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Laue microdiffraction, available at several synchrotron radiation facilities, is

well suited for measuring the intragranular stress field in deformed materials

thanks to the achievable submicrometer beam size. The traditional method for

extracting elastic strain (and hence stress) and lattice orientation from a

microdiffraction image relies on fitting each Laue spot with an analytical

function to estimate the peak position on the detector screen. The method is

thus limited to spots exhibiting ellipsoidal shapes, thereby impeding the study of

specimens plastically deformed. To overcome this difficulty, the so-called Laue-

DIC method introduces digital image correlation (DIC) for the evaluation of the

relative positions of spots, which can thus be of any shape. This paper is

dedicated to evaluating the accuracy of this Laue-DIC method. First, a simple

image noise model is established and verified on the data acquired at beamline

BM32 of the European Synchrotron Radiation Facility. Then, the effect of image

noise on errors on spot displacement measured by DIC is evaluated by Monte

Carlo simulation. Finally, the combined effect of the image noise, calibration

errors and the number of Laue spots used for data treatment is investigated.

Results in terms of the uncertainty of stress measurement are provided, and

various error regimes are identified.

1. Introduction

Many natural and engineering materials, such as glass,

concrete, steel, plastics, etc., have a heterogeneous structure at

a certain level of observation (Nguyen et al., 2011). Material

scientists have long been aware that many macroscopic

phenomena originate from the mechanics of the underlying

microstructure, and the insight of material behavior at the

microscale is necessary for predicting the macroscopic

mechanical response of material. Thanks to the development

of synchrotron radiation, bright and stable X-ray sources with

beam sizes inferior to 1 mm are nowadays routinely available.

These sources have proved to be very powerful in revealing

the material properties at the micrometer scale (Barabash et

al., 2001; Tamura et al., 2002; Ferrié et al., 2005), i.e. in many

polycrystalline materials at a subgranular scale.

Stress measurement at the micrometer scale can be realised

by either monochromatic or white X-ray beam. In mono-

chromatic beam mode, the specimen needs to be rotated

relative to the incoming beam so that a series of diffraction

peaks can be recorded according to Bragg’s law,

� ¼ 2dhkl sin �; ð1Þ
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with � the scattering angle, � the wavelength of the diffracted

X-ray and dhkl the lattice spacing of the diffracted planes

whose Miller index is ðhklÞ. However, since the overall sphere

of confusion of goniometers is rarely better than 30 mm (three

sample rotations are needed for single-crystal diffraction), a

micrometer spatial resolution can hardly be achieved

(Castelnau et al., 2001; Ungár et al., 2007) with monochromatic

beam. Alternatively, by using white beam one can record

simultaneously a group of Laue spots on an area detector (see

Fig. 1) without any rotation and obtain a Laue microdiffrac-

tion image (LMDI). In that case, the spatial resolution of the

setup is no longer limited by the sphere of confusion but

determined by the size of the beam and its penetration depth.

Beamline BM32 installed at the European Synchrotron

Radiation Facility (ESRF) offers white beam with size inferior

to 500 nm � 500 nm and a flat energy spectrum ranging from

5 keV to 22 keV (Ulrich et al., 2011). Routinely, Laue micro-

diffraction allows the deviatoric part of the elastic strain

tensor to be estimated; the trace of elastic strain can by

determined by using an additional energy-dispersive detector

(Robach et al., 2011) or the rainbow technique (Robach et al.,

2013). In this paper, we are only concerned with the deter-

mination of the deviatoric strain.

The traditional method for obtaining elastic strain/stress

and lattice orientation from LMDI has been elaborated by

Chung & Ice (1999). The precision of this method depends

on (i) the determination of the diffraction peak position and

(ii) the calibration of the experimental setup (see Appendix

A). Mainstream open-source codes, such as XMAS (Tamura,

2014) and LaueTools (http://sourceforge.net/projects/laue

tools/), usually locate the diffraction peak by fitting the

distribution of gray levels of a spot with Gaussian, Lorentzian

or Pearson functions, of which the Lorentzian function is said

to give the best estimation of the diffraction peak (Valek,

2003). These fittings implicitly assume the ellipticity of the

shape of the Laue spot. However, such ellipticity can hardly be

guaranteed in many cases; for example, if the crystal contains

dislocations, the diffracted spots would be streaked or even

split (Barabash et al., 2001; Ohashi et al., 2009), or, if there

existed a strain gradient within a pure crystal, the diffracted

spots would be accompanied by mirage spots due to dynamic

effects (Yan & Noyan, 2006). This issue limits the credibility of

stresses inferred from Laue microdiffraction. It is estimated

that the accuracy of peak position by fitting is �0.1 pixel for a

spot of good quality (Poshadel et al., 2012), which corresponds

to a precision of �10 MPa in the stress for steels with the

setup configuration routinely used at ESRF beamline BM32

(Petit et al., 2015). In fact, the traditional method may some-

times give unrealistic results when the grain has undergone

significant plastic strain and stored a significant density of

dislocations. For example, the residual shear stress within a Cu

monocrystal estimated by traditional methods reached 1 GPa,

much higher than its yield stress (Magid et al., 2009).

A method called Laue-DIC was proposed to bypass this

issue (Petit et al., 2015). The novelty of Laue-DIC is that it no

longer locates the peak positions by fitting on each individual

image; instead, it measures the displacements of peaks

between two diffraction images by digital image correlation

(DIC). In the experiment carried out at ESRF beamline

BM32, it was demonstrated that the precision of elastic strain

increment between two images could be of the order of 10�5

with Laue-DIC, corresponding to a stress resolution of 2 MPa

for steel.

