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In this work, the application of an undecimated wavelet transformation together

with digital interferometric contrast to improve the resulting reconstructions in a

digital hard X-ray Gabor holographic microscope is shown. Specifically, the

starlet transform is used together with digital Zernike contrast. With this

contrast, the results show that only a small set of scales from the hologram are, in

effect, useful, and it is possible to enhance the details of the reconstruction.

1. Introduction

X-ray phase imaging techniques are important tools for

observing weak absorbing objects; for example, X-ray holo-

graphy, Zernike’s X-ray microscopy using Fresnel zone plates,

the free propagation method, and differential interference

contrast (Momose, 2005; Paganin, 2006; Liu et al., 2013;

Neuhäusler et al., 2003; Mayo et al., 2002; Kaulich et al., 2002).

Digital holography (DH) in visible optics is a valuable tool for

observing biological samples. Some biological characterization

methods are invasive, but DH does not require a labelling

process. In-line versions of DH are possible; for instance, in

Sheng et al. (2006), the test wave is a plane wave that goes

through the sample. Then the approximately undistorted test

wave and the scatter wave interfere to produce a hologram.

Afterwards, a microscope objective produces the magnifica-

tion to satisfy the sampling restrictions of the sensor image.

Another possibility is described by Garcia-Sucerquia et al.

(2006); in this case, a spherical wave coming from a pinhole

goes through the sample. This setup is similar to that proposed

by Gabor (1948), so we will call it the digital Gabor holo-

graphy microscope (DGBM). The main advantage of the

DGBM is that it can be used in different regions of the elec-

tromagnetic spectrum such as the terahertz and X-ray regions

(Rong et al., 2014; Matsuda et al., 2016).

The main disadvantage of the DGBM is that, even if

conventional numerical reconstruction is used to obtain a

sharp image, the contrast is still unsatisfactory. This issue

appears due to the background and the twin image effect.

Reduction of the background is usually carried out with a

subtraction of the intensity reference wave or with digital low-

pass filtering since it is low-frequency data (Garcia-Sucerquia

et al., 2006). Heine et al. (2011) applied this method in X-ray

holography to observe biological samples. However, as we will
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show later, contrast achieved by this method is still not enough

to observe details of the object in some other cases. Matsuda et

al. (2016) showed that digital Zernike contrast can be applied

to an X-ray DGBM; however, as in the case of background

reduction contrast, minute details still could not be observable

because of some additional strong low-frequency information.

Wavelet analysis has been applied to DH in diverse ways.

Liebling et al. (2003) proposed holographic reconstruction in

terms of the wavelet basis. This technique is called Fresnelets

and has applications for compression and focusing. For image

enhancement, wavelet decomposition is useful for regular-

ization of an associate inverse problem (Vonesch & Unser,

2009).

The starlet transform is a wavelet transformation that

allows us to express an image in terms of a linear combination

of other images, namely the resulting scales and residual. Each

image represents a different content in frequency; therefore,

we can apply it to a hologram and compute the numerical

diffraction of each scale directly. Previously, we performed this

analysis and showed some applications to reduce the inter-

ferometric noise such as parasitic fringes and the twin image

noise (Aguilar et al., 2016). After this processing, we add all

the scales except the residual and some scales that represent

low frequency. A digital Zernike contrast was used to clarify

the performance of twin image denoising in the case of a HeLa

cell.

In this work, we extend this application of the starlet

transform, which is used to enhance details, by utilizing the

digital Zernike phase contrast used by Matsuda et al. (2016)

and Aguilar et al. (2016) in an improved way to observe the

most essential information coming from X-ray DGBM holo-

grams, and subsequently enhance the details by performing

processes such as unmask sharpening only on the useful scales.

2. Experimental setup in hard X-ray holography and
methodology

2.1. Experimental setup

Fig. 1 shows the digital Gabor holographic system in the

hard X-ray region. The synchrotron source (beamline 20XU

of SPring-8, Japan) used in this study produces quasi-mono-

chromatic X-rays with a monochromator, as shown in Fig. 1.

