therefore,

evaluating the accuracy of calculations is a serious problem

and the calculation accuracy issue should be formulated for

specific characteristics of focusing, and not as a general

question.

Thus, the method developed in this paper has some

advantages in cases where we need to guarantee the reliability

and accuracy of calculations. At the same time, the developed

method is quite universal and uncomplicated.

6. Technique for modeling the propagation
and focusing of X-ray waves in terms of oriented
Gaussian beams

The propagation and focusing of X-ray waves is investigated

for the following conditions. We consider the situation that

some source of X-ray waves with wave frequency !0 = 6� �
1018 Hz produces in the plane x = x0 (x0 = 0 m) a Gaussian

distribution of electric wavefield intensity with a width % =

100 mm. For beryllium lenses and given frequency of X-ray

waves, � = 3.1801 � 10�10 and � = 2.2156 � 10�6. Then the

X-rays propagate further to a distance of 40 m, and then the

waves propagate through a system of 30 parabolic lenses made

of beryllium with a curvature radius of 50 mm and smallest

width of 30 mm. After the X-rays have propagated through

the lenses, the X-rays are focused, and we study them in the

focal plane.

The general scheme of calculating the wave propagation is

shown in Fig. 3. The problem is solved as follows. The specified

wave electric field from a source of monochromatic X-ray

waves is digitized on the mesh on the plane x = x0, and then the

X-ray propagation to the region x > x0 is calculated using

formulas (9), (8), (10) and (15). The resulting wave solution is

digitized again on the mesh on the plane x = x1. The wave

propagation through the first lens is calculated using the

formulas (22), (21) and (23). The resulting wavefield after the

first lens is digitized on the mesh on the plane x = x2. The wave

propagation through the second lens is calculated using

formulas (22), (21) and (23). The

obtained wavefield after the second lens

is digitized on the mesh on the plane x =

x3. The formulas (22), (21) and (23) are

used for calculating the wave propaga-

tion through the third lens, and so on.

We repeat this until the wavefield is

calculated after the last lens corre-

sponding to the coordinate x30. The

resulting wavefield after the last lens is

used to find the position of the best

focus. It is digitized on the mesh on the

plane spaced at a distance corre-

sponding to the position of the best focus, which we denote x31.

Finally, we investigate the behavior of the digitized electric

field on the focal plane x = x31.

6.1. Results of calculations

The calculations are performed for a one-dimensional case.

We consider the case where the wave electric field of the X-ray

beam from the synchrotron far in front of the lenses in the

plane x = x0 is described by the formula Eð0; yÞ =

E0 expð�y2=2�2Þ (where E0 = 1.6 � 107 V m�1 and � =

100 mm). Table 1 presents the calculation results obtained by

approximating the wave electric field with the help of 1000,

2000 and 4000 oriented Gaussian beams, respectively. The

widths � = h of these Gaussian beams are equal to 1 mm,

0.5 mm and 0.25 mm, respectively. The |E | = |A| function takes

the largest value at the distance of 0.36658 m after the lens

system. Table 1 lists the values of |E | and the FWHM at the

distance equal to the focal length (x = x31).

Using the data in Table 1 and applying the Runge rule, we

estimate the calculation errors of the results given in Table 1.

The Runge rule (Kraus & Langer, 2007) allows to estimate

computational errors of values independent of coordinates,

such as the FWHM and the focal length. The electric field

depends on the coordinates, but the maximum value of |E | in

the focal spot is independent of the coordinates. Therefore, we

can control the accuracy of calculating this physical quantity

using the Runge rule, too. The error Q of computing the value

of Z within the Runge rule can be estimated using the

approximate equality

Q ’
Zh1
� Zh2

h2=h1ð Þ
k
� 1

����
����; ð28Þ
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Figure 3
Optical system and general scheme of calculations.

Table 1
Results of the computation of the maximum value of |E | and FWHM at
the focal distance (FD: 0.36658 m after the symmetry center of last lens)
for different values of h; R = 20000 m�1 and a system of 30 beryllium
lenses is used.

Number
of points h (mm)

Maximum of
|E | at FD

FWHM
at FD (nm)

1000 1 5.2063 � 108 191.6
2000 0.5 5.6027 � 108 189.5
4000 0.25 5.6299 � 108 189.0



where Zh1
and Zh2

are approximate values of Z obtained with

the space steps h1 and h2, respectively, and h2 < h1. The deri-

vation of the formula (28) is given by Kshevetskii et al. (2016).