Although Laue-DIC has demonstrated its potential in

resolving intragranular stress fields, one should be aware that

the resolution of Laue-DIC is also limited by various factors,

notably the DIC errors (Wang et al., 2009; Bornert et al., 2009),

calibration errors (Hofmann et al., 2011; Poshadel et al., 2012)

and the number of Laue spots considered in the images. This

paper is dedicated to investigating the influence of these

factors. It is structured as follows: first, a brief introduction of

Laue-DIC is given in x2; then a simple procedure for char-

acterizing the image noise is applied in x3; next, we propose a

framework of Monte Carlo simulation to analyze the trans-

mission of image noise to the errors of peak displacements by

DIC in x4; the DIC errors estimated with the aforementioned

method, together with the calibration errors, are further fed

into another Monte Carlo simulation to estimate the errors of

stress measurement in x5, and this method is applied to the

analysis of the stress profiles of a bent monocrystal; finally we

use the established Monte Carlo simulation procedure to

investigate the collective effect of the aforementioned factors

on the accuracy of the Laue-DIC method in x6.

2. Laue-DIC

2.1. Brief introduction of DIC

DIC belongs to the category of optical full-field measure-

ment techniques. Compared with other optical techniques, e.g.

photoelasticity, moiré, holography, speckle interferometry,

grid method, etc., the procedure of DIC is more straightfor-

ward and simple. It originates from the research activities in

artificial intelligence and robotics to develop vision-based

algorithms and stereo-vision methodologies in parallel with

photogrammetry applications for aerial photographs (Sutton
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Figure 1
Typical Laue microdiffraction image obtained from a Si single-crystal
(Petit et al., 2015). The rectangle around a Laue spot represents the
correlation window used for DIC.



et al., 2009). However, gradually, it lent its application to the

realm of mechanics, because it offers a non-contact and non-

destructive method to measure materials’ kinematic fields

(Yamaguchi, 1981; Peters & Ranson, 1982; Wattrisse et al.,

2001; Abanto-Bueno & Lambros, 2002; Wang & Cuitiño, 2002;

Bergonnier et al., 2005).

The procedure of DIC consists of recording several digital

images of a specimen during its deformation and comparing

these images two by two with an image correlation algorithm.

The image correlation technique matches subsets in the series

of images to provide a measurement of the displacement field.

Thanks to the constant decrease of costs of digital cameras and

computers, this method is becoming increasingly available to

both industry and academic society.

To determine the displacement field between two images,

one needs to designate in the first image a set of rectangular

sub-images (of size typically 20� 20 pixels) referred to as the

correlation windows. Each correlation window finds its coun-

terpart in the second image by minimizing a correlation

coefficient which quantifies the resemblance of two correla-

tion windows. The simplest form of correlation coefficient is

defined by the sum of squared difference (SSD),

CSSD ¼
: X�

f ðxÞ � g
�
UðxÞ

��2
; ð2Þ

where the sum runs over all pixels in the correlation window, x

is the pixels’ positions in the correlation window, the functions

f and g provide the gray level at a given position in two

correlation windows, respectively, and U is the so-called

‘shape function’ which defines the mechanical transformation

of the correlation window. Therefore, U can be associated with

rigid-body displacements, rigid-body rotations and deforma-

tion (possibly heterogeneous) of the correlation window, for

which an analytical generic expression is chosen; here, only

rigid-body translation will be considered. The ultimate

purpose of DIC is to determine the coefficients of the shape

function U.

In the CMV software, the in-house DIC tool used in this

work (Doumalin & Bornert, 2000; Bornert et al., 2010), a zero-

mean normalized cross correlation (ZNCC) coefficient is used,

CZNCC ¼
:

1�

P�
f ðxÞ � f

��
g
�
UðxÞ

�
� g

�
�P �

f ðxÞ � f
�2 P�

g
�
UðxÞ

�
� g

�2�1=2
; ð3Þ

where f and g are the averages of f ðxÞ and g½UðxÞ� over the

window, respectively. Compared with other forms of correla-

tion coefficients, ZNCC is insensitive to the offset and scale

changes in the gray level of the image (Tong, 2005). The

property is useful when the image acquisition procedure

cannot guarantee the strict conservation of gray levels, such as

for scanning electron microscopy images (Doumalin &

Bornert, 2000).

2.2. Procedure and formulation of Laue-DIC

Here we briefly introduce the procedure of Laue-DIC (Petit

et al., 2015). To begin with, we need to define a lattice matrix,

whose columns are the components of the three lattice vectors

a, b, c, of a crystal. Here, the lattice matrix is denoted by the

capital letter M. From the lattice matrix and the calibration

parameters (denoted by C; see Appendix A) of the diffraction

setup, one can uniquely determine the peak position of the

Laue spot, say Xhkl, on the detector screen corresponding to

the lattice plane ðhklÞ,

Xhkl
¼ f ðM; C j hklÞ: ð4Þ

Let us designate the strain-free lattice (i.e. the undeformed

lattice) as the reference lattice and denote its lattice matrix as

M0. When the lattice has deformed (state designated as

current lattice), the lattice spacing dhkl of equation (1) alters

together with the normal direction of the ðhklÞ plane, and

hence the associated diffraction peak position. The displace-

ment field of Laue spots before and after the deformation can

be captured by DIC,

�Xhkl
¼ Xhkl

� Xhkl
0 ; ð5Þ

where the subscript ‘0’ refers to the reference Laue pattern.

Assuming that the experimenter has managed to keep

constant the calibration parameters during the experiment

(i.e. C remains unchanged) and restricting the analysis to the

cases in which the two lattices differ by only small elastic strain

and small lattice rotation, �Xhkl can be expressed with good

accuracy by the first-order expansion of function f,

�Xhkl ¼ Xhkl � Xhkl
0

¼ f M; C j hklð Þ � f M0; C j hklð Þ

�
@f

@Mij

M0; C j hklð Þ �Mij; ð6Þ

with �M = M�M0 and with implicit summation over indices

i and j. @f=@Mij on the right-hand side of equation (6) can be

calculated explicitly, therefore equation (6) linearizes the

relationship between �Xhkl and �M. As explained above, only

eight independent components of �M can be assessed by

white-beam Laue microdiffraction (the volume change of the

lattice, given by the determinant of M �M�1
0 , cannot be

measured). Therefore, these eight independent components

can be obtained by linear regression if at least four Laue spots’

displacements are known. The deformation gradient between

the reference and current lattice is given by

F ¼ 1þ �M �M�1
0 ; ð7Þ

with 1 being the second-order identity tensor. The expression

of F in the case of small strain """ and rotation x is simply

F ¼ 1þ """þ x; ð8Þ

where """ and x are the symmetric and asymmetric parts of

�M �M�1
0 , respectively. To sum up, Fig. 2 presents the flow-

chart of Laue-DIC.