The central part of the expanded X-ray beam is filtered by the

aperture CS1 with a size of 50 mm and is focused by a Fresnel

zone plate (FZP). The FZP has a three-step quasi-kinoform

zone structure made of tantalum. The outermost zone period

is 1.2 mm (half pitch of 0.6 mm), and the diameter is 104 mm,

which is sufficiently smaller than the spatial coherent length of

the illuminating beam. The designed focal length of the FZP is

498 mm at an X-ray wavelength of 0.1259 nm. The measured

focus size was 0.6 mm full width at half-maximum, which is

equal to the diffraction-limited resolution of the FZP. Another

cross-slit aperture CS2 with a size of 2 mm is used to filter the

beam and acts as the point source for hologram recording. The

beam illuminates the object placed at the distance Zo from

CS2. The distance between the object and the hologram is Z.

The size of the hologram is determined by the size of the

reference beam at the hologram plane (diameter D =

1.483 mm at the distance Zo + Z from CS2). A 16-bit

Hamamatsu charge-coupled device (CCD) sensor (C4742-98-

24) with a 3.14 mm pixel size which consists of 1344 � 1024

pixels was used to record the holograms. Interference fringes

with a narrowest spacing of 15.3 mm were produced at the

edges of the sensor. The minimum width of the fringe was

about 4.9 times the pixel size, thus satisfying the sampling

theorem. The X-ray energy was 9.85 keV with a corresponding

wavelength of 0.1259 nm. Test samples used in this study were

8 mm polystyrene sphere beads and a HeLa cell.

2.2. Diffraction integral

Because of the quite short wavelength and large distances

used in our experiment, it is possible to use Fresnel diffraction

or angular spectrum (AS) propagation theory to perform the

reconstruction (Goodman, 2005). Another possibility is the

so-called Kirchhoff–Helmholtz transform (Jericho & Kreuzer,

2011). However, we prefer AS because, if we assume scalar

diffraction, the reconstruction can be performed without any

additional approximations. The equation for computing the

numerical AS is given by

C x; yð Þ ¼ F�1

 
F H x; yð Þ½ �

� exp j
2�

�
z 1�

�
� fx

�2
� � fy

� �2
h i1=2

� �!
ð1Þ

where F and F�1 represent the discrete Fourier transform and

its inverse, respectively, x and y represent the discrete vari-

ables in the spatial domain, fx and fy represent the discrete

variables in the frequency domain, H x; yð Þ is the digital

hologram, z is the propagation distance and � is the wave-

length.

2.3. Reconstruction and magnification

For reconstruction in digital holography, we need a recon-

struction wave to obtain a sharp image of the object. This

reconstruction wave is multiplied by the hologram and,

subsequently, the numerical diffraction of this product is

computed to simulate the propagation up to some plane where

a sharp image of the object is obtained. The reconstruction

wave could be the same as the Fresnel approximation of the

recording wave produced by the cross-slit CS2; however, it is

possible to use other reconstruction waves in order to obtain a

specific degree of magnification (Poon & Liu, 2014). Using the

original recording wave, the magnification is one and the

distance where we obtain a sharp image of the object is the

same as the original position of the real object. In our

experiment, the sensor image plane is set to z = 0 and the other

elements are in the negative part of the axis z. If we use a

reconstruction wave centered at � Z þ Zoð Þ, the sharp image

of the object will be at Zf =�6.83 m. If any other wave is used,

the reconstruction distance and the magnification values will
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change. In the case of a plane wave, the focus plane Zf and

magnification M are given by

Zf ¼ � Z þ Z 2=Zo
� �

; ð2Þ

M ¼ Z þ Zoð Þ=Zo: ð3Þ

In our experimental setup, we have Zf ’ �179.6 m and

M ’ 27.