According to the analysis performed in Section 5, the

oriented Gaussian beam method is a method of the second

order of accuracy with respect to the step h. Therefore, we

have to take k = 2 in (28). Applying the Runge rule (28) to the

results of computations for the case h1 = �1 = 1 mm and and for

the case h2 = �2 = 0.5 mm, we have found out that the calcu-

lation error of the FWHM is approximately equal to 1.5% of

its value. The error of computation of a maximal value of the

wave electric field in the focal spot is 9% of its value. These

results show that the amount of M = 1000 Gaussian beams

with h = � = 1 mm is not sufficient for a high-precision calcu-

lation of the maximum |E | in the focal spot. The results of the

calculation for the case of h1 = �1 = 0.5 mm and h2 = �2 =

0.25 mm show that the FWHM calculation error is approxi-

mately 0.4%, and the error in calculating the maximum value

of the wave electric field is 0.6%. Therefore, we see that the

choice of h = � = 0.5 mm gives highly accurate results.

Figs. 4 and 5 shows the behavior of the function |E | at the

focal plane x = x31. The curve shape in the center of Fig. 4 is

close to the Gaussian function, and this is a so-called focal

spot. Fig. 5 shows the fine structure of the function |E |, formed

in some neighborhood of the focal spot. This fine structure

consists of a set of Gaussian-like peaks. The maximum value of

the function |E | in this fine structure is at least two orders of

magnitude less than the maximum value of the function |E | in

the focal spot. The values of the local maxims |E | in the fine

structure decrease with increasing distance from the center.

To make sure that this fine structure is not a computational

artifact, but is a physical effect, in Fig. 5 the results of calcu-

lations with the ordinary and double steps h are pictured. The

results of calculations with ordinary and double steps coincide

with high accuracy. This indicates a physical nature of the

calculated fine structure.

Comparing the results obtained with different widths � of

the initial Gaussian distribution of the electric wavefield at x =

x0, we have found that the amplitudes of the Gaussian-like

peaks of the fine structure in the focal plane x = x31 correlate

with |E | at the edges of the lens apertures. This observation

shows that the fine structure of the wave electric field in the

focal plane has arisen as a result of X-ray diffraction at the

edges of the lens apertures.

7. Conclusions

A high-precision method for solving X-ray optics problems,

based on the use of superposition of oriented Gaussian beams,

is developed. A Gaussian beam is an exact solution to the

paraxial equation of optics, and for appropriate beam para-

meters (the wavelength is much smaller than the beam width)

it can be interpreted as an almost exact solution of the

Helmholtz equation. In an oriented Gaussian beam, the waves

propagate at a given angle to the optical axis. Some relations

that determine the optimal choice of Gaussian beam para-

meters and formulas for linear superposition coefficients are

obtained. Also, the formulas that determine the variation of

the parameters of oriented Gaussian beams and the super-

position coefficients when the X-ray wave propagates through

the lens are derived. The propagation of a Gaussian beam

through a lens leads to changes in the propagation direction

of the wave and the complex amplitude of the electric field in

the beam.

For the method presented, tools for controlling the accuracy

and reliability of calculations are developed. It is shown that

different characteristics of the focal spot have a significantly

different sensitivity to the computation quality. Among the

parameters analyzed (max jE jð Þ, FWHM, focus length), the

maximum amplitude of the electric field in the focal spot is the

most sensitive and exacting to the computation quality. A clear

formula for the mesh step (the number of Gaussian beams

used) required for high-precision calculations is derived.

As an application, the problem of focusing of X-rays by a

system of 30 beryllium lenses in an X-ray microscope was

solved. The high accuracy of the presented method made

possible calculating not only the X-rays focusing but also the

fine structure of the wave electric field on the focal plane. The

fine structure arises from the diffraction of X-rays at the edges

of the lens apertures.
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Figure 4
Focus spot for 2000 points.

Figure 5
Detailed focus spot for 2000 (the red line) and 4000 points (the blue line).



The developed high-accuracy modeling method is quite

universal and is designed to solve various problems of X-ray

optics and, in particular, to study the effect of various defects

in lenses (cavities, foreign inclusions, oxides) on focusing and

imaging. The presented method allows solving problems with

complex lens shapes or calculating the propagation of X-ray

waves through a sample with a complex internal structure, and

with control of the accuracy of calculations.
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