3. Characterization of image noise

3.1. Noise model

As shown in Fig. 2, the input of the calculation of Laue-DIC

is the displacements provided by DIC, therefore the error of

DIC would eventually contribute to the error of Laue-DIC.
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The DIC errors are highly associated with the image noise

(Wang et al., 2009; Bornert et al., 2009; Amiot et al., 2013). The

detector used in our experiment was an X-ray 11 Mpixel VHR

(very high resolution) camera especially customized for BM32

ESRF by Photonic Science, with a 12-bit dynamic. This

detector uses a charge-coupled device (CCD) to record

signals: the front of the detector is covered by a layer of

fluorescent material known as the phosphor screen or scin-

tillator; the incident X-ray photons hitting the scintillator will

trigger visible light photons, then these visible light photons

travel through optical fibers until detected by the CCD, and

finally digitalized into gray level of each pixel (He, 2009).

A wealth of literature has been devoted to investigate the

noise of CCD detectors (Arndt & Gilmore, 1979; Stanton et

al., 1992; Ponchut, 2006; Waterman & Evans, 2010). Their

discussions cover all the steps of an image formation and any

possible source of noise. However, since these details go

beyond the scope of this paper, we will skip them and provide

a simple and concise deduction of a Poissonian–Gaussian

noise model for our CCD images.

First, the arrival of a photon in the scintillator of the

detector is modeled as a Poisson process, i.e. the arrival of a

photon is independent of the previous arrivals (Arndt &

Gilmore, 1979; Stanton et al., 1992; Waterman & Evans, 2010).

Then the probability that n photons arrive at the scintillator

during the exposure time would be

PðnÞ ¼
exp �nð Þ n n

n!
; ð9Þ

where n is both the expectation (represented by E½��) and the

variance (represented by VAR½��) of the number of arrivals

during the exposure time (for a Poisson distribution the

expectation equals the variance), i.e.

E½n� ¼ VAR½n� ¼ n: ð10Þ

If the same exposure process is repeated many times,

according to the central limit theorem the distribution of

photon number received by the detector pixel can be

described by a normal distribution (denoted as N ), whose

variance and expectation are both n,

n ’ Nðn; nÞ: ð11Þ

The incident X-ray photons are eventually converted into the

gray level of a pixel with the so-called gain, defined as ‘the

ratio of the integrated image signal to the corresponding

integrated signal at the detector input’ (Ponchut, 2006). In our

case, the integrated image signal is the gray level (expressed

by ps, where the subscript ‘s’ represents the signal) and

the input integrated signal is the accumulation of X-ray

photons (n),

ps ¼ �n; ð12Þ

where � is the gain of the detector. Then the expectation and

variance of gray level would be

E ps

� �
¼ E½�n� ¼ �E½n� ¼ �n;

VAR ps

� �
¼ VAR½�n� ¼ �2VAR½n� ¼ �2n:

ð13Þ

Denoting E½ ps� as ps, the variance of the gray level would be

VAR½ ps� = �ps; then the gray level ps obeys the following

normal distribution,

ps ’ N ps; �psð Þ: ð14Þ

Unfortunately, the gray level is also contaminated by the

noises inherent to the detector, expressed by pd, where the

subscript ‘d’ represents the detector. The noise inherent to the

detector is usually modeled by a normal distribution. We

denote the expectation and variance of this noise with pd and

�2
d, i.e.

E½ pd � ¼ pd; VAR½ pd � ¼ �
2
d: ð15Þ

Various factors contribute to this type of noise, notably the

dark signal and digitalization noise. Dark signal is defined as

the non-zero signal at output when the input signal is zero. The

dark signal usually results from the thermally produced elec-

tron–hole pairs on the CCD chip, and accumulates with the

exposure time (Ponchut, 2006; He, 2009); to minimize this

phenomenon, the CCD chip should be cooled down. The

digitalization noise is introduced in the analog-to-digital

conversion of the signal.

Then the overall gray level p, which is believed to be a

combination of ps and pd, would comply with the following

normal distribution,

p ’ N ps þ pd; �ps þ �
2
d

� �
: ð16Þ

Denoting the expectation and the variance of the overall gray

level by p and �2, respectively, i.e.

p ¼ ps þ pd; �2
¼ �ps þ �

2
d; ð17Þ

we have

�2 ¼ �pþ �2
d � pd�

� �
; ð18Þ

where �, pd and �2
d are the parameters of this noise model.

3.2. Validation of the noise model by repetitive tests

Let us now identify the noise model with data. Several

repetitive tests were carried out to validate the noise model

and identify its parameters. A stack of 100 LMDIs was used in

each test. During the acquisition of each image stack, we

endeavored to maintain strictly the experimental setup to

ensure that the only factor leading to the variation of gray
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Figure 2
Flowchart of Laue-DIC.



levels from one image to the other ones would be the noise.

For each pixel we have calculated the average and standard

variance of its gray levels, using all images of the stack.

Although diffraction images (see Fig. 1, for example)

acquired from experiments contain huge amounts of pixels (in

our case, there are 2594� 2774 pixels in a single image), only a

small portion of pixels, those constituting Laue spots, are of

interest. Only these pixels contain information about the

specimen, and gray levels significantly differ from the back-

ground noise. Therefore, a data reduction process is necessary

to isolate these pixels. A rectangular window containing pixels

belonging to an individual Laue spot is determined. Since the

sizes and the shapes of Laue spots vary according to the spots’

energies, angular projection, crystal defects, etc., one needs to

adaptively select the windows’ sizes to best fit the spots. The

data reduction process adopted in this work is shown in Fig. 3,

and two subimages of spots obtained by this process are shown

in Fig. 4.