An important property of using a plane wave in the

numerical simulation is that we can begin the simulation of the

holographic process using a plane wave as the recording wave,

and subsequently derive an equivalent system similar to the

experimental system used in this work. For example, if the

reconstruction distance is Zf ’ �200 m and the object size is

0.2 mm, then from (2) and (3) this represents a system using

a spherical wave centered at � Z þ Zoð Þ = �7.9 m, with Z =

7.6 m, Zo = 0.3 m and an object size of 1=M = Zo=ðZ þ ZoÞ ’

0.038 times the size established in the simulation (that is, a size

of around 8 mm). These values correspond to feasible values

for the case of X-ray systems.

2.4. Digital contrast

The reconstruction of H x; yð Þ at the focus plane is a

complex amplitude quantity. Hence, if we add to H x; yð Þ an

additional wave with complex amplitude A exp �ð Þ, where � is

a constant in the spatial domain, then the contrast of the

resulting intensity image will change. From basic principles of

interferometry, the conversion of phase to fringes intensity

will be higher if we set � = �/2, and when we use this value we

will refer to it as the digital Zernike contrast. As an example,

a simulation for the case of an aspherical object is shown.

We assume that it is equivalently represented as a complex

distribution located in a single plane which is given by � =

exp ’ x; yð Þ½ �. Following the paraxial approximation, since the

rays of an incident plane wave are not refracted significantly,

we can use the Radon transform model (Deans, 1993). If the

radius of any slice of the spherical object is r, with rmax as the

highest value, then the phase modification of each slice of the

object represented by the corresponding slice of ’ x; yð Þ can

be modelled as

’ x; y ¼ constantð Þ ¼

(
2A r2 � x2ð Þ

1=2
; xj j � r;

0; otherwise;
ð4Þ

where A is a constant. A common graph of any slice of ’ x; yð Þ

is shown in Fig. 2.

In our simulation, we set A = �/8000, with a diffraction

distance of Z = 200 m, and the same wavelength as in our

experiment. We introduce the digital Zernike contrast

element by adding the expression B exp �j�=2ð Þ to the holo-

gram H x; yð Þ, that is, we compute the numerical diffraction in

the following form,

F�1

 
F H x; yð Þ þ B exp �

j�

2

� �� 	

� exp j
2�

�
z 1�

�
�fx

�2
� �fy

� �2
h i1=2

� �!
: ð5Þ

The result is shown in Fig. 3(c). We can see the different

attained kind of contrast compared with the background

reduction.

2.5. Wavelet analysis on the hologram

In this section, we will introduce the wavelet transformation

used in this work and explain it in terms of the filter banks

theory (Proakis & Manolakis, 2006). Wavelet transformation

expresses a discrete input signal in terms of other groups of
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Figure 2
Projection of an object with radial distribution. This model is useful for
describing beads where we assume that the contribution of the object is
gathered in one plane.

Figure 1
Optical arrangement for the recording of a hard X-ray Gabor hologram. CS1 is a cross-slit aperture for a pseudo-point source of size 50 mm � 50 mm,
CS2 is a cross-slit aperture for spatial filtering of size 2 mm � 2 mm, and FZP is a Fresnel zone plate.



signals, called scales, and a signal, called the residual. Each

scale and the residual represent a sub-band of the full band-

width of the input signal. The basic unit used to compute the

wavelet transform is shown in Fig. 4(a).

In the figure, the boxes showing h and g represent discrete

convolutions, and the boxes showing N # represent down-

sampling operation by N. The filter h is called a low-pass

scaling filter and g is called a high-pass wavelet filter. The

spectrum division [using the discrete Fourier transform with

expð�j!nÞ] is shown in Fig. 4(b). Owing to the down-sampling

step, the output of each filtering step is a reduced version of

the input signal in terms of size. According to the theory of

filter banks, it is possible to achieve perfect reconstruction

using additional filters, ~hh and ~gg as shown in Fig. 5. All the filters

in this system must satisfy the set of equations given in (6), and

the boxes with N " represent an up-sampling by N,

ĥh� !þ �ð Þ
b~hh~hh !ð Þ þ ĝg� !þ �ð Þb~gg~gg !ð Þ ¼ 0; ð6aÞ

ĥh� !ð Þ b~hh~hh !ð Þ þ ĝg� !ð Þb~gg~gg !ð Þ ¼ 1; ð6bÞ

where ?̂? and ?� denote the discrete Fourier transform and the

complex conjugate, respectively, and equations (6a) and (6b)

are called the dealiasing and exact reconstruction equations,

respectively. This decomposition can be extended to more

scales. The system for two scales and one residual is shown

in Fig. 6(a). The transformation makes a bandwidth division

as shown in Fig. 6(b), and the same filters ~hh and ~gg help in

achieving perfect recovery as shown in Fig. 6(c).

Due to the down-sampling operation, the results obtained

in applications of image processing can have some artifacts

(Starck et al., 2015). The solution proposed by other

researchers was to remove the down-sampling step. This leads

to another kind of wavelet transformation called the undeci-

mated or stationary wavelet transformation (Starck et al.,

2015). In this case, the size of the scales and the residual are

always equal to that of the input signal. Another consequence

is that only equation (6b) will be satisfied, because there is no

aliasing error. The equivalent undecimated wavelet system for

the system in Fig. 6(a) is shown in Fig. 7(a).

The filter h jð Þ means that we choose a filter h, and h jð Þ nð Þ =

h nð Þ if n=2 j is an integer and 0 otherwise. Some examples are

shown in Fig. 7(c). The perfect recovery is made using addi-

tional filters, ~hh and ~gg, as shown in Fig. 7(b). Because only

equation 6(b) must be satisfied, there is more freedom to

choose the filters, and a possible selection is

research papers

J. Synchrotron Rad. (2018). 25, 808–817 Juan C. Aguilar et al. � Improve reconstructions from X-ray Gabor holograms 811

Figure 4
(a) Basic system used to compute a wavelet transform. (b) Bandwidth
division of the spectrum of the input signal.

Figure 5
System used to perform perfect recovery of the input signal, using the
scale and residual signals.

Figure 3
Different reconstructions of a simulated X-ray Gabor hologram of a bead. (a) Normal reconstruction, (b) background reduction, (c) digital Zernike
contrast.



h nð Þ; g nð Þ ¼ � nð Þ � h nð Þ; ð7Þ

~hh nð Þ ¼ ~gg nð Þ ¼ � nð Þ; ð8Þ

where � nð Þ is the kronecker delta. In order to recover the input

signal, the reconstruction system shown in Fig. 7(b) is utilized;

we can observe that the reconstruction is performed by

addition of the scales and the residual as follows,

Input signal ¼ Residualþ Scale 1 þ Scale 2 þ Scale 3

þ . . . þ Scale J:

The above selection of h leads to a transformation called the

starlet transform, which has proved to be useful for astro-

nomical processing (Starck et al., 2015), and is used in this

study in the context of holography (Aguilar et al., 2016). In the

starlet transform, the filter h is given by

research papers

812 Juan C. Aguilar et al. � Improve reconstructions from X-ray Gabor holograms J. Synchrotron Rad. (2018). 25, 808–817

Figure 6
(a) System used to compute a wavelet transformation for two scales and one residual. (b) Bandwidth division of the spectrum of the input signal.
(c) System used to perform perfect recovery of the input signal, using two scales and one residual.

Figure 7
(a) System used to compute the undecimated wavelet transformation for two scales and one residual. (b) System used to perform perfect recovery of the
input signal, using the two scales and one residual. (c) Examples of h jð Þ, wherein h 0ð Þ is exactly equal to h.



h nð Þ ¼ 1; 4; 6; 4; 1½ �=16; ð9Þ

where n ¼ �2; . . . ; 2. For images, the

starlet transform can be applied similar

to the implementation of a two-dimen-

sional discrete Fourier transform

(Gonzalez & Woods, 2007; Starck et al.,

2015). That is, first, a low-pass filtering is

applied in each row of the input image

using h nð Þ, and after the same process is

performed in the columns we obtain the

residual. Next, a high-pass filtering is

applied in each row of the input image

using g nð Þ, and after the same process

is repeated in the columns we obtain

scale 1. We repeat the above steps for

the residual to obtain scale 2 and a new

residual. If we have J scales Wj k; l½ �, with

j = 1; . . . ; J, and the residual CJ k; l½ �,

then the reconstruction is performed as

follows,

C0 k; l½ � ¼ CJ k; l½ � þ
XJ

j¼ 1

Wj k; l½ �; ð10Þ

where C0 k; l½ � is the original image. An example is shown

in Fig. 8.