Let us now look at an image stack collected from a Si

monocrystalline specimen. As the gain of the detector may

depend on the energy of the incoming X-rays, we first isolate

a subset of pixels which have received X-rays of the same

energy. This can be achieved by using pixels belonging to a

given Laue spot on the LMDI, selected by the process indi-

cated in Fig. 3. In Fig. 5(a) the average gray levels of those

pixels are plotted against the corresponding variances of gray

levels. The figure indicates a linear relationship between the

average and the variance of gray level, as revealed by equation

(18). The slope of the linear relation is an estimation of the

gain �, while the interception with the y-axis is an estimation

of �2
d � pd�. Those two parameters are identified by a linear

regression on the data points; this leads to a large linear

correlation coefficient (�0.9), thereby confirming the sound-

ness of equation (18).

We have then applied the same procedure to all Laue spots

of the LMDI for Si, i.e. corresponding to various X-ray

energies, and for each spot an estimation of � and �2
d � pd�

can be made. Then, plotting the estimated values of � versus
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Figure 3
Data reduction process to determine the optimum rectangular window
containing a Laue spot.

Figure 4
Two subimages of spots obtained by the algorithm in Fig. 3.

Figure 5
(a) Average versus variance of gray levels for pixels corresponding to a
specific spot obtained on a Si specimen. (b) Plot of � versus ð�2

d � pd�Þ of
all Laue spots of the LMDIs measured on Si, Ge, Cu and Fe specimens.



ð�2
d � pd�Þ for all Laue spots enables us to estimate �2

d and pd

by another linear regression (figure not shown for concise-

ness). We found a linear correlation coefficient of �0.94,

indicating a high linear correlation, further confirming the

soundness of the noise model. The obtained parameters are

found to be pd = 118.7 and �2
d = 4.3. The estimated value for pd

is slightly larger than the average gray level of the background

of the image (about 101.1). We are not clear about this feature.

After all, the transmission of signal from incident photons to

digital images is too complex to be fully described by a simple

Poissonian–Gaussian model. Fortunately, the result of DIC is

unaffected by pd as long as the zero-mean normalized cross-

correlation (ZNCC) coefficient is used (Tong, 2005), and

assuming that pd is homogeneously distributed among all

pixels of the detector. Note that the estimated value of � is not

unique as it ranges between �0.1 and �0.15.

More data points would give a better estimation of the

background noise parameters, i.e. pd and �2
d. The detector,

as an apparatus to detect photons, is ignorant about the

diffracting material. Therefore, we further applied the same

procedure to image stacks collected from other samples: Ge,

Cu and austenitic steel (Fig. 5b). This led to a total number of

316 spots investigated. Those image stacks behave similarly

to that for Si, exhibiting a strong correlation between the

variance and the average of gray levels, as illustrated in

Fig. 5(b). This led to the following estimation for the noise

model parameters: pd = 147.3 and �2
d = 7.3. The estimated pd

was again larger than the mean background of the image

(�100). Note again that the gain was not uniquely defined. In

Appendix B, the effect of X-ray energy on detector gain is

investigated. As no clear effect is found, we consider in the

following the mean value � = 0.125.

In summary, the proposed Poissonian–Gaussian noise

model is a simple model but still in good agreement with our

data. As we want to investigate the transmission of image

noise on the DIC errors, such a noise model consistent with

the main data characteristics is sufficient to reach our goal.

4. Impact of image noise on the accuracy of DIC

4.1. Methodology

In this section, we investigate the propagation of image

noise on the accuracy of DIC by Monte Carlo simulation. In

previous work (Petit et al., 2015), the DIC errors for LMDIs

have been investigated experimentally using the displacement

of a Ge single-crystal in a direction parallel to the incident

beam. At each specimen position, a LMDI was acquired, and

the correlation between all images should in principle result in

a uniform displacement of all Laue spots by the same amount

as the displacement prescribed to the specimen. Deviation

from this prescribed displacement reflected the error of DIC.

The mean systematic errors were found to be small,

�0.018 pixels (for a MAR CCD detector, with a pixel size of

80.6 mm). A drawback of this procedure comes from the fact

that it also integrates some experimental errors (assumed to

remain small but hardly checkable) as the specimen needs to

be translated exactly along the beam direction; any deviation

from the perfect movement would be interpreted as DIC error

when using this procedure. The real DIC errors should thus be

smaller than those estimated by Petit et al. (2015).

Another possible approach consists of transforming

numerically a real Laue image to a known displacement field.

The transformation is accomplished either in the frequency

domain by applying Fourier transformation or in the space

domain by interpolating at subpixel positions. Although this

approach can retain all characteristics of images taken under

experimental conditions, the numerical transformation itself

introduces some errors (Bornert et al., 2017) depending on the

specific algorithm used.

In this work, we avoid using real images for the sake of the

issue mentioned above. The DIC errors were instead esti-

mated on synthetic images of a Laue spot. In fact, it is the

gray-level gradient within the rectangular window containing

the spot that determines the precision of DIC (Wang et al.,

2009; Bornert et al., 2009; Amiot et al., 2013). Therefore, if the

gray-level gradient of a synthesized spot is representative of

that of a real spot, we can anticipate a fair assessment of the

DIC result. In our approach, the intensity distribution of a

synthesized spot is modeled by a two-dimensional Gaussian

function,

Iðx; yÞ ¼ A exp
�
�
�
C1 x� x0ð Þ

2
þC2 x� x0ð Þ y� y0ð Þ

þ C3 y� y0ð Þ
2
��
þ pd;

C1 ¼ cos2 �=r 2
X þ sin2 �=r 2

Y

� �
=2;

C2 ¼ sin � cos � �1=r 2
X þ 1=r 2

Y

� �
;

C3 ¼ sin2 �=r 2
X þ cos2 �=r 2

Y

� �
=2;

ð19Þ

where A represents the amplitude of the spot, x0 and y0

represent the center of the spot, rX and rY are the widths of the

spot along the two main axes at the 1=
ffiffiffi
e
p

of the maximum

height, � represents the rotation angle of the main axes of the

Gaussian function with respect to the pixel grid, and pd is the

dark signal mentioned in x3.1.