The starlet transform allows us to express a hologram in

terms of a linear combination of images, each one representing

different content in frequency. Therefore, we can compute the

numerical diffraction of each term directly as is shown in (11)

and (12) for the case of the scale Wj k; lð Þ and the residual

CJ k; lð Þ, respectively,

F�1

 
F Wj k; lð Þ

 �

� exp j
2�

�
z 1� �fxð Þ

2
� �fy

� �2
h i1=2

� �!
;

ð11Þ

for j = 1; . . . ; J, and

F�1

 
F CJ k; lð Þ

 �

� exp j
2�

�
z 1� �fxð Þ

2
� �fy

� �2
h i1=2

� �!
:

ð12Þ

Previously, we performed this analysis and showed some

applications to reduce the intrinsic noise such as parasitic

fringes and the twin image noise (Aguilar et al., 2016). After

this processing, we add all the scales, except the residual and

some scales representing low frequency. The digital Zernike

contrast was used to clarify the twin image denoising in the

case of a HeLa cell sample. In this work, instead of working

only on the amplitude information, we will also observe the

phase information coming from each scale by applying the

Zernike contrast to each of them, as shown in (13). For

completeness, we also apply this contras to the residual,

F�1

 
F Wj k; lð Þ þ B exp �

j�

2

� �� 	

� exp j
2�

�
z 1� �fxð Þ

2
� �fy

� �2
h i1=2

� �!
ð13Þ

for j = 1; . . . ; J:
The results of the starlet transform of H x; yð Þ and the

diffraction of their scales and the residual are shown in Figs. 9

and 10, respectively. The results of applying the Zernike

contrast to each diffracted scale and the residual are shown

in Fig. 11.

research papers

J. Synchrotron Rad. (2018). 25, 808–817 Juan C. Aguilar et al. � Improve reconstructions from X-ray Gabor holograms 813

Figure 8
Example of the application of the starlet transform. (a) Ophthalmic medical image. (b) Starlet transform of the image and recovery just by addition of the
scales and the residual.

Figure 9
The resulting scales and the residual from the starlet transform of the hologram.



From the simulation analysis, we can argue that not all of

the information of the scales is useful. For high-frequency

information, we can use only one of the three first scales, and

for low-frequency information we can use only one of scales

{5, 6, 7}. It is also observed that, since only low-frequency

information is contained in the last scales, they do not diffract

much, and they are not useful for locating the position of the

focal plane. So, we can use only one of the first three scales

where it is easy to recognize in which plane the boundary of

the object becomes sharp. Such a selection of the scales can be

useful not only for symmetric particles but also for more

complex objects like cells.

3. Experimental results and processing

We show the resulting holograms for the case of 8 mm poly-

styrene beads and human HeLa cells in Fig. 12.

3.1. Polystyrene beads

Normal background erasing contrast and the digital

Zernike-type contrast reconstructions, using the full holo-
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Figure 10
Diffraction of the scales and the residual from the starlet transform of the hologram.

Figure 11
Diffraction of the scales and the residual from the starlet transform of the hologram together with Zernike phase contrast.

Figure 12
Experimental holograms obtained using the setup shown in Fig. 1. Left:
polystyrene beads. Right: HeLa cell.



gram, are shown in Fig. 13. A starlet transform of the holo-

gram is shown in Fig. 14. The diffraction of the scales without

and with Zernike contrast are shown in Figs. 15 and 16,

respectively. As suggested by the simulation, in the real case,

only some scales are useful for analysis. In addition, it is rather

easy to find the focal plane using the scale {1} due to the

reduction of the parasitic fringes from the twin image.