The calculation of the reference image first required inte-

gration of equation (19) within each image pixel. Then, the

gray level of each pixel was provided by the nearest integer

value of the integral. As for the synthesis of the displaced

spots (current image), a so-called multi-resolution approach

(Doumalin & Bornert, 2000) was employed. It works as

follows:

(i) Subdivide each pixel into N � N subpixels. N will

represent the resolution of subpixel step.

(ii) Calculate the gray level for each subpixel by integration

of equation (19) within each subpixel.

(iii) To obtain the gray level of each pixel after a displace-

ment of i=N pixels along the x direction and j=N pixels along

the y direction, where i and j are integers smaller than N, one

only has to move the pixel by i and j substeps, as depicted in

Fig. 6. Then, we bin subpixels together within the moved pixel,

and take the nearest integer value to obtain its gray level.

Here, we chose the sample size N to be 100, then the

resolution of the subpixel displacement was 0.01 pixel. Fig. 7
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depicts a spot before and after a subpixel displacement of

0.5 pixel along both the x and y directions as examples.

4.2. Error estimation

We implemented the above-mentioned procedure using the

in-house DIC code CMV (Doumalin & Bornert, 2000; Bornert

et al., 2010). The parameters characterizing the spot used for

this study are tabulated in Table 1, which come from analyti-

cally fitting a real spot.

Let us first study the case where image noise is absent. The

Laue spot is moved by i=N pixel and j=N pixel along directions

x and y as described above, and the error between the imposed

displacement and that obtained by DIC is calculated as

ex ¼ xdic � ximposed; ey ¼ ydic � yimposed: ð20Þ

Fig. 8 depicts the distributions of both errors, ex and ey, as

functions of the two-dimensional subpixel displacement

between 0 and 1 pixel.

It shows that error ex essentially depends on displacement

along direction x, and ey essentially depends on displacement

along direction y. In other words, error ex poorly depends on

the displacement along y and similarly for ey. Therefore, to

facilitate viewing the results, Fig. 8 has been integrated in this

manner: we have calculate the average of ex along direction y

for each value of displacement along x, and similarly for the

average of ey along direction x for each value of displacement

along y (see Fig. 9). Both error curves appear S-shaped as

usual for such an investigation (Amiot et al., 2013), with their

minimum located at 0 pixel, 0.5 pixel and 1 pixel. The

maximum error is small, about 0.002 pixel; this is essentially

due to the transformation of real gray values obtained by
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Figure 6
The red thick squares represent 3� 3 pixels subdivided into N � N
subpixels, and the blue square represents the central pixel after being
moved by a subpixel displacement.

Table 1
Parameters used for Laue spot generation.

A rX (pixel) rY (pixel) �

572.65 2.54 1.75 173.18	

Figure 7
A synthetic Laue spot before and after displacement. (a) Initial spot.
(b) After being moved by 0.5 pixel along each direction. The shapes of
the spots are determined by the following parameters: A = 114.43, rX =
6.39 pixel, rY = 4.51 pixel, � = 45	.

Figure 8
Distribution of errors as a function of displacements i=N pixel and
j=N pixel along directions x and y. (a) Error ex and (b) error ey.
Displacement errors are expressed in pixel units.



integration of equation (19) into integer ones since the noise is

absent in this case.

We performed the same analysis for noisy images. We added

random noise to each pixel of the reference and current

images, based on the noise model described and identified in

x3.2. For each displacement, we generated 100 images since

each image will differ due to the random character of the noise

that has been added. The discrepancy between the imposed

displacement and the average of the measured displacements

for the 100 random images is called systematic error, while the

standard deviation of the measured displacements is called

random error (Bevington & Robinson, 2002). Fig. 10 depicts

the averages and standard deviations of errors for all displa-

cements, representing the systematic errors and random

errors, respectively.

In terms of systematic errors, one observes again that errors

on the estimated displacements along x and y are rather

insensitive on the imposed displacements along the ortho-

gonal directions. The amplitude of systematic error ey,

0.008 pixel, is smaller than ex, 0.012 pixel. Compared with the

case of noiseless spots, the levels of errors increased signifi-

cantly due to the introduction of noise.

In terms of random errors, the coupling between error

direction and displacement direction still turns out to be weak.

The amplitude of random error for ey, 0.014 pixel, is smaller

than for ex, 0.02 pixel. Compared with Fig. 8, the errors

increase significantly with the introduction of image noise.

Image noise is thus a limiting factor for DIC.

As for noiseless images, we integrated Fig. 10 along direc-

tions for which the corresponding error is mostly insensitive,

and the results are shown in Fig. 11. In Fig. 11(a), it is found

that the error curves appear to be much noisier than those of

Fig. 9, and they deviate from an S-shape curve. In Fig. 11(b), it
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Figure 10
Systematic errors for (a) ex and (b) ey. Random errors for (c) ex and (d) ey. All are in pixels.

Figure 9
Average errors ex and ey for displacement along directions x and y,
respectively.



is found that the random errors are smaller near integer pixel

displacement, and they quickly reach a plateau as the imposed

displacement deviates from an integer pixel. Values of random

errors range between 0.01 and 0.02 pixel. DIC errors on

displacements along x are systematically larger than those

along y, due to a smaller spot width along y leading to larger

gray-level gradient (Bornert et al., 2009).

5. The accuracy of Laue-DIC

Now we proceed to analyze the fluctuations of the stress

profile in a Si monocrystalline specimen (2.42 mm � 7.97 mm

� 35 mm) undergoing in situ four-point bending (Fig. 12).

The [100], [010] and [001] crystallographic directions of the

specimen were aligned along the three edges of the sample, so

that symmetries of the applied loading matched the symmetry

of sample elastic behavior, thereby reducing so-called out-of-

axis effects (Boehler & Sawezuk, 1977) that might generate

shear strain. According to Rand & Rovenski (2005), the

normal components of the stress should be linearly distributed

along the scanning line located in the middle of the sample,

and the shear components of the stress should be zero.

Nevertheless, the stress profiles of all components in reality

exhibit some degree of deviation from linearity due to some

possible experimental artefacts such as slight sample mis-

orientation.

Aside from the DIC errors, we will identify other factors

that influence the measurement by Laue-DIC, specifically the

detector–sample distance. Fig. 13 depicts the stress profiles of

the same Si sample bent at a moment of 850 N mm, but the

measurements were carried out with different detector–

sample distance, namely, 59.8 mm (Fig. 13a), 101.7 mm

(Fig. 13b) and 143.8 mm (Fig. 13c). The collected image

sequences were treated using the Laue-DIC method to obtain

the stress profiles. A larger detector–sample distance theore-

tically gives a better resolution on spot position, as spots

spread on more detector pixels. Meanwhile, fewer spots can be

collected on the detector screen as the solid angle captured by

the detector decreases. Specifically in this experiment, �35,

�18 and �9 spots were collected, respectively, with the three

different detector–sample distances. Obviously, the stress

profiles turn out to be noisier with larger detector–sample

distance.

To investigate in more detail the transmission of image

noise and calibration errors to the accuracy of Laue-DIC, we

follow a Monte Carlo simulation procedure as stated below:

(i) Fit each spot of the measured LMDI to obtain their

parameters A, rX , rY and � [equation (19)]. This allows having

a rough description of spot shape.

(ii) For each spot, use these fitted parameters to generate an

artificial spot whose characteristics are similar to the measured

spot, and add random noise according to the noise model

introduced (x3). A total of 100 random images are generated

for each spot.

(iii) Perform Monte Carlo simulations to calculate the

systematic and random error of the displacement as described

in x4.2. The imposed spot displacement is that estimated by

DIC on the real images. This allows the accuracy of the

measured displacement to be estimated.
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Figure 11
(a) Average systematic errors in the x and y directions. (b) Average
random errors in the x and y directions.

Figure 12
Sketch of the four-point bending test performed on a Si monocrystalline
specimen. The line scanned with Laue microdiffraction is indicated. The x
and y dimensions are along the thickness (2.42 mm) and length (35 mm)
of the specimen, respectively, while the out-of-plane dimension is along
the width (7.97 mm) of the specimen.



(iv) For all spots, add to their displacements measured by

DIC from real image Gaussian noise, whose means and

deviations are the corresponding systematic and random

errors estimated from the previous step; on the other hand,

add to the calibration parameters (Appendix A) the errors

estimated by Poshadel et al. (2012), which are tabulated in

Table 2; and perform statistical tests to calculate the fluctua-

tion of deviatoric stress components, and hence the error bar.

The sample size of the statistical tests is also 100.

Error bars obtained with the aforementioned procedure are

plotted in Fig. 14 for the stress profiles of Fig. 13(b). The half-

size of an error bar is the standard deviation of the simulated

stress component. It is found that error bars calculated by the

proposed procedure are in good quantitative agreement with

the observed fluctuations of stress profiles.

6. The collective effect of DIC errors, calibration
fluctuations and number of spots considered

In the previous sections, we have qualitatively confirmed the

validity of the framework of error estimation. Now, we

proceed to use this framework to explore further the collective

effect of DIC errors, calibration fluctuations and the number

of spots considered upon the evaluation of the deformation

gradient F. The error on the deformation gradient is defined in

the following manner:

(i) Rescale each component of F by the cube root of the

determinant of F in order to get rid of the unknown volume of

the crystal lattice, i.e.

F̂F ¼
: F

det Fð Þ
1=3
: ð21Þ

(ii) The error on F is defined as

"F ¼
:
P3

i¼ 1

P3
j¼ 1 jF̂F

cal

ij � F̂F
exa

ij j

9
; ð22Þ

where the superscript ‘cal’ represents the calculated value

after having added noise and performed DIC, and the super-

script ‘exa’ represents the exact prescribed value.

In the case of statistical tests where multi-random cases are

treated, we define the systematic error "F and random error �F

on F as
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Figure 13
Stress profiles obtained for the bent Si single-crystal at different detector–sample distances: (a) 59.8 mm, (b) 101.7 mm, (c) 143.8 mm.

Table 2
Uncertainties of the calibration parameters (Poshadel et al., 2012) (pixel
size: 31 mm).

�d (mm) �xc
(pixel) �yc

(pixel) �� ��

0.004 0.16 0.26 0.005	 0.005	



"F ¼
:
P3

i¼ 1

P3
j¼ 1 jF̂F

cal

ij � F̂F exa
ij j

9
;

�"F
¼
:
P3

i¼ 1

P3
j¼ 1 �F̂F

cal
ij

9
;

ð23Þ

where the overline means the average and the � on the right-

hand side of the equation means the standard deviation.

The procedure of the Monte Carlo simulation goes as

follows (see Fig. 15, where the superscript ‘dis’ means the

values disturbed by noise):

(i) Give the lattice matrices and calibration parameters of

both reference (D exa, X exa
c , Y exa

c , B exa, � exa) and current (d exa,

x exa
c , y exa

c , � exa, � exa) configurations.

(ii) Deviate the calibration para-

meters of the current configuration

slightly from their values according to

normal distribution with given devia-

tions.

(iii) Calculate the spots’ displace-

ments according to a prescribed lattice

strain and rotation, and add noise to

these exact displacements to represent

DIC errors.

(iv) Use the spots’ displacements

to calculate the relative deformation

gradient F cal, and compare it with the

exact prescribed value F exa.

In our Monte Carlo simulation, we

use real data from one of our

measurements as input values to make

these tests more realistic. The exact values for calibration

parameters are listed in Table 3, and the exact values for M0

are

M0 ¼

1 �7:74� 10�3 1:66� 10�2

8:03� 10�3 �0:654 �0:758

1:61� 10�2 0:758 �0:653

2
4

3
5: ð24Þ
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Figure 14
Estimation of the error bars of the stress profiles of Fig. 13(b), perform by Monte Carlo simulation.