3.2. HeLa cells

The reconstructions using the full hologram, without any

processing, with background reduction, and with the digital

Zernike contrast, as shown in (5), are shown in Fig. 17. We can

see that Zernike contrast gives a better result, but reduction of

the strong low-frequency information is necessary to observe

the important details. Next, starlet transform is applied to

H x; yð Þ as before, and the Zernike phase contrast is applied to

each diffracted scale. The results are shown in Fig. 18. It is

possible to observe that scales {4, 5, 6} do not add important

information and can be considered as noise. Scales {3, 7} are

good candidates to add details and low-frequency information

to the final reconstruction. Then, we add the corresponding

hologram scales and apply the digital Zernike contrast as

shown in (14),

F�1

 
F W3 k; lð Þ þW7 k; lð Þ þ B exp �

j�

2

� �� 	

� exp j
2�

�
z 1� �fxð Þ

2
� �fy

� �2
h i1=2

� �!
: ð14Þ

The resulting intensity image is shown in Fig. 19(a). To

enhance the reconstruction, we apply a twin image reduction

algorithm (Aguilar et al., 2016) to the result of (14). After-

wards, we compute its intensity image and apply an additional

unsharping mask (without histogram equalization) as

suggested by Deng (2011). To reduce high-frequency noise, we

finally apply a diffusion filtering to preserve the edges. The

result is shown in Fig. 19(b). Another possible approach is to

enhance the fringes of each scale of the hologram, but this will

give a negative effect of strong amplification of the twin image

noise in the reconstruction.

4. Discussion of results

HeLa cell reconstruction from the full hologram shows that

the background reduction can produce very strong contrast,

resulting in possible difficulties in observing additional details

of the sample. Therefore, a contrast such as that of the digital
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Figure 13
Different reconstructions of an X-ray Gabor hologram polystyrene bead. (a) Normal reconstruction, (b) background reduction, (c) Zernike contrast.

Figure 14
Starlet transform of the 8 mm polystyrene bead hologram.



Zernike type is suitable. Nevertheless, the resulting phase

image still exhibits a strong low-frequency background, which

reduces the visibility of useful detail.

The application of the starlet transform to the hologram

makes it possible to enhance the details. Since starlet

decomposition enables reconstruction using only the addition

of scales and the residual, it is possible

to see the contribution of each part of

the hologram to the total complex

amplitude at the focal plane. However,

the absolute value of the diffracted

scales appears with very high contrast,

which is due to the zero-mean property

of the scales Wj . However, when the

digital Zernike contrast is applied to

each scale, it is easy to estimate the

relevance of the information in the case

of the HeLa cell.

Once the useful scales are identified,

additional processing can be safely

applied to enhance the reconstruction.
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Figure 15
Diffraction of the scales and the residual from the starlet transform of the polystyrene bead hologram.

Figure 16
Diffraction of the scales and the residual from the starlet transform of the polystyrene bead hologram together with Zernike phase contrast.

Figure 17
Different reconstructions of the X-ray Gabor hologram of a HeLa cell. (a) Normal reconstruction,
(b) background reduction, (c) Zernike contrast.



5. Conclusions

We have shown a useful tool to improve reconstructions from

X-ray holograms. This tool allows us to select which infor-

mation is valuable for analysis and additional post-processing.

Common procedure involves computation of the diffraction of

the full hologram. However, by applying the digital Zernike

contrast to each scale, we have shown that such a procedure

is not the best choice. For instance, not all the scales are

necessary to identify the focal plane and observe the details.

Our methodology allows us to choose only relevant scales.
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Figure 18
Diffraction of the scales and the residual from the starlet transform of the HeLa cell hologram together with Zernike phase contrast.

Figure 19
Enhancement of the HeLa cell reconstruction. (a) Scales {3, 7} with
Zernike contrast. (b) Enhanced version of (a) using twin image reduction,
unsharping mask and denoising.
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