Figure 15
Flowchart of the Monte Carlo simulation.

Table 3
Exact values of calibration parameters in Fig. 15.

d (mm) xc (pixel) yc (pixel) � �

59.799 1365.75 943.97 0.344	 0.517	



We considered three deformation cases denoted as I, II and

III, for which the relative deformation gradients are given by

FI = F, FII = F � F and FIII = F � F � F, respectively, with the

exact value for F being

F ¼
1 3:33� 10�4 �3:55� 10�4

9:15� 10�6 1 �4:49� 10�4

�3:36� 10�4 2:42� 10�4 1

2
4

3
5: ð25Þ

The three cases represent increasing the deformations and the

rotations in a row. For each case, we tested three subcases, in

which the numbers of Laue spots captured by the detector

area were 40, 25 and 10, respectively. In the following, the

variation of Fcal is investigated with respect to the various

errors listed above.

Variations of Fcal measurement with DIC errors. Here, we

will add zero-mean Gaussian errors to the spots’ displace-

ments to investigate the influence of DIC errors upon the

measurement of Fcal. We will impose all the input displace-

ments of spots in the same Laue image with zero-mean

Gaussian errors whose deviations are 0.005, 0.01, 0.015, 0.02,

0.025, 0.03, 0.035, 0.04, 0.045 and 0.05 pixel (from x4 we know

that the average error is of the order of 0.015 pixel). Uncer-

tainties of the calibration parameters are tabulated in Table 2.

For each deviation level, we generated 500 random cases and

then calculated the average errors of lattice matrices.

Variations of Fcal measurement with calibration errors.

Similarly, we vary the level of calibration errors by scaling the

deviations of all calibration parameters tabulated in Table 2 by

a unique scaling factor denoted �. The scaling factor � is set to

0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5. In other words,

� = 0 corresponds to the case for which calibration parameters

are perfectly known, while � = 2 corresponds to an uncertainty

on the calibration parameters that are twice that indicated in

Table 2. For the sake of brevity, we only consider the case for

which the deviations of the spots’ displacements are 0.01 pixel

along both the x and y directions, for all spots. The other

settings of tests are the same as previously.

The variations of systematic and random errors with

imposed zero-mean Gaussian noise are displayed in Fig. 16,

and those with the level of calibration errors � are displayed

in Fig. 17 (here, for conciseness, only results of case II are

displayed; very similar results are observed for cases I and III).

In both figures, calculations have been performed with Laue

images containing 10, 25 and 40 Laue spots, which are

randomly chosen from all indexed spots. These results suggest

the following remarks:

(i) Both systematic and random errors of F decrease when

increasing the number of Laue spots. The effect on systematic

errors is particularly strong. This result is consistent with

Fig. 13, showing that, at larger detector–sample distance, fewer

spots are recorded and the stress profiles turn out to be more

scattered despite a better resolution of each spot. This result

justifies the usual strategy of using as many spots as possible to

have a reliable measurement of stress, thereby putting the

detector close to the specimen to collect more spots, or

alternatively having a larger detection surface.

(ii) Systematic errors on F increase abruptly with instilling

the zero-mean Gaussian errors either to the spots’ displace-

ments or to the calibration parameters. However, the

systematic errors become stable with further increasing the

deviation of errors.

(iii) Random errors only slightly increase with increasing

the errors on the spots’ displacements. In contrast, random

errors are strongly correlated with the uncertainty on cali-

bration parameters; they are found to depend almost linearly

on the scaling factor �.

(iv) Random errors seem essentially insensitive to the

prescribed deformation gradient (cases I, II and III provide

very similar results). Systematic errors seem to be more

affected but in a complex way; they globally decrease from

case I to case III, but this is not general, as case II in Fig. 17

show smaller errors than case III, which is not shown for

conciseness.

(v) The systematic and random errors on F are of the order

of 10�4, well adapted for micromechanical studies.

As mentioned above, random errors seem to increase

linearly with the scaling factor �, while they seem to be more

stable with the deviations of the displacement errors. This may

indicate that, for the investigated case, the dominant factor

governing the random errors should be the scaling factor �.

This may lead us to postulate that the displacement errors may

dominate calibration errors, for larger displacement errors. To

prove this point, we further extend the range of the abscissa of

Figs. 16(b), 16(d) and 16( f) to 0.16 pixel. We then plot in

Fig. 18 the error curves for multiple values of �, with respect to

the displacement error. To save space, we only consider here

case II (FII = F � F) with 25 spots on the Laue image (the set of

25 spots is different from that adopted in Figs. 16 and 17).

In Fig. 18, it is obvious that all curves asymptotically

converge to a certain curve if we further increase the devia-

tions of displacement errors. For � = 0, i.e. when calibration

parameters are exactly given, the errors increase linearly with

the DIC errors. As we increase �, a basin is formed in which

the error on F increases slightly with the displacement errors,

and the width of this basin increases with �. This implies that,

when the accuracy of the spot displacement is good (e.g. as

obtained with DIC for intense peaks), improvement of the

measurement of F essentially requires a better knowledge of

the calibration parameters (smaller �). On the other hand,

when spot displacements are poorly determined (e.g. when a

complex spot shape is fitted with simple analytical functions,

or when the spot shape changes between the reference and

the deformed image), a better calibration knowledge barely

improves the measurement of F. Coming back to our experi-

ments with � = 1 and average DIC error of 0.015 pixel, it is

clear that the current bottleneck of Laue-DIC is the estima-

tion of the calibration parameters. With respect to this result,

an enhanced version of the Laue-DIC method has been

proposed to neutralize the effect of the uncertainties of cali-

bration parameters (Zhang et al., 2015). In this method, the

calibration parameters are to be optimized alongside the

elastic strain and lattice orientation. Nevertheless, Laue-DIC

and enhanced Laue-DIC methods can give comparable results

research papers

J. Synchrotron Rad. (2017). 24, 802–817 F. G. Zhang et al. � Accuracy of stress measurement by Laue microdiffraction 813



of stress when the calibration parameters are fairly estimated,

with much less CPU time for the initial method than its

enhanced version.

7. Summary

In this paper we have presented a framework for estimating

the error of the Laue-DIC method by Monte Carlo simulation.

First we have proposed a simple procedure to characterize the

image noise by linear regression, and it turned out that the

measured statistical properties of the image noise are well

reproduced by a simple Poisson–Gauss noise model. The

detector gain for each pixel is not found to depend signifi-

cantly on the X-ray beam energy.

The estimated image noise is then fed into a Monte Carlo

model which consists of the following two steps:

(i) Generate a synthetic spot with realistic size, add image

noise to the spot using the identified Poisson–Gauss model,

and perform a statistical inverstigation to estimate the DIC

errors. With this procedure, one can estimate that the displa-

cement error for DIC is better than 0.02 pixel for typical Laue

images (random error).

(ii) Account for the DIC errors and calibration errors for

the calculation of the deformation gradient F in order to
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Figure 16
Influence of imposed zero-mean Gaussian errors on spots’ displacements onto the measurement of Fcal. (Left) Systematic errors. (Right) Random errors.
(a, b) Case I, (c, d) case II, (e, f ) case III. Results for � = 1.



estimate its resulting uncertainty. For an in situ deformed Si

single-crystal, the uncertainty on the deformation gradient is

estimated to be of the order of 10�4.

This proposed method quantitatively reproduces the fluc-

tuations of the stress profiles for the bent Si single-crystal (see

Fig. 14), attesting the validity of the approach.

We also applied this method to explore the collective effect

of DIC errors, calibration errors and the number of Laue spots

used for lattice strain estimation. The following conclusions

have been demonstrated:

(i) Increasing the number of Laue spots for lattice strain

estimation remarkably improves the measurement of the

deformation gradient, although this benefit comes at the

expense of a poorer resolution on spot shapes.

(ii) The systematic error of Laue-DIC seems to be stable

with the DIC error and �, the scaling factor of the calibration

error.

(iii) The random errors of Laue-DIC can be considered as a

function of DIC and calibration errors. Several error regimes

can be identified. (a) When calibration errors (�) are small

enough, the error on spot displacement from DIC constitutes

the dominant factor, and the error on F increases linearly with

the DIC error. (b) If calibration errors (�) are gradually

increased, the random error on F becomes less sensitive to the

DIC error, and in that case the calibration error constitutes

the dominant factor.

APPENDIX A
The geometry of Laue microdiffraction

The setup of Laue microdiffraction can be described by five

parameters (Ulrich et al., 2011). These parameters are defined

in Fig. 19: d is the distance from the illuminated position O

(intersection of the incident beam with the specimen surface)

to the detector; OP
	!

, together with the direction of the incident

beam, defines a laboratory frame <, in which ey is the unit

vector of the y-axis which is codirectional with the incident

beam. ex, the unit vector of the x-axis, is defined as

ex ¼
: ey � OP

	!
key � OP

	!
k

; ð26Þ

and ez, the unit vector of the z-axis, is defined as

ez ¼
:

ex � ey; ð27Þ

� is the angle between ez and OP
	!

, � is the rotation angle of

the area detector around OP
	!

; xc and yc are the distances of P

to two perpendicular edges of the area detector. Pixels on the

detector are assumed to be arranged in a perfect square array

with a known step, i.e. any error resulting from the distortion
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Figure 19
Calibration parameters that define the geometry of the experimental
setup.

Figure 17
Influence of perturbations of calibration parameters � onto the
measurement of Fcal for case II. (a) Systematic errors. (b) Random
errors. Results for a noise of 0.01 pixel on a spot’s displacement.

Figure 18
Variation of error curves with scaling factor � and displacement errors.



of pixels has been corrected by certain algorithms (Paciorek et

al., 1999; Hülsen et al., 2005).

The five parameters (d, xc, yc, �, �) are necessary to

calculate the elastic strain and the orientation because they

serve to translate any rectangular coordinate on the area

detector to its angular coordinate in <, and vice versa,

X  !
ðd;xc;yc;�;�Þ

n; ð28Þ

where X = ½x; y�T is a rectangular coordinate on the area

detector and n is the unit vector pointing from the origin of <,

i.e. O, to X. In this paper, we denote C as the set of five

calibration parameters.

APPENDIX B
Dependence of gain c on photon energy

Each Laue spot for a lattice plane ðhklÞ is generated by

photons with a certain energy, Ehkl . It is natural to suppose

that the gain � of the detector depends on the energy of the

incident X-rays. Ehkl is inversely proportional to the wave-

length according to the de Broglie relation,

Ehkl ¼
2	h- c

�hkl

; ð29Þ

where the subscript ‘hkl’ represents the index of the lattice

plane from which the spot is diffracted, h- is the reduced

Planck’s constant and c is the light speed. Substituting equa-

tion (1) into (29), we have

Ehkl ¼
	h- c

dhkl sin �
; ð30Þ

where dhkl is the d-spacing of the lattice plane. For a cubic

lattice, dhkl is given as

dhkl ¼
a

h2 þ k2 þ l 2ð Þ
1=2
; ð31Þ

where a is the side length of the cubic lattice. Therefore, for a

cubic lattice, the energy of a photon diffracted by the ðhklÞ

lattice plane is

Ehkl ¼
	h- c h2 þ k2 þ l 2ð Þ

1=2

a sin �
: ð32Þ

For all spots under consideration, we have thus plotted in

Fig. 20 the relation between � and Ehkl . In this figure, we do

not see any clear correlation between spot energy E and gain �
and therefore we could only estimate the range of gain from

it. Nevertheless, the gain is most likely to be constant with

varying spot energy since the scintillator of the CCD detector

is designed to absorb all photons in the energy range

(�5–25 keV). Hence, in this work we will take the average

value, � = 0.125, to estimate the error of Laue-DIC.
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Each point corresponds to a Laue spot.